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Phase-field-crystal model for magnetocrystalline interactions in isotropic ferromagnetic solids
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An isotropic magnetoelastic phase-field-crystal model to study the relation between morphological structure
and magnetic properties of pure ferromagnetic solids is introduced. Analytic calculations in two dimensions
were used to determine the phase diagram and obtain the relationship between elastic strains and magnetization.
Time-dependent numerical simulations in two dimensions were used to demonstrate the effect of grain boundaries
on the formation of magnetic domains. It was shown that the grain boundaries act as nucleating sites for domains
of reverse magnetization. Finally, we derive a relation for coercivity versus grain misorientation in the isotropic
limit.
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I. INTRODUCTION

The physical properties of materials and their functions are
often influenced by their microstructures [1–3]. This holds
true in magnetic materials where, for example, the magnetic
coercivity, remanence, and magnetic saturation are known to
be a strong function of grain size in polycrystalline materials.
For applications it is often useful to be able to tailor specific
magnetic properties. For example in applications such as in
magnetic data storage devices, sensors, motors, generators,
and transformers [4] it is desirable to have soft magnetic
materials, which have high saturation, remanent magnetization
and low coercivity. These properties make them suitable for
electronic devices for which a quick change of magnetization
with minimum energy loss per cycle is required. Thus it is very
important to understand the detailed and complex relationship
between microstructures and magnetization.

Anisotropy is one of the key properties of magnetic
materials. To reverse the direction of a magnetic domain, a
magnetic anisotropy energy barrier must be overcome such
that the magnetic moments have enough energy to deviate
from the easy axis of magnetization. The other factor that
determines coercivity is the local morphology of the material.
For example, grain boundaries and other defects can modify
the barrier for formation of a magnetic domain [5–7]. Another
example is a local composition variation: a secondary soft
magnetic phase could affect the initiation of magnetization
reversal. Finally, the exchange interaction and magnetic
dipole interactions also influence coercivity. These interactions
establish collective alignment of magnetic moments, which
facilitates the formation of the magnetic domains [5,8].

Understanding the relation of magnetic microstructure to
crystalline microstructure can be useful for designing materials
with desired magnetic properties. This is particularly true of
nanocrystalline materials with grain sizes on the order of a few
tens of nanometers, where grain size and magnetic correlation
lengths are comparable. The relative magnitude of these
length scales can alter the mechanism of magnetic domain
formation to be controlled either by a long-range cooperative
magnetic behavior or by a local ordering. This gives rise

to a relatively broad range of coercivity values attainable
in nanocrystalline magnetic materials [9] and opens up new
opportunities to develop ultra-high-density magnetic storage
devices [10]. Understanding the physics of these systems,
however, requires a robust modeling formalism that is capable
of describing magnetoelastic interactions in the presence of
crystalline defects and microstructural processes that evolve
on diffusive time scales.

One of the first studies of the effect of crystallographic
structure on the magnetic properties was by Harris et al. [11].
They suggested a simple Hamiltonian to describe magnetism
in amorphous materials with random anisotropy. Later, this
model was developed to study amorphous materials in which
the magnetic correlation length spans many length scales with
different anisotropy directions [12,13]: For small grains the
magnetic correlation length is larger than the grain size and the
effective anisotropy is suppressed by the exchange interaction
within a domain. In such materials the coercivity Hc and
the grain size D are related as Hc ∼ D6. In contrast, when
the grain size is larger than the magnetic correlation length,
the magnetization is controlled by domain wall pinning at the
grain boundaries and Hc ∼ 1/D [14,15]. This simple model
has formed the basis of most theories on magnetic hardness
in nanocrystalline magnetic materials [16], and its predictions
were confirmed by experiments [17–19].

The relationship between grain size and hysteresis contin-
ues to be the subject of numerous investigations in the field
of micromagnetism [7,10,20,21]. Most approaches have been
based on the minimization of Hamiltonians that contains terms
for anisotropy, exchange, magnetoelastic, and demagnetizing
energies [6]. These Hamiltonians tend to be rather complex
and can be solved for minimum energy configurations only in
simple geometries and under certain simplifications, most of
which do not adequately reflect the complex microstructure of
a material.

Magnetization has recently been coupled to phase-field
order parameters to describe different crystal variants or
phases. Magneto-phase-field free energies are then used to
derive dynamical equations of microstructure evolution in
the presence of magnetic field in [22–24]. The advantage
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of these models is that the interface between the crystalline
phases emerge naturally in the dynamics of the field equations.
Furthermore, in this approach the free energy is developed
in terms of the coarse-grained order parameters in space and
time, which makes it possible to reach the diffusive time scales
and the length scales necessary to study the microstructure
evolution in the presence of an external magnetic field. The
main drawback of traditional phase field approaches is that
they lack direct coupling to plastic and elastic effects emergent
from the atomic structure of crystalline phases. Information
about the crystallographic structure of material typically
enters through effective parameters controlling the anisotropy,
exchange stiffness, or the boundary conditions. Moreover, no
continuum phase-field-type model to date incorporates the
elastic and kinetic effects of topological defects.

This work introduces a phase-field-crystal (PFC) model that
captures the basic physics of magnetocrystalline interactions
for isotropic ferromagnetic solids. The PFC approach [25,26]
is a continuum method that has been shown in numerous
publications to capture the essential physics of atomic-scale
elastic and plastic effects that accompany diffusive phase
transformations, such as solidification, dislocation kinetics,
solid-state precipitation, and epitaxial growth [3,27–34]. This
work expands the approach by coupling the PFC density
with magnetization to generate a ferromagnetic solid below a
density-dependent Curie temperature. The equilibrium prop-
erties of the model are first examined, followed by a single-
mode derivation of the model’s magnetostriction properties.
Simple dissipative dynamics are used to qualitatively illustrate
coercivity to grain and domain size. Finally, a relation for the
coercivity versus low-angle grain boundary misorientation is
derived.

II. MODEL DESCRIPTION

We construct a dimensionless free energy that couples
three dimensionless fields, i.e., the number density n(x),
the magnetization vector m(x), and the magnetic field B,
according to
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The dimensionless number density field is defined as n(x) ≡
[ρ(x) − ρ̄]/ρ̄, where ρ̄ is a reference constant density, taken to
be the density of the liquid at coexistence [35]. The parameter
ω ≡ B2

0/μ0kBT ρ̄ and B0 is a reference magnetic field. The
parameter kB is the Boltzmann constant and V is the volume
of the unit cell.

The first line in Eq. (1) is the usual phase-field-crystal (PFC)
free energy [25,26], where Bs , t , v, and �B are dimensionless
parameters related to physical properties of the material. Using
the classical density functional theory of freezing (CDFT) it
has been shown that Bs is related to the bulk modulus of the
solid [27]. In the same framework, the bulk parameters t = 1/2
and v = 1/3 are approximated by expanding the free energy

of the ideal gas about a reference density [29,30]. In the PFC
model the transition from liquid to solid occurs when �B

changes. Decreasing �B is equivalent to decreasing tempera-
ture or increasing the average density of the system [35]. Space
has been rescaled in terms of the lattice constant a = 2π/qo.

The second line of the free energy approximates the
magnetic free energy through a Ginzburg-Landau (GL) ex-
pansion, which accounts for a ferromagnetic phase transition
[36] through (rc − βn2), a factor that implicitly depends
on temperature through n. This term defines the Curie
temperatures. The parameters rc and β are chosen such that
the Curie temperature lies below the liquid/solid coexistence
lines in the phase diagram [37–39]. The parameter W0 sets
the scale of the magnetic correlation length (in units of the
lattice constant). The parameter γ is related to the saturation
magnetization and the magnetic susceptibility. The term,
−α/2(m · ∇n)2 is introduced in this work as the lowest-order
coupling of magnetization to the gradient of the density, giving
rise to magnetostriction, with α being the magnetostrictive
coefficient, a very small dimensionless quantity of order
α ∼ 10−5 for iron, nickel, and cobalt [40]. The lowest-order
term to incorporate magnetostriction should be quadratic in
m due to symmetry; linear coupling would imply that the
direction gradient is important, which is not the case. In Sec. III
it will be shown that this form of coupling will give rise to a
term linear in strain and quadratic in m in the continuum limit,
which is in agreement with the magnetoelastic free energy
of solids based on symmetry arguments [41]. In addition, a
lower-order coupling of ∇n to m would vanish under coarse
graining to longer wavelengths.

The last two terms in Eq. (1) account for the magnetic
free energy and are associated with the magnetic dipole
interactions. The total local magnetic field is denoted by
B = B(r), where B is scaled by B0. It is calculated by adding
the induced magnetic field and the external magnetic field,
B(r) = Bind(r) + Bext. The induced magnetic field is a result
of magnetization current density, JM and can be expressed in
terms of the magnetization, m according to the dimensionless
Poisson’s equation [42]

∇2A = −∇ × m, (2)

where A is the dimensionless vector potential and is related
to the induced magnetic field via Bind = ∇ × A. The value of
ω can be chosen to match the measured value for a specific
ferromagnetic element. Here, for simplicity we chose ω = 1.
In the subsequent sections we use the following model param-
eters in the free energy of Eq. (1): (Bs,t,v,α,W0,β,rc,ω,γ ) =
(0.98,0.5,1/3,10−3,0.5,4 × 10−2,10−2,1,1).

III. EQUILIBRIUM PROPERTIES
AND MAGNETOSTRICTION

In this section, an amplitude representation of Eq. (1) is de-
rived and then used to calculate the equilibrium phase diagram
and the magnetostriction coefficients of the present model.

A. Phase diagram

To coarse grain the free energy, we calculated the amplitude
representation of the free energy, by expanding the density in
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terms of the Fourier modes with spatially dependent complex
amplitudes

n = n0 +
∑

j

ηj (x,t)eiqj ·r + C.C. (3)

where no represents the average density, C.C. represents
the complex conjugate of the expansion, q1 = −√

3/2i −
1/2j, q2 = j, and q3 = √

3/2i − 1/2j for a triangular two-
dimensional system, and ηi are complex amplitudes corre-
sponding to each density wave in the expansion. Equation (3)

approximates the density to the lowest-order harmonics of
the Fourier expansion, i.e., the single-mode approximation.
We substitute this into the free energy (and omit the en-
ergy associated with the magnetic dipole interactions in
comparison to the exchange interaction) and follow the
integration procedure of Refs. [43,44], assuming that the
amplitudes, ηj (x,t), vary on length scale much larger than
the lattice constant. This effectively amounts to ignoring
the spatial dependence of the amplitudes over a unit cell to
obtain
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where the operators Gj and Aj are defined as Gj ≡ (∇2 + 2iqj · ∇) and Aj ≡ m · (∇ + iqj ).
Following Chan and Goldenfeld [45] and others [46], we represent the complex amplitude by ηj = φeiqj ·u, where u(x) denotes

a local elastic displacement vector. Inserting it into Eq. (4) we obtain
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where Uij are the strain tensor elements and φ is the order parameter. φ is nonzero in the solid phase and zero in the liquid phase.
The strain tensor is defined as

Uij ≡ 1

2

(
uij + uji +

∑
k

uikujk

)
(6)

with uab ≡ ∂ua/∂xb. This form of the free energy presents a continuum description of the magnetic material’s properties, which
has the same level of coarse graining as those established in Refs. [41,47]. The main difference is that that complex amplitudes
now allow a description of grain boundaries and dislocations.

To calculate the equilibrium states of the system, we minimize the free energy, Fφ,Uij
, with respect to the strain tensor elements,

Uij . The resulting, minimized, free energy becomes
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This free energy has the form of the LG free energy
containing a ferromagnetic phase transition. The coeffi-
cients depend on the mean density of the system, n0, the
crystalline order parameter (φ) as well as the tempera-
ture, �B. The dependence of magnetic phase transition

on the density is a manifestation of the connection be-
tween microstructure and magnetic properties of the mate-
rial.

The fact that the magnetic energy, Eq. (7), does not depend
on the relative angle of the magnetization and the direction
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of ∇n, reveals that the model [Eq. (1)] does not include
anisotropy. This is due to the fact that it contains the coupling
term, m · ∇n, only up to the second order. To involve the
anisotropic effects higher-order terms in m · ∇n are required.
Anisotropy is a subject for future research.

To find the ferromagnetic transition, we minimize Fφ with
respect to the magnetization |m|, obtaining

ms = 0, ±
√√√√−(

rc − n2
0β − 6φ2β + 3φ2α

)
γ − 9

4
ω α2 φ2

Bs

, (8)

where φ is the amplitude of the density field expansion in PFC
model. Minimizing the magnetic PFC free energy with respect
to φ when |m| = 0 yields,

φmin = −n0

5
+ 1

10
+ 1

10

√
1 + 16n0 − 16n2

0 − 20�B. (9)

Thus φmin is a function of the mean density n0 and the
temperature �B. To find the ferromagnetic transition line in
the �B−n0 plane, we solve

rc − n2
0β − 6φ2β + 3φ2α = 0 (10)

using φ = φmin in Eq. (9). The solution gives an equation for
the Curie line in terms of �B and average density no. This line
separates the phase diagram into nonmagnetic and magnetic
phases.

The values of rc and β change the position of the Curie
line in the phase diagram. For a realistic model, which is in
accordance with the experimental data [37–39], we choose
them in such a way that the curve lies below the PFC
coexistence lines. This guarantees that the ferromagnetic phase
appears only in the solid. If we increase rc or decrease β,
the line will shift down. The Curie line, together with the

FIG. 1. (Color online) Two-dimensional phase diagram of the
magnetic-PFC model, calculated using the single-mode approxima-
tion. �B is the temperature and n0 is the mean density of the system.
The dots denote the liquid-solid coexistence lines and solid line
denotes the Curie line of ferromagnetic phase transition.

solid-liquid coexistence lines of the model, are shown in
Fig. 1. The free energy is minimized by three phases: liquid,
nonmagnetic solid, and magnetic solid. Above the Curie line
m = 0 and the usual PFC phase diagram reproduced.

B. Magnetostriction

The term −α/2(m · ∇n)2 is a minimal coupling that induces
magnetostriction. The strain energy is given by

Fm−e =
∫

d�r
{
Bs

[
9
(
U 2

xx + U 2
yy

) + 6UxxUyy + 12U 2
xy

]

− 3ωαφ2
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+ 2mxmyUxy + |m|2
2

)}
. (11)

Minimizing the resultant free energy with respect to the strain
tensor elements yields the relations for magnetically induced
strain tensor as

Umin
xx = α ω m2

8Bs

(2 cos 2θ + 1), (12)

Umin
yy = −α ω m2

8Bs

(2 cos 2θ − 1), (13)

Umin
xy = α ω m2

4Bs

sin 2θ, (14)

where we have assumed that the magnetization vector has an
angle θ with respect to the x axis.

To examine the influence of magnetostriction on the
crystalline states numerical simulations were conducted. In
this work we were mainly interested in the equilibrated states
and consequently used the simplest dissipative dynamics for
both fields, such that conserved (model B [48]) dynamics were
used for n(x) and nonconserved (model A [48]) dynamics for
the magnetization, i.e.,

∂n(r,t)
∂t

= ∇2 δF (n,m)

δn
(15)

∂mi(r,t)
∂t

= −δF (n,m)

δmi

, (16)

where i = x,y for the magnetization in x and y directions,
respectively. These equations were solved using Eq. (1) in
a system with periodic boundary conditions using Euler’s
method for the time derivative, finite difference methods for
the spatial gradients [49] and a Fourier transform algorithm to
solve the Poisson equation for the vector potential A.

Since the magnetically induced strain is much smaller than
the elastic strain that can develop in a confined solid, this
simulation was performed in a system of coexisting liquid
and solid phases. In this instance the solid can deform freely
when an external magnetic field is applied. The system parame-
ters are as follows: (Bs,t,v,α,W0,β,rc,ω,γ ) = (0.98,2/3,1/3,

−0.7,0.5,4 × 10−2,0.02,1,1).
We chose these values so that we have a wide coexistence

region for as large a value of α as possible, to make the mag-
netostriction large enough to be measurable. The coexistence
region lies above the Curie line in the phase diagram and is
paramagnetic. When an external magnetic field is applied, it
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(a) (b)

(c) (d)

FIG. 2. (Color online) The structure factor of the system of size
256 × 256 at coexistence. We first allow the system to equilibrate in
the absence of the magnetic field and then apply a magnetic field of
|B| = 9.5 at the angle of θ with respect to the x axis. The red hexagons
(solid line) show the structure factor of the initial configuration
and the green deformed hexagons (dashed line) in (a)–(d) show the
magnetically induced deformation of the hexagonal lattice at different
magnetic field directions.

will break the symmetry of the magnetic free energy, and the
net magnetization of the system becomes nonzero, aligning
with the external magnetic field.

An external magnetic field of |B| = 9.5 was applied in
different angles with respect to the x axis. Figure 2 shows
the structure of the hexagonal solid phase for angles θ = 0,

π/4,π/2,3π/4. In these simulations α = −0.7 is negative,
which means that the sample shrinks in the direction of the
applied magnetic field. The two hexagons in these figures
represent the initial lattice points (red solid line) and the
deformed lattice points (green dashed line) after the magnetic
field is applied. Figure 2 clearly shows the magnetostriction
effect.

IV. EFFECT OF GRAIN BOUNDARIES ON COERCIVITY

In this section we examine the influence of grain boundaries
and size on the magnetic coercivity. As a baseline, we
first study the mean field coercivity of a single crystal in
Sec. IV A and then numerically examine the influence of grain

boundary misorientation and grain size in Secs. IV B and IV C
respectively.

A. Mean-field coercivity of a single crystal

The coercivity of a single crystal in the mean-field limit can
be obtained by determining when the local minima of the free
energy with respect to m disappears as a function of the applied
magnetic field B. The value of B at which this just occurs is the
mean-field coercivity. If thermal fluctuations were included a
small coercivity would be obtained that would depend on how
rapidly the applied field changes. To obtain the mean-field
coercivity we first solve d(fφ − m · B)/dm = 0, where fφ is
the nongradient part of the magnetic free energy, Eq. (7), to
obtain the minima of the free energy for B = B x̂. These two
minima are shown in Fig. 3 for different values of external
magnetic field. For B < 0 (B > 0) the negative (positive)
branch has the lower free energy and positive (negative)
branch is metastable. The metastable branch disappears at the
mean-field coercivity. As shown in Fig. 3 the coercivity is
equal to Hc = 4.7 × 10−3. The parameters of the free energy
used in this calculation and in all of the simulations of the
following sections are as stated in Sec. II.

To examine the hysteresis behavior and magnetic coer-
civity, numerical simulations were conducted by solving the
dynamical equations of motion, i.e., Eqs. (15) and (16) using
periodic boundary conditions. The external magnetic field was
increased linearly from zero to a maximum of B = (0,0.008)
(this value was estimated using Fig. 3) and was then decreased
at the same rate to complete a cycle in total time steps of
4 × 105. The field was applied to a single-crystal system
and a bicrystal system. The bicrystal system is prepared by
locating two symmetrically tilted grains, with a tilt angle

FIG. 3. The vertical axis represents the magnetization
M = m/ms and the dotted lines represent the two roots of the
magnetic free energy fφ given in Eq. (7), corresponding to positive
and negative magnetization values that minimize the free energy.
When an external magnetic field is applied, the spins tend to flip to
align with the magnetic field. If the magnetic field is large enough
(|B| > Hc = 4.7 × 10−3) one of the minima disappears. The value
of Ba gives an estimation for the coercivity of the model with
parameters (Bs,t,v,α,W0,β,rc,ω,γ ) = (0.98,0.5,1/3,10−3,0.5,4 ×
10−2,10−2,1,1).
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FIG. 4. (Color online) Hysteresis curves for single-crystal and
bicrystalline systems. The two-grain system is produced by placing
two hexagonal crystal lattices that are rotated symmetrically with
respect to each other. To produce the perfect fit inside the boxes, the
lattice spacing was chosen to be dx = 28π/(64

√
3) and the time step

dt = 10−3. It can be seen that the coercivity of a single crystal is
larger than that of a bicrystal.

of θ = 21.7867 degrees. With this choice for the mismatch
angle, the simulation box of size 256 × 256 accommodates
two perfect grains and the boundary effects does not disturb
the energy of the grain boundary.

We calculated the mean magnetization of the two systems
as a function of the applied magnetic field. The result is
shown in Fig. 4. It can be seen that the coercivity is larger
for a single-crystal compared to the bicrystal system, i.e., it
takes a smaller external magnetic field to remove the local
minimum of the free energy in the two-grain system, compared
to the single-crystal. This implies that the existence of a grain
boundary facilitates the formation of the magnetic domains.
This is a quite interesting result, which can be also explained by
consulting Eq. (10). Namely, since in the grain boundary region
where φ = 0, the temperature at which the ferromagnetism
appears is smaller than that in the bulk. Also, the grains are
the sites of the system from which the magnetic domains start
to form and grow. This affects the hysteresis curve and the
coercivity of the system and the two-grain system has a smaller
coercivity in comparison with the single-crystal system.

B. Coercivity and grain boundary misorientation

In this section the influence of the grain boundary orienta-
tion on the coercivity is examined. Low angle boundaries are
characterized by a line of dislocations separated by a distance
that is inversely proportional to the misorientation angle [50],
while large angle boundaries are essentially a continuous
region of disorder. Typically dislocation cores lower the energy
barrier for nucleation of magnetization to the lower-energy
state [14]. Thus the nature of the grain boundary is expected
to play a key role in determining the coercivity.

To examine this phenomena we performed simulations by
preparing a bicrystal inside with grains that have symmetric tilt
angles. The tilt angles are chosen in such a way that a perfect
crystal fits inside the simulation box to prevent any change in
the energy of the system regarding the boundary effects. The
angles that allow perfect crystal fit inside a box of size 256 ×

0.004

0.0042

0.0044

0.0046

0.0048

0.005

2 4 6 8 10 12 14 16 18 20 22

θ

FIG. 5. (Color online) The functional form [a1 − a2 sin(a3θ )]3/2

fitted to the simulation data of the coercivity, Hc, vs. the grain
boundary angle, θ (degrees), for a system of L = 256. The fit
parameters are a1 = 0.0054, a2 = 0.0013, and a3 = 0.086. The
coercivity decreases as we increase the grain boundary angle as
predicted by the mean-field estimation.

256 are θ = 3.67041626,7.31115986,10.893363,21.7867 de-
grees. Simulations are conducted similar the previous section.

Simulations results of the coercivity for different grain
boundary angles (green points) are presented in Fig. 5.
According to these data as the grain boundary mismatch angle
increases, the coercivity of the system decreases. This is in
accordance with the mean-field arguments of Sec. IV A and
the corresponding results of Fig. 4. A single-crystal system,
being the limiting case of the bicrystal system as θ → 0, has
the largest coercivity comparing with the bicrystal systems.
The existence of the grain boundary suppresses the barrier
to be overcome and a magnetic domain of opposite direction
initiates from the grain boundary region.

These results and the arguments of Sec. IV A suggest that to
approximate the coercivity in the presence of a grain boundary
at a mean-field level, we replace the square of the phase
amplitude φ2 with φ2 − NA/L in the magnetic free energy of
the system, Eq. (7), where N is the number of dislocations per
unit length of the grain boundary, A is the unit area influenced
by a dislocation and L is the size of the system. Minimizing the
free energy with respect to the magnetization, in the presence
of an external magnetic field and noting that the number of
dislocations in a grain boundary is related to the mismatch
angle as N ∼ sin(θ/2) [50], we obtain

Hc =
√

16Bs/(243 ω α2φ2 + 108 γ Bs)

× [
(3α + 6β)[φ2 − (cA/L) sin(θ/2)] + rc − βn2

0

]3/2

(17)

for the coercivity as a function of the mismatch angle θ . In this
equation c ≡ 2 cos δ/a, where δ is the angle of the grain bound-
ary with respect to the x axis and a is the lattice constant [50].

Figure 5 shows a good fit of the simulation data with the
mean-field relation in Eq. (17), confirming that the model is
capturing the role of grain boundary in magnetization process
and coercivity.
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FIG. 6. (Color online) Hysteresis curves for two-grain systems
for different grain sizes.

C. Coercivity and grain size

To examine the hysteresis behavior and magnetic coercivity
numerical simulations were conducted by applying an external
field to bicrystal systems of different sizes. The mean magne-
tization of the system as a function of the applied magnetic
field for this situation is presented in Fig. 6. It can be seen that
the width of the hysteresis curves change with grain size. The
mean magnetization was calculated after letting the system
evolve to 4 × 105 simulation time steps at each value of the B
field.

The coercivity extracted from the hysteresis curves is
plotted in Fig. 7 as a function of grain size together with the
rescaled experimental data reported in Refs. [9,17]. The data
suggest that the grain size influences the coercivity even in
the absence of anisotropy. However, we obtain qualitatively
different results from experiments in the limit when the
grain size is much larger than the magnetic correlation
length.

In our simulations, as the grain size increases the coercivity
also increases until it reaches to a maximum value. In this
regime, the grain size is smaller than the magnetic correlation
length. As grain size increases in a fixed system size, the
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FIG. 7. (Color online) Simulation coercivity data, Hc, as a
function of system size, D, compared with the experimental data
[19,51]. To make the comparison more clear, the coercivity values
from the simulation data are scaled by a factor of 5.5 × 103 to better
compare the peak positions of both data sets.

ratio of grain boundary area to grain crystalline bulk area
decreases. This implies less area available for nucleation
of reverse magnetization and the coercivity increases. Also,
since the anisotropy effect is not included in this model
we do not expect quantitative agreement of simulation data
points with experimental results for the large grain size
regime.

It should be noted that in this work, the comparisons in
Figs. 6 and 7 are qualitative. In the absence of magnetocrys-
talline anisotropy, it is expected that the coercivity will in
fact tend to zero after a long enough equilibration time in
the dynamics. Nevertheless, the hysteresis results reported
here—essentially a metastable kinetic effect—point to the
robustness of the model to capture some relevant features.
A more quantitative examination of coercivity that includes
anisotropy is a subject for future research.

V. DISCUSSION AND CONCLUSIONS

The Landau-Lifshitz-Gilbert (LLG) equation is perhaps
the most common approach to modeling the dynamics of
the magnetization vector. The LLG approach and its many
variants has been used to study domain walls, effect of disorder
and it has been even connected to density functional theory
computations [52–54], for a review see, e.g., Kurzik and
Prohl [55]. In LLG, the dynamic equations are solved in a
lattice but there is no direct connection with the underlaying
atomic structure. That is different in our approach. Here, we
couple the density field representing the atoms to the magnetic
moments and our approach includes both the Curie and
melting/solidification in its phase diagram. The LLG dynamics
includes the precessional motion of magnetization, which is
important on short time scales. By using model A dynamics
we are limiting our attention to diffusive time scales, which are
relevant to phase transformations. It is noted that our approach
(although beyond the scope of this work), can be extended to
cases such as magnetization of binary alloys and inclusion of
impurities and pinning.

In summary, we extended the PFC formalism [26] to
include isotropic magnetocrystalline interactions for the study
of ferromagnetic solids. The advantage of this model over
other phase-field models of magnetoelastic systems is that it
naturally incorporates atomistic features such as dislocations
and grain boundaries. As a result many macroscopic prop-
erties, such as coercivity, can be linked to details of grain
boundaries and polycrystalline structures. While this initial
study was for a one-component two-dimensional system that
was magnetically isotropic it is straightforward to extend
the model to include anisotropy, binary alloys, and three
dimensions.
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