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Modeling of electrode polarization for electrolytic cells with a limited ionic adsorption
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Dilute electrolytic cells filled with chlorobenzene containing small amounts of tetrabutylammonium
tetraphenylborate show anomalous dielectric dispersions in low-frequency regions. We propose a new model
for electrode polarization in order to analyze the dielectric behavior of the dilute electrolytic cells. The model
comprises two capacitive components: One is the space-charge polarization accompanied with a specific ionic
adsorption on electrodes, and the other is the electrode capacitance which is brought about by an electronic
spillover from the electrode surface. This model can primarily explain the anomalous frequency-dependent
dielectric behavior of the electrolytic cells not only with low electrolyte concentrations, but also with high
concentrations and can correctly describe the characteristics of the electrode polarization reflected in the dielectric
spectra.
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I. INTRODUCTION

Dielectric spectroscopy is a powerful tool not only for
analyzing the molecular polarization performance of materials,
but also for characterizing mobile ions contained in the
materials as impurities [1–7]. The polarization of the mobile
ions at electrodes is the so-called space-charge polarization,
and its dielectric effect is brought about by the generation of a
macroscopic dipole that is represented by the displacement
of average positions of positive and negative ions under
the influence of an externally applied electric field [1,8,9].
The theoretical calculation for the space-charge polarization
is performed by solving the Poisson-Nernst-Planck (PNP)
equation under an ac electric field application [10–15]. The
equation of the complex dielectric constant obtained by the
calculation includes the diffusion coefficient and the number
density of the mobile ions as parameters, and thus, these
parameters can be determined by fitting the calculated values to
observed values on the dielectric spectrum. An essential point
in the theoretical calculation of the space-charge polarization
is to consider the influence of external charges on the internal
electric field formation, and the influence can be quantitatively
taken into account by including the contribution of the space-
charge polarization in the dielectric constant of Poisson’s
equation [9,16–18].

In actual cases, the behavior of ions on the electrode is
complicated, and thus, the dielectric spectra observed for
dilute electrolytic cells in low-frequency regions are not fully
explained by the conventional formula of the space-charge
polarization. The space-charge polarization usually exhibits a
dielectric relaxation in a low-frequency region below kilohertz
order, and its characteristic is somewhat different from that
of Debye-type dielectric relaxation [9]. On the other hand,
another dielectric relaxation, that is, the Debye-type one, is
sometimes observed, and the two types of dielectric relaxations
show different cell thickness dependences for their relaxation
frequencies [4,9]. If the two types of dielectric relaxations
overlap in the same frequency range, the analysis of the
dielectric spectrum becomes complicated.

Although the contribution of the space-charge polarization
to the complex dielectric constant has been studied theo-
retically and the dielectric spectrum observed in a specific

frequency region for a dilute electrolytic cell has been
well explained by using the theory [9,18], another dielectric
relaxation, that usually appears in lower frequencies, has not
been discussed fully, and no persuasive theoretical model has
been established. The origin of the dielectric relaxation in the
lower frequencies is presumed to be related to the specific
adsorption of ions on the electrodes; nevertheless, the existing
model of the space-charge polarization considering the ionic
adsorption cannot explain the experimental results for dilute
electrolytic solutions [19]. One of the reasons for the failure
is that the effect of external charges for internal electric field
formation is not taken into account on the calculation of the
space-charge polarization in the existing model.

In the present paper, we calculate the PNP equation under
the boundary condition in accordance with the specific ionic
adsorption on the electrode. The effect of the external charges
for internal field formation is taken into account for calculating
the PNP equation. It is known that metal electrodes exhibit
electronic spillovers on their surfaces and restrict the closest
distances that ions can approach [20,21]. This effect is also
considered for analyzing the experimental results. A new
model of the electrode polarization is, thus, built by combining
the space-charge polarization and the electrode capacitance
due to the electronic structure of the electrode surface.

II. ANALYTICAL TREATMENT OF ELECTRODE
POLARIZATION AND SIMULATION OF A

DIELECTRIC SPECTRUM

A. Space-charge polarization in the absence of ionic adsorption
on the electrode

Let us consider a parallel-plate cell filled with a uniunivalent
electrolyte solution, the distance of which between electrodes
is d. Assume that the electrolyte is completely dissociated,
and the positive and negative ions are distributed uniformly in
the slab of the solution in the absence of an external electric
field. The model considered here does not account for “native”
charges on the electrodes that would give a nonuniform ionic
distribution at the zero applied potential. We restrict our
consideration to a one-dimensional case with the transport of
the mobile ions in the x direction under an electric field applied

032406-11539-3755/2013/88(3)/032406(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.032406


ATSUSHI SAWADA PHYSICAL REVIEW E 88, 032406 (2013)

externally. Let p(x,t) and n(x,t) be the number densities of the
positive and negative ions, respectively, at position x and time
t . Considering the experimental system in the present paper,
we assume that the diffusion coefficient of the positive ions
is equal to that of the negative ions; similarly, the mobility of
the positive ions is equal to that of the negative ions. Thus,
let D and μ be the diffusion coefficient and the mobility of
the positive or negative ions, respectively. Current densities
for the positive and negative ions jp(x,t) and jn(x,t) under the
electric field E(x,t) reduce to

jp (x,t) = qμp(x,t)E(x,t) − qD ∂p(x,t)/∂x, (1)

and

jn(x,t) = qμn(x,t)E(x,t) + qD ∂n(x,t)/∂x, (2)

where q is the elementary charge. The continuity equations
are written as

q ∂p(x,t)/∂t = −∂jp(x,t)/∂x, (3)

and

q ∂n(x,t)/∂t = ∂jn(x,t)/∂x. (4)

Thus, we obtain

∂p(x,t)/∂t = D ∂2p(x,t)/∂x2 − μ∂[p(x,t)E(x,t)]/∂x,

(5)

and

∂n(x,t)/∂t = D ∂2n(x,t)/∂x2 + μ∂[n(x,t)E(x,t)]/∂x.

(6)

The internal electric field E(x,t) is governed by Poisson’s
equation,

∂E(x,t)/∂x = q[p(x,t) − n(x,t)]/[ε0εr (t)], (7)

where εr (t) is the relative dielectric constant of the electrolytic
solution including the contribution of the space-charge po-
larization. εr (t) varies with time [9,16–18]. Assuming that the
voltage applied between the electrodes is V (t), we also require
that

V (t) =
∫ d

0
E(x,t)dx, (8)

and ∫ d

0
p(x,t)dx =

∫ d

0
n(x,t)dx. (9)

Here, we assume that the motion of the positive and negative
ions under the electric field is completely blocked at the
electrodes but they do not adsorb on the electrodes. The
boundary conditions can be written as

jp(x,t) = qμp(x,t)E(x,t) − qD ∂p(x,t)/∂x = 0, (10)

and

jn(x,t) = qμn(x,t)E(x,t) + qD ∂n(x,t)/∂x = 0, (11)

at x = 0 and x = d.
We will discuss the case in which a simple sinusoidal

forcing voltage V (t) = V1 exp(iωt) is applied between the
electrodes where i = √−1. Since Eqs. (5)–(11) are nonlinear,

the current through the electrolytic solution will contain all
harmonics of the forcing voltage, and accurate solutions
for p(x,t), n(x,t), and E(x,t) would show that they would
all involve zero-frequency components with the fundamental
and all its overtones. However, the ratio of higher harmonic
components to the fundamental component in p(x,t), n(x,t),
and E(x,t) may be made negligible by taking V1 to be
sufficiently small. Thus, by providing such a small V1, p(x,t),
n(x,t), and E(x,t) may be written in the form [10–13]

p(x,t) = p0(x) + p1(x) exp(iωt), (12)

where p0 represents the number density of the positive ions
in the absence of the external field. In the present model, we
assume that the number density of positive ions is equal to that
of negative ions in the absence of the external field, and thus,
we set that p0 = n0 = c0. Since no dc component is involved
in the applied voltage, E0 = 0.

Regarding the issue of which V1 level is required for
neglecting the higher harmonic components, one criterion may
be that V1 should be smaller than 0.025 V, that is known as the
thermal voltage kBT /q at room temperature [13], where kB

is the Boltzmann constant and T is the absolute temperature.
Nevertheless, we have confirmed that the frequency-dependent
curve of the complex dielectric constant due to the space-
charge polarization observed for an electrolytic solution cell
does not change significantly in the range of the applied ac
voltage between 0.005 (rms) and 0.1 V (rms) and clear changes
appear in the range over 0.1 V (rms) [22]. This experimental
result agrees with the simulation result obtained in the author’s
previous paper [22] in which the frequency dependences of the
complex dielectric constant are calculated with the applied ac
voltages as a parameter.

We assume that the electric field within the electrolyte
is homogeneous. This assumption of the electric field is
an essential point for building the present model; therefore,
here, we will reconfirm the validity of the approximation
using the homogeneous field for analyzing the space-charge
polarization. In the present paper, the dielectric property of
the space-charge polarization is measured by employing a
frequency response analyzer. A small ac voltage is applied
to the electrolytic cell in the measurement, and the mobile
ions in the cell are redistributed under the influence of the
applied voltage. Since the internal electric field becomes
inhomogeneous due to the ionic redistribution, it is necessary
to solve Poisson’s equation for determining the internal field
accurately.

In the classical theory for analyzing the PNP equation
[10–13], the contribution of the space-charge polarization is
not included in the dielectric constant of Poisson’s equation.
The space-charge polarization is considered to be the forma-
tion of a macroscopic dipole in the electrolytic cell, and its
magnitude is defined by the product of the elementary charge,
the number density of ions, and the distance between the
average positions of the positive and negative ions [1,8,9].
The space-charge polarization induces external charges on the
electrodes of the electrolytic cell as in the case of the dipole,
atomic, and electronic polarizations of the matrix material.
Hence, the dielectric effect of the space-charge polarization
must be considered for the dielectric constant of Poisson’s
equation for calculating the internal electric field. The external
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charge on the electrode Qel is expressed as Qel = ε0εrEel

providing that Eel is the electric field of the electrode. If
the contribution of the space-charge polarization to Qel is
small enough compared with that of the dipole polarization
of the matrix material, the contribution of the space-charge
polarization can be neglected. However, the mobile ions, even
in very small concentrations, give dominant contributions to
Qel as in the present electrolytic cells.

The internal electric fields of the electrolytic cell con-
taining tetrabutylammonium tetraphenylborate (TBATPB) at
the concentration of 500 ppb (parts per 109) have been
calculated for the two cases: One is that the contribution of the
space-charge polarization is included in the dielectric constant
of Poisson’s equation and the other is that the contribution
of the space-charge polarization is not included [17]. The
results show that the internal electric field draws a moderate
hyperbolic curve between the two parallel electrodes for the
former case, whereas, the internal electric field becomes so
inhomogeneous for the latter case that the electric field is
concentrated in the vicinity of the electrodes and the electric
field of the other part becomes almost zero. Since the dielectric
effect of the space-charge polarization is not considered in the
latter case, the value of Qel is underestimated in the calculation.
The external (counter) charges on the electrodes electrically
neutralize the mobile ions that reached the electrodes; hence,
the quite inhomogeneous electric field near the electrode in
the latter case is considered to be brought about by the
underestimated value of Qel . In Ref. [17], it is also shown
that the frequency-dependent curve of the complex dielectric
constant, calculated assuming the homogeneous field becomes
very close to that assuming the hyperbolic field, and the Stokes
radii of TBA+ and TPB− ions, obtained by analysis with the
homogeneous field, are around 10% smaller than those by
analysis with the hyperbolic field.

We have simulated the frequency-dependent curves of
the complex dielectric constant using the classical theory of
the space-charge polarization developed by Macdonald [12]
and Friauf [13] and found that the increase in the dielectric
constant at low frequencies is suppressed and the relaxation
frequency shifts to the high-frequency side with increasing
the number density of ions in the electrolytic cell [18].
However, such frequency-dependent behavior has not been
observed in the dielectric spectra measured for the electrolytic
solutions doped with TBATPB in the concentration range
between 50 and 500 ppb. The dielectric spectra observed
for the electrolytic cells have been analyzed by using the
classical theory, and we have obtained an unrealistic result
that the number density of ions in the cell becomes more
than one order of magnitude larger than that of the doped
ions [18]. Alexe-Ionescu and co-workers have criticized the
approximation with the homogeneous field for the analysis
of the space-charge polarization, and they have insisted that
the assumption of the homogeneous field should lead to
incorrect values of the ionic constants, such as the diffusion
coefficient and the number density of ions [23]. On the
other hand, they have analyzed the space-charge polarization
just by using the classical theory, not by considering the
contribution of the space-charge polarization to the dielectric
constant of Poisson’s equation. They have calculated the ionic
constants performing a rescaling treatment with the classical

theory against the values obtained by the homogeneous field
approximation. From the above discussion, the values of the
ionic constants obtained by the rescaling treatment should be
far different from the correct values.

It is possible to calculate the complex dielectric constant
due to the space-charge polarization under the correct internal
field satisfying Poisson’s equation considering the contribution
of the space-charge polarization to the dielectric constant [9].
In this case, a numerical calculation has to be carried out
because it is difficult to obtain an analytical solution of the
PNP equation. It is too complicated to apply the numerical
treatment to the present work, then, we assume here, with the
recognition of a small error around 10% in terms of the Stokes
radius, that the ac internal field at time t is homogeneous
between the electrodes and is written as E(t) = E1 exp(iωt)
where E1 = V1/d.

By substituting the expressions of the form of Eq. (12) into
Eqs. (5), (6), (10), and (11), we obtain

iωp1(x) = D d2p1(x)/dx2, (13)

iωn1(x) = D d2n1(x)/dx2, (14)

jp1 (x) = qμc0E1 − qD ∂p1(x)/∂x = 0 (at x = 0 and d),

(15)

jn1 (x) = qμc0E1 + qD ∂n1(x)/∂x = 0 (at x = 0 and d).

(16)

The solutions of Eqs. (13) and (14), under the boundary
conditions of Eqs. (15) and (16), are represented by

p1 (x) = Ap exp(zx) + Bp exp(−zx), (17)

and

n1 (x) = An exp(zx) + Bn exp(−zx), (18)

respectively, where

Ap = μc0V1

dDZ

[
1 − exp(−Zd)

exp(Zd) − exp(−Zd)

]
, (19)

Bp = μc0V1

dDZ

[
1 − exp(Zd)

exp(Zd) − exp(−Zd)

]
, (20)

An = μc0V1

dDZ

[
exp(−Zd) − 1

exp(Zd) − exp(−Zd)

]
, (21)

Bn = μc0V1

dDZ

[
exp(Zd) − 1

exp(Zd) − exp(−Zd)

]
, (22)

where Z = √
iω/D.

The current density within the solution layer is given by the
sum of a displacement term and two transport terms arising
from the motion of the positive and negative ions, and it is,
thus, expressed as

j1(x) = ε0εsdE(t)/dt + q[2μc0V1/d − D dp1(x)/dx

+D dn1(x)/dx]. (23)

The total current density J1 flowing into the solution layer
can be obtained by taking a space average of j1(x) over the
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whole layer, and we obtain

J1 = iωε0εsV1/d + q{2μc0V1/d − D [p1(d) − p1(0)]/d

+D [n1(d) − n1(0)]/d}. (24)

From Eqs. (17)–(22) and (24), the admittance per unit area
Y1( = J1/V1) is expressed as

Y1 = iωε0εs

d
+ q

d

{
2μc0 − 2μc0

Zd

[
exp(Zd) + exp(−Zd) − 2

exp(Zd) − exp(−Zd)

]
.

+ 2μc0

Zd

[
2 − exp(Zd) − exp(−Zd)

exp(Zd) − exp(−Zd)

]}
. (25)

The parallel resistance per unit area Ri(ω) and the parallel
capacitance per unit area Ci(ω), given by the sum of the
space-charge capacitance and the geometrical capacitance,
are written as Ri (ω) = 1/Y ′

1 and Ci (ω) = Y ′′
1 /ω, respectively,

providing that Y1 = Y ′
1 + iY ′′

1 . Thus, we obtain the complex
dielectric constant ε∗

i (ω) = ε′
i (ω) − iε′′

i (ω), where

ε′
i(ω) = dCi(ω)

ε0
= dY ′′

ωε0
, (26)

and

ε′′
i (ω) = d

ωε0Ri(ω)
= dY ′

1

ωε0
. (27)

The dielectric constant and the dielectric loss factor,
obtained by using Eqs. (26) and (27), lead to the same values
as those calculated by using Eqs. (5) and (6), respectively,
in Ref. [4] assuming two ion species which have the same
diffusion coefficient, mobility, and number density.

B. Space-charge polarization in the presence of ionic adsorption
on the electrode

The adsorption of ions on electrodes has been discussed
in terms of the general electrochemical reaction process.
Armstrong and Henderson have derived the admittance for the
electrochemical reaction with an adsorbed intermediate [24].
In the calculation of the faradic current, they employed a
Taylor series expansion to avoid the need for specific as-
sumptions concerning adsorption isotherm and reaction orders.
The Taylor series expansion was carried out to first order
on the response to the perturbation with two variables: One
was the concentration of the adsorbed intermediates on the
electrode surface, and the other was the potential difference.
In their approach, the perturbation for the potential difference
may be valid for a supported system in which the ionic
concentration is so high that the applied voltage is concentrated
at the interfaces between the solution and the electrodes. The
charge transfer occurs on or within about one molecular or
ionic radius of the electrode. Nevertheless, the internal electric
field generated by an external voltage application is distributed
over the Helmholtz and diffuse double layers for which the
distance from the surface of the electrode becomes several
times of Debye lengths, and the Debye length becomes large

as the ionic concentration decreases. In order to cope with
this problem, especially for unsupported systems, Macdonald
[25] and Francheschetti and Macdonald [26] have introduced
another perturbation variable to the theory of Armstrong and
Henderson, that is, the number density of ions on the electrode
based on the Chang-Jaffe boundary condition [11]. In the
boundary condition developed by Macdonald, it is implicitly
assumed that the number of adsorption sites on the electrode
is much larger than the number of ions to be adsorbed and the
interaction between adsorbed ions can be neglected.

In the present model, we assume that the adsorption rate of
the positive ions on the electrode is equal to that of the negative
ions. According to the boundary condition by Macdonald [25],
the current densities arising from the motion of the positive
and negative ions at x = 0 and x = d are expressed as

jp1 (0) = qμc0E1(0) − qD ∂p1(0)/∂x = −ξ ∗qp1(0), (28)

jp1 (d) = qμc0E1(d) − qD ∂p1(d)/∂x = ξ ∗qp1(d), (29)

jn1 (0) = qμc0E1(0) + qD ∂n1(0)/∂x = ξ ∗qn1(0), (30)

jn1 (d) = qμc0E1(d) + qD ∂n1(d)/∂x = −ξ ∗qn1(d), (31)

If no charge transfer occurs between the adsorbed ions and the
electrode, ξ ∗ is written as

ξ ∗ = ξ ′ + iξ ′′ = ω2τ 2ξ∞
1 + ω2τ 2

+ i
ωτξ∞

1 + ω2τ 2
. (32)

Assuming that the concentration of the positive or negative
ions per unit area adsorbed on the electrode is � and the net
rate of the adsorption of the positive or negative ions is v, it
is defined that ξ∞ = (∂v/∂cs1)� , τ = − (∂�/∂v)cs1

, where cs1

represents the number density of the positive or negative ions
at the surface of the electrode. The impedance spectrum of an
electrolytic cell in the presence of ionic adsorption has also
been analyzed by Barbero [19], introducing a kinetic equation
composed of adsorption and desorption terms in accordance
with a Langmuir isotherm. In the present paper, ξ∞ and τ corre-
spond to the adsorption and desorption constants, respectively.
However, the analytical formula by Barbero [19] does not take
account of the influence of external charges on the internal
field formation, and thus, it cannot be used for the analysis
of practical experimental data. Equations (28)–(32) are the
same forms as those developed by Lányi [27]; nevertheless, his
formalism for the boundary condition has not been developed
in terms of the adsorption of ions on the electrode.

By substituting Eq. (15) with Eqs. (28) and (29) and
substituting Eq. (16) with Eqs. (30) and (31), the solutions
of Eqs. (13) and (14) are represented by

p1(x) = Aap exp(zx) + Bap exp(−zx), (33)

and

n1(x) = Aan exp(zx) + Ban exp(−zx), (34)

where

Aap = μc0V1

d

[
DZ + ξ ∗ − (DZ − ξ ∗) exp(−Zd)

(DZ + ξ ∗)2 exp(Zd) − (DZ − ξ ∗)2 exp(−Zd)

]
, (35)
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Bap = μc0V1

d

[
DZ − ξ ∗ − (DZ + ξ ∗) exp(Zd)

(DZ + ξ ∗)2 exp(Zd) − (DZ − ξ ∗)2 exp(−Zd)

]
, (36)

Aan = μc0V1

d

[
(DZ − ξ ∗) exp(−Zd) − DZ − ξ ∗

(DZ + ξ ∗)2 exp(Zd) − (DZ − ξ ∗)2 exp(−Zd)

]
, (37)

Ban = μc0V1

d

[
(DZ + ξ ∗) exp(Zd) − DZ + ξ ∗

(DZ + ξ ∗)2 exp(Zd) − (DZ − ξ ∗)2 exp(−Zd)

]
. (38)

By calculating the current density in a similar way to that in Sec. II A, the admittance per unit area Y1
(= Y ′

1 + iY ′′
1

)
is written as

Y1 = iωε0εs

d
+ q

d

(
2μc0 − D

V1
{Aap[exp (Zd) − 1] + Bap[exp (−Zd) − 1]}

+ D

V1
{Aan[exp(Zd) − 1] + Ban[exp(−Zd) − 1]}

)
. (39)

Finally, the dielectric constant ε′
i (ω) and the dielectric loss

factor ε′′
i (ω) are calculated using Eqs. (39), (26), and (27).

C. Simulation of the electrode polarization in the presence of
ionic adsorption on the electrode

We will simulate the frequency dependence of the complex
dielectric constant attributed to the electrode polarization in the
presence of specific ionic adsorption by using Eqs. (39), (26),
and (27). In the simulation, we set D = 8.2 × 10−10 m2/s and
μ = 3.2 × 10−8m2 V−1 s−1. The frequency dependence of the
complex dielectric constant calculated providing c0 = 1.2 ×
1020 m−3 and τ = 10 s is shown in Fig. 1 with respect to
different ξ∞ values. In the absence of the ionic adsorption, the
dielectric constant increases with decreasing frequency in the
frequency range between 1 and 103 Hz and takes a constant
value in the frequency range below 1 Hz. For ξ∞ = 10−6,
10−5, and 10−4 m/s, another dielectric relaxation, that is due
to the ionic adsorption, appears in the frequency range below
1 Hz in Fig. 1(a). The value at plateau in the dielectric constant
in the lower-frequency region becomes large as ξ∞ increases
from 10−6 to 10−4 m/s, whereas, the value at plateau in the
higher-frequency region, that is attributed to the space-charge
polarization, becomes significantly small for ξ∞ = 10−4 m/s
compared to those for ξ∞ = 10−6 and 10−5 m/s. From
Fig. 1(b), it is found that the relaxation frequency that appeared
in the lower-frequency region, at which the dielectric loss
factor exhibits a maximum value, decreases slightly with an
increasing ξ∞ value.

The frequency dependence of the complex dielectric con-
stant calculated providing c0 = 1.2 × 1020 m−3 and ξ∞ =
10−5 m/s is shown in Fig. 2 with respect to different τ

values. The value at plateau in the dielectric constant at the
lower-frequency region becomes large as τ increases from 1
to 100 s, whereas, the value at plateau in the higher-frequency
region is almost the same among the different τ values. From
Fig. 2(b), it is found that the relaxation frequency that appeared
in the lower-frequency region decreases proportionally with an
increasing τ value.

The frequency dependence of the complex dielectric con-
stant, calculated providing ξ∞ = 10−5 m/s and τ = 10 s,

is shown in Fig. 3 with respect to different c0 values. In
Fig. 3(a), the dielectric constants increase proportionally with
an increasing c0 value in the whole frequency range except
for the range above 10 Hz where the contribution of dipole
polarizations becomes dominant. In Fig. 3(b), the dielectric
loss factors also increase proportionally with the increasing c0

value. The relaxation frequencies for the two kinds of dielectric
relaxations do not change with the c0 value.

FIG. 1. Frequency dependence of (a) the dielectric constant and
(b) the dielectric loss factor. The solid lines represent the values
calculated in the absence of the adsorption of ions on the electrode.
The dotted lines, dashed lines, and dot-dashed repeat lines represent
the values calculated in the presence of the adsorption of ions with
ξ∞ = 10−6, ξ∞ = 10−5, and ξ∞ = 10−4 m/s, respectively.
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FIG. 2. Frequency dependence of (a) the dielectric constant and
(b) the dielectric loss factor. The solid lines represent the values
calculated in the absence of the adsorption of ions on the electrode.
The dotted lines, dashed lines, and dot-dashed repeat lines represent
the values calculated in the presence of the adsorption of ions with
τ = 1, τ = 10, and τ = 100 s, respectively.

FIG. 3. Frequency dependence of (a) the dielectric constant and
(b) the dielectric loss factor. The solid lines, dashed lines, and dot-
dashed repeat lines represent the values calculated in the presence of
the adsorption of ions with c0 = 1.2 × 1019, c0 = 1.2 × 1020, and
c0 = 1.2 × 1021 m−3, respectively.

III. EXPERIMENT

Nine kinds of electrolyte solution samples were prepared
using chlorobenzene (C6H5Cl) as a solvent and TBATPB as
a solute in order to measure the complex dielectric constant
in a low-frequency region. The concentrations of TBATPB
doped into the solutions were 0, 50, 100, 200, 500 ppb, 1 ppm
(parts per 106), 5, 10, and 50 ppm. These concentrations are
equal to 0,8.9 × 10−8, 1.8 × 10−7, 3.6 × 10−7, 8.9 ×
10−7, 1.8 × 10−6, 8.9 × 10−6, 1.8 × 10−5, and 8.9 ×
10−5 mol/l, respectively. These solution samples were injected
into parallel-plate glass cells with indium tin oxide (ITO)
electrodes, the area and distance between electrodes of which
are 1.13 cm2 and 22 μm, respectively. The impedance of the
cell was measured using a Solartron 1260 frequency response
analyzer connected to a 1296 current amplifier in the frequency
range between 0.001 Hz and 10 KHz at 20 ◦C. The ac voltage
applied to the cell was 5 mV (rms). The frequency dependences
of the dielectric constant and the dielectric loss factor were
calculated from the impedance value observed. The data for
TBATPB concentrations of 0, 50, 100, 200, and 500 ppb are
the same as those in the author’s previous papers [17,18], and
the measurements for 1, 5, 10, and 50 ppm were carried out
together at that time.

The measurement of the complex dielectric constant for
each dilute electrolytic cell was started within 10 min after
injecting the solution into the cell. (It took around 5 min to
obtain a stable temperature in an oven heated at 20 ◦C after
setting the cell.) The measurement was started at 104 Hz and
was ended at 10−3 Hz. For the impedance measurement, it
takes about 90 s during 104 and 10−1 Hz, about 4.5 min
during 104 and 10−2 Hz, and about 45 min during 104 and
10−3 Hz. It has been confirmed that it takes longer than several
hours for TBA+ or TPB− ions to be adsorbed naturally on the
ITO electrode in significant quantities [22]. Consequently, the
change in the electrode potential due to the naturally adsorbed
ions and the formation of the static diffuse double layer near
the surface of the electrode should not significantly influence
the frequency dependence of the complex dielectric constant
of the electrolytic cell observed in the present measurement.

The frequency dependence of the relative dielectric con-
stant and the relative dielectric loss factor observed for the
electrolytic cells are shown in Figs. 4(a) and 4(b), respectively.
In Fig. 4(a), the anomalous increase in the relative dielectric
constant with decreasing frequency shows two relaxation
phenomena for every cell. The first increase in the relative
dielectric constant, observed in the frequency region between
10−1 and 103 Hz, is originated by the space-charge polarization
attributed to the displacement of TBA+ and TPB− ions in the
bulk layer under the influence of an external field. The plateau
value in the relative dielectric constant due to the space-charge
polarization increases as the TBATPB concentration becomes
high. On the other hand, for the second dielectric relaxation
that appeared in the lower-frequency region, the relative
dielectric constant converges on a constant value at plateau
regardless of the TBATPB concentrations. In Fig. 4(b), the
relaxation frequency for the second dielectric relaxation, at
which the relative dielectric loss factor exhibits the maximum
value, shifts to the higher-frequency side as the TBATPB
concentration becomes high.
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FIG. 4. Frequency dependence of the complex dielectric constant
observed for chlorobenzene doped with TBATPB at different concen-
trations. �: 0 ppb; �: 50 ppb; �: 100 ppb; •: 200 ppb; ◦: 500 ppb;
♦: 1 ppm; �: 5 ppm; �: 10 ppm; and ∗: 50 ppm. The symbols in
(a) represent the relative dielectric constants, whereas, those in (b)
represent the relative dielectric loss factors.

IV. DATA ANALYSIS

As the two dielectric relaxations are observed in Fig. 4
for every chlorobenzene solution doped with TBATPB at
different concentrations, the simulation result obtained in
Sec. II suggests that the dielectric relaxation in the lower-
frequency region may be induced by the ionic adsorption on
the electrode. However, the dielectric constants in the lower-
frequency region increase proportionally with increasing the
number density of ions in the simulation result shown in
Fig. 3, whereas, the dielectric constant at plateau in the
lower-frequency region in Fig. 4(a) converges on a constant
value regardless of the concentration of TBATPB, and the
relaxation frequency shifts to the higher-frequency side with
increasing the concentration of TBATPB as shown in Fig. 4(b).

It is known that TBATPB does not undergo solvation with
any organic solvent molecule and the Stokes radii of TBA+ and
TPB− are nearly the same [28,29]. The diffusion coefficient
and the mobility of the TBA+ ion are then nearly equal to those
of the TPB− ion, respectively, in the chlorobenzene solution.
It was first shown by Grahame [30] that only negative ions
were adsorbed on metal electrodes, and after that, it was found
that tetra-alkyl ammonium cations could also be adsorbed
on the metal electrode [31]. The author has shown that the
TBA+ and TPB− ions are adsorbed naturally on ITO electrodes
with different adsorption rates in the absence of an external
field [22]. The result in Fig. 4 indicates that the increase in
the capacitance due to the adsorption of TBA+ and TPB−

FIG. 5. Equivalent circuit of a dilute electrolytic cell in the
presence of specific ionic adsorption.

ions on the ITO electrodes is restricted for some reason. The
frequency-dependent behavior in the dielectric constant and
the dielectric loss factor observed in Fig. 4 can be reproduced
by using an equivalent circuit given in Fig. 5. Ci(ω) and Ri(ω)
are calculated using Eqs. (39), (26), and (27), respectively. Ce

in Fig. 5 represents the electrode capacitance, and the physical
sense will be discussed in Sec. V.

In the previous paper, it has been shown that the relaxation
frequency attributed to the space-charge polarization shifts
to the lower-frequency side with the passage of time after
filling the cell with the chlorobenzene doped with TBATPB at
100 ppb, and this phenomenon is interpreted by the change in
electrode potential and the generation of static diffuse double
layers on the electrodes that are caused by the adsorption
of TBA+ and TPB− ions on the electrodes with different
adsorption rates [22]. If the number densities of TBA+ and
TPB− ions given in Table II of Ref. [22] are plotted with
respect to the time in a graph and their relationship is analyzed
by means of curve fitting using equations as p = p0(1 − t/τp)
and n = n0(1 − t/τn), we obtain τp = 2.4 × 104 and τn

= 2.0 × 104 s for the time constants of TBA+ and TPB−,
respectively, that represent the decreasing rates of the bulk ion
densities.

Since the measurements of the complex dielectric constant
in Sec. III are started within 10 min after filling the cells with
the chlorobenzene solutions, the data obtained in Fig. 4 repre-
sent the states before establishing an equilibrium in the absence
of an external field. On the other hand, Eqs. (26) and (27),
in connection with Eq. (39), are obtained by calculating the
response to a small perturbation around the equilibrium. Here,
the ions, preadsorbed on the electrode before establishing the
equilibrium, do not affect the calculation because it is assumed
that the surface number density of the preadsorbed ions is very
small compared to the number density of the adsorption sites
on the electrode and the interaction between the preadsorbed
ions can be neglected. Besides, the positive or negative ions are
adsorbed on the two plate electrodes with the same rate in the
absence of the external voltage application. The magnitude of
the current density, arising from the adsorption of the positive
or negative ions to one electrode, is the same as that to the
other electrode, and the direction of the current density at one
electrode is opposite to that at the other electrode; therefore,
no electric current appears in the external circuit. Moreover,
the measurements in Sec. III are completed within 1 h after
filling the cells with the chlorobenzene solutions, and the
measurement time is much smaller than the value of τp or
τn. From these conditions, the data in Fig. 4 may be analyzed
using Eqs. (26) and (27) in connection with Eq. (39).
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FIG. 6. Frequency dependence of (a) the dielectric constant and
(b) the dielectric loss factor in the presence of ionic adsorption. The
symbols represent observed values with �: 50 ppb; �: 500 ppb;
�: 5 ppm; and •: 50 ppm. The solid lines represent calculated values
fitted to each concentration. The dashed line in (a) represents a slope
of − 1.5.

We assume that the Einstein relation is valid between the
diffusion coefficient and the mobility, then μ = qD/(kT ).
From Figs. 1 and 2, it is found that the relaxation frequency
in the lower-frequency region is determined dominantly by τ

rather than ξ∞. In Fig. 2, the frequency dependence of the
complex dielectric constant is simulated in the range of τ

between 1 and 100 s. On the other hand, because both values
of τp and τn are much larger, it is presumed accordingly that the
relaxation frequency depending on the TBATPB concentration
observed in Fig. 4 is not determined by τ but is controlled by
the presence of the electrode capacitance Ce given in Fig. 5.
We then assume that τ = 2.0 × 104 s. With these preliminary
findings, the fitting parameters to be determined are D, c, ξ∞,
and Ce.

The results of the curve fitting for the chlorobenzene
samples doped with TBATPB at 50, 500 ppb, 5, and 50 ppm
are shown in Fig. 6. The parameters determined by the curve
fitting are listed in Table I. From Fig. 6, it is found that the

dielectric constants and the dielectric loss factors observed for
the four solutions are all well fitted by calculated values. In
Table I, we obtain the same value of D = 7.5 × 10−10 m2/s for
all solutions. The Stokes radius rs is calculated to be 3.6 Å by
using the Stokes-Einstein equation providing the viscosity of
chlorobenzene 0.799 × 10−3 Pa s, and this value is fairly
close to the values for TBA+ (3.8 Å) and TPB− (4.1 Å)
measured by means of conductmetry [28,29]. The TBATPB
doping concentrations 50, 500 ppb, 5, and 50 ppm correspond
to the number densities per unit volume 5.36 × 1019, 5.36
× 1020, 5.36 × 1021, and 5.36 × 1022 m−3, respectively.
The number density of ion c0 becomes large as the doping
concentration is increased. Assuming that the number density
of TBATPB doped per unit volume is a, the ratios of c0

to a become 0.47, 0.30, 0.11, and 0.043, respectively. The
decrease in the ratio indicates that the number of ion pairs by
TBA+ and TPB− increases in the chlorobenzene solution with
increasing the doping concentration. The adsorption constant
ξ∞, obtained for the 50 ppb solution, is the same as that for the
500 ppb solution, but the value becomes smaller with higher
doping concentrations. The value at plateau in the dielectric
constant in the lower-frequency region for all the solutions is
determined by the capacitance Ce given in Fig. 5. The value of
the capacitance 1.3 × 10−5 F, obtained for all the samples, is
calculated to be 1.15 × 10−5 F/cm2 for the capacitance per
unit area.

V. DISCUSSION

The generation of a dipole potential or an interfacial
capacitance between the electrode and the Helmholtz layer
has been explained by several researchers introducing the
jellium model that formulates the electronic structure of a
metal electrode surface [32–35]. In the jellium model, the
ionic charge is represented by a constant positive background
charge, which drops abruptly to zero at the metal surface
(jellium edge), whereas, the electrons are modeled as an
inhomogeneous electron gas, which interacts with the positive
background [20]. The electronic density shows the relatively
slow decay at the metal surface, and the decay profile entails a
small but appreciable negative charge density on the outside of
the surface. This is known as the electronic spillover. The small
amount of the negative charge density is balanced by a positive
excess charge on the inside, then this charge distribution gives
rise to a surface dipole potential [36].

The electrons on the outside of the surface interact with an
external electric field. A positive charge on the metal surface
pulls the electrons back into the metal; conversely, a negative
charge pushes the electrons toward the solution. Amokrane and

TABLE I. Parameters determined by analyzing the complex dielectric constant of chlorobenzene solution doped with TBATPB.

Concentration of Diffusion coefficient Number density Adsorption rate Electrode capacitance
TBATPB D (m2/s) c0 (m−3) ξ∞ (m/s) Ce (F)

50 ppb 7.5 × 10−10 2.5 × 1019 1.5 × 10−5 1.3 × 10−5

500 ppb 7.5 × 10−10 1.6 × 1020 1.5 × 10−5 1.3 × 10−5

5 ppm 7.5 × 10−10 6.0 × 1020 1.0 × 10−5 1.3 × 10−5

50 ppm 7.5 × 10−10 2.3 × 1021 7.0 × 10−6 1.3 × 10−5
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Badiali have suggested that the interaction between the metal
dipole and the charge of the metal in the absence of specific
ionic adsorption controls the distance of the closest approach
of solvent molecules to the metal surface, and thus, the metal
electrode capacitance Ce is generated by the variation in the
distance [21,37]. According to their model, assuming that the
solvent capacitance is Cs , the Helmholtz layer capacitance CH

is represented by two contributions in the series connection:
(CH )−1 = (Ce)−1 + (Cs)−1. Since we are considering the
dilute electrolytic cells in the presence of the specific ionic
adsorption on the electrode, we cannot utilize the model of
Amokrane and Badiali for the calculation of Ce in Fig. 6.
Nevertheless, the concept of the metal capacitance should be
valid even for the present electrochemical system, and the
frequency-dependent behavior of the dielectric constant and
dielectric loss factor, observed in Fig. 4, may be explained by
using the equivalent circuit given in Fig. 5, incorporating the
contribution of the electrode capacitance. Here, the presence
of Cs is neglected in the equivalent circuit in Fig. 5 assuming
that its value is large enough compared to the value of Ce.
If the value of Cs is comparable or smaller than that of Ce,
the influence of Cs has to be considered in the theoretical
calculation in Sec. II B.

The negative slope of the dielectric constant increasing
with frequency becomes −1.5 for the contribution of
the space-charge polarization [4,22], and in Fig. 6, it is
demonstrated for the solution in which TBATPB is doped
at 500 ppb. The absolute value of the slope increases with
increasing the TBATPB concentration in the range over 1 ppm
due to the contribution of Ce. If we simulate the frequency
dependence of the dielectric constant for the concentrations
much higher than 50 ppm, we find that the value of the slope
approaches −2. For such high electrolyte concentrations, the
contributions of the space-charge polarization and the specific
ionic adsorption on the dielectric constant are both suppressed
largely by the metal capacitance, and thus, the Debye-type
dielectric relaxation is observed. The Debye-type dielectric
relaxation may be analyzed by applying a classical model
composed of the Helmholtz layer capacitance, the diffuse
double layer capacitance, and the bulk solution layer resistance

in series combination, but it should be emphasized that the
origin of the Debye-type dielectric relaxation may include
more complicated factors as shown in the present paper. On
the other hand, in the case that the concentration of mobile
ions is sufficiently low and the electrode capacitance is much
larger than the capacitance arising from the space-charge
polarization, the space-charge polarization can be analyzed
neglecting the influence of the electrode capacitance. Although
the space-charge polarization for electrolytic cells is generally
analyzed by using the Poisson-Nernst-Planck equation, an
accurate discussion can be conducted only in such a condition.

VI. CONCLUSION

We observed two kinds of dielectric relaxations in low-
frequency regions for dilute electrolytic cells filled with
chlorobenzene doped with TBATPB at different concentra-
tions. The dielectric relaxation at the higher-frequency region
is due to the contribution of the space-charge polarization
attributed to TBA+ and TPB− ions dissociated in the bulk
layer, and another anomalous increase in the dielectric constant
that appeared at lower frequencies is induced by the specific
adsorption of TBA+ and TPB− ions on the electrodes. The
dielectric constant at the low frequencies converged on a
constant value regardless of the TBATPB concentrations. This
upper limit of the dielectric constant appears due to the fact that
the closest distance that the ions can approach the electrode is
restricted by an electronic spillover from the electrode surface.
The new model of the electrode polarization, developed in the
present paper, can be expressed with a simple equivalent circuit
that consists of the space-charge polarization accompanied by
a specific ionic adsorption and a series capacitance brought
about by the electronic structure of the electrode surface.
The frequency-dependent dielectric behavior, observed for the
dilute electrolytic cells, can primarily be explained by the new
model regardless of the concentration of the electrolyte.
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