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Statistics of energy dissipation and stress relaxation in a crumpling network
of randomly folded aluminum foils
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We study stress relaxation in hand folded aluminum foils subjected to the uniaxial compression force F (λ).
We found that once the compression ratio is fixed (λ = const) the compression force decreases in time as
F ∝ F0P (t), where P (t) is the survival probability time distribution belonging to the domain of attraction of
max-stable distribution of the Fréchet type. This finding provides a general physical picture of energy dissipation
in the crumpling network of a crushed elastoplastic foil. The difference between energy dissipation statistics in
crushed viscoelastic papers and elastoplastic foils is outlined. Specifically, we argue that the dissipation of elastic
energy in crushed aluminum foils is ruled by a multiplicative Poisson process governed by the maximum waiting
time distribution. The mapping of this process into the problem of transient random walk on a fractal crumpling
network is suggested.
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I. INTRODUCTION

The crumpling of low-dimensional objects displays fasci-
nating features of tremendous importance to both fundamental
science and technological applications [1–10]. Crumpling
structures arise, for instance, in randomly folded (or crushed)
materials ranging from graphene-based nanosheets to geologi-
cal formations [11–14]. Accordingly, the physics of crumpling
and the mechanical properties of randomly folded materials
have attracted increasing interest in the last decade (see, for
review, Refs. [1–35], and references therein).

In this way, it was recognized that the mechanical response
of randomly folded thin matter to an external force is governed
by the network of crumpling creases which concentrate the
major part of deformation energy [1,5,36]. In an elastic sheet
subjected to external confinement the jammed configurations
of the crumpling network evolve, leading to rearrangement
of energy foci [28,32]. Although a part of the deformation
energy can dissipate due to the friction between the crushed
sheet surfaces [29,30], the initial (plain) state of an elastic (e.g.,
rubber) sheet is always restored after the external forces are
withdrawn.

In contrast to this, in crushed viscoelastic and elastoplastic
sheets a part of the elastic energy is dissipated through
irreversible deformations localized in the crumpling creases, as
well as due to the friction between sheet surfaces [29,30]. Con-
sequently, under a constant confinement force the specimen
size decreases in time due to the elastic strain relaxation caused
by irreversible deformations and the collapse of crumpling
ridges [4,15,22–24,37]. Furthermore, irreversible deforma-
tions create an irretrievable crumpling network providing
the permanence of a folded configuration after the external
confinement forces are withdrawn [4,8,17].

However, the behavior of crushed viscoelastic and elasto-
plastic sheets after removing the external confinement forces
is quite different. Namely, the release of elastic energy stored
in the crumpling creases of viscoelastic paper leads to a slow
(logarithmic) increase in the size of the folded sheet over a
period of several days, after the external confinement forces are

withdrawn [4]. This suggests that the elastic strain relaxation
in crushed viscoelastic sheets is ruled by an activated process
obeying the Arrhenius-like behavior [22,23]. In contrast to
this, the elastic energy stored in the crumpling creases of
an aluminum foil is insufficient to change the specimen size
or shape by means of elastic strain release [19,24–26]. This
indicates that elastic stresses stored in the crumpling creases
of elastoplastic aluminum foils are less than the yield stress.
Nevertheless, elastic stresses can relax by various deforma-
tion mechanisms, such as hillock formation, microstructural
changes, and creep, which are characterized by different
characteristic time scales (see Ref. [38], and references
therein). Specifically, in experiments with thin aluminum films
it was found that the stress relaxation can be fitted by the sum
of two exponentially decaying terms [39] associated with the
fast and slow relaxation processes, respectively [38].

During the uniaxial compression of a folded sheet, a part
of the deformation energy is accumulated in the existing
crumpling creases, whereas another part is consumed due to
the formation of new creases, irreversible deformations, and
friction between the sheet surfaces [28,29]. As soon as the
uniaxial compression ratio λ = H/R (R and H are the speci-
men size before and after uniaxial compression, respectively)
is fixed at a constant level λ0 = const, the compression force
F decreases in time due to the rearrangement of energy foci
and/or dissipation of elastic energy [22,23,40]. Once again,
it is easy to understand that the stress relaxation behavior is
dependent on the rheological properties of thin material.

Specifically, in experiments with randomly folded paper
balls subjected to the uniaxial compression it was found that
at fixed axial confinement λ0 = const the compression force
decreases in time as

F = F0

[
1 − β ln

(
1 + t

τF

)]
, (1)

where β and τF are the material dependent fitting parameters
[22,41]. It is pertinent to note that stress relaxation in the
paper ball subjected to uniaxial compression (λ0 = const) is
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accompanied by a time dependent lateral expansion of the
compressed ball. When the compression force is suddenly
withdrawn, the compression ratio suddenly increases up to
λp > λ0 due to a spontaneous release of a part of the elastic
strains and then slowly increases in time as

λ = λp

[
1 + c ln

(
t

τr

)]
(2)

due to the rest of the elastic strain relaxation over a period
of several days, where c and τr are fitting constants [42]. It
has been argued that the relaxation behavior (1) and (2) can be
attributed to activated processes of elastic energy redistribution
and dissipation [22].

In contrast to this, in experiments with hand crushed
aluminum foils subjected to uniaxial compression, the authors
of [40] have observed that the stress decrease at λ0 = const
can be better fitted by the stretched exponential function

F = F0 exp

[
−

(
t

τ0

)η]
, (3)

where the fitting parameters η and τ0 were found to vary in
the ranges of 0.24 � η � 0.4 and 5 × 103 � τ0 � 2 × 105 s,
respectively. Moreover, it was conjectured that the scaling
exponent η = 0.28 ± 0.03 is universal [40]. On the other hand,
numerical simulations of stress relaxation on fractal surfaces
suggest that the scaling exponent η is dependent on the surface
fractal (mass) dimension D [43].

In this context, we noted that the stretched exponential
decay (3) is allied with the Weibull distribution of relaxation
times [44]. The Weibull distribution emerges from the central
limit theorem of extreme value theory as the universal
stochastic limit law for distribution of minima of positive
valued independent identically distributed random variables
[45]. A geometry-based theory for the universal emergence of
Weibull distribution was developed in Ref. [46]. Furthermore,
the relaxation ruled by the Weibull statistics can be mapped
into the problem of random walk on a fractal with the spectral
dimension ds < 2 [47,48], such that the scaling exponent η is
related to the spectral dimension as

η = ds/D < 1, (4)

where D is the metric (mass) dimension of the fractal [47].
However, although the Weibull distribution and stretched
exponential relaxation are ubiquitous in nature [49–51], we
noted that in [40] data fitting with Eq. (3) is rather poor (see
Fig. 1 in Ref. [40]) and the range of variations 0.24 � η � 0.4
is too large. Accordingly, to understand the stress relaxation
in randomly crumpled elastoplastic sheets, in this work we
performed a meticulous experimental study with hand folded
aluminum foils subjected to uniaxial compression.

II. EXPERIMENTAL FINDINGS

For experimental studies we used aluminum foil of thick-
nesses h = 0.06 mm and mass density ρm = 2.4 ± 0.1 g/mm3

which was earlier exploited in Refs. [19–21]. The stretching
yield stress of this foil is σsy = 15 ± 5 MPa and the Young
modulus is Y = 70 ± 8 GPa [19,52]. It is pertinent to note
that the folding configurations and mechanical properties of

randomly crushed aluminum foils were earlier studied in
Refs. [7,9,19–21,23–27,53].

A. Experiment details

In this work, the square sheets with edge sizes of L =18,
24, and 30 cm were crushed by hand into spherical balls of
an approximate mean diameter R (see Ref. [19]). At least
four balls with different compaction ratios K = L/R were
folded from sheets of each size. When bending strains exceed
the yield point of aluminum foil, this creates a sudden surge
of crumpling ridges and vertices. The mean ridge length
depends on the sheet size, thickness, and compaction ratio as
� = L(h/L)θK−α , where θ and α are the scaling exponents [8],
whereas the ridge width is expected [36] to be

w = h1/3�2/3 � � � L (5)

for the range of 4 � K � 8 used in this work. We found
that Eq. (5) is consistent with the results of experimental
estimations of w for ridges located on the surfaces of folded
balls.

In the first set of experiments, three balls folded from
sheets of different size L were tested under uniaxial loads
using a universal test machine MTS-858-5. All experiments
were performed with the compression rate of Ḣ = dH/dt =
6 mm/s (see Fig. 1). Accordingly, in Fig. 2(a) the axial
compression force F is plotted versus the compression ratio
λ = H/R. It is pertinent to note that the lateral expansion of the
folded aluminum foils subjected to the uniaxial compression
was earlier studied in [7]. It was found, that the apparent lateral
strain ε⊥ is related to the apparent longitudinal strain ε|| as
ε⊥ = −νε|| with the Poisson’s ratio ν = 0.33 ± 0.01 within
a wide range of 0 < ε|| � 0.9 [7]. This is consistent with
experimental observations in the present work.

FIG. 1. Setup used to measure the force during the ball compres-
sion and relaxation.
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FIG. 2. Typical curves of uniaxial force F in newtons (N) versus
(a) dimensionless compression ratio λ = H/R for Ḣ = 6 mm/s
(L =300 mm; R =50.2 mm) and (b) time t in hours (h) for λ0 = 0.5
(L =300 mm; R =49.8 mm). Inset shows the initial part of the
relaxation curve.

With the remaining nine balls, the force relaxation tests
were performed by suddenly applying a finite amount of
constraint λ0 = H0/R to a specimen and then maintaining
it at a constant. While the specimen continues to be “loaded”
to the initial constraint λ0 = const, the compression force F

drops with time as shown in Fig. 2(b). Furthermore, in three
experiments, after several (3, 5, and 8) hours of relaxation
the compression force was suddenly removed and possible
variations in the specimen height and/or shape were monitored
with the help of a laser micrometer MTS LX-500 and a high
resolution (6.5 megapixels) video recorder.

B. Force-compression ratio curves

We found that at the loading stage the force-compression
curve [see Fig. 2(a)] can be best fitted with the linear
relationship

F = K1εE, (6)

where K1 is the ball stiffness (see Fig. 3), whereas the
“effective” relative deformation is defined as

εE(t) = (R − HE)/HE, while HE = H − nh = R−nh−Ḣ t,

(7)

n is the number of layers in the folded ball (see Ref. [22]), and
H (t) = R − Ḣ t is the ball size in the direction of compression
[54].

FIG. 3. Typical graphs of the uniaxial force F in newtons versus
the dimensionless effective relative deformation εE for balls folded
from aluminum foils. Symbols: experimental data from Fig. 2(a).
Straight lines: data fitting with Eq. (3) .

In this regard, it should be pointed out that in contrast
to the scaling behavior F ∝ H−β with β > 1 which is
observed during the compression of sheets enclosed in a
container restricting the radial expansion of crushed sheet
(see Refs. [10,15,16,52]), Eqs. (6) and (7) describe the
force-compression behavior in experiments with free lateral
boundaries of the tested specimen (see Fig. 1).

C. Stress relaxation

Once the compression is stopped at λ0 = const, the com-
pression force decreases in time as shown in Fig. 2(b). First of
all, we noted that although the experimental data can be fitted
by the stretched exponential function (3), the value of fitting
exponent η is dependent on the time interval used for fitting
[see Figs. 4(a) and 4(b)]. Specifically, the short-time (t � τ0)
asymptotic

(1 − σ/σ0) ∝ tη0 (8)

is characterized by the scaling exponent η0 [see inset in
Fig. 4(a)] larger than the scaling exponent η found from the fit
of the full range data with the stretched exponential function
(3), as shown in Fig. 4(a) [55]. Consequently, we have observed
systematic deviations from the fitting curve (3) at low and
high times [see Fig. 4(b)]. We also noted that although the
range of the fitting exponent variation (0.12 � η � 0.4) is
consistent with the full experimental range (0.24 � η � 0.4)
reported in [40], it contradicts the conjecture of Ref. [40] that
η = 0.28 ± 0.03 is universal.

At the same time, we found that the best fit to the
relaxation behavior in crushed aluminum foils is provided by
the following relationship:

F = F0{1 − exp[−(ωt)−γ ]}, (9)

where the fitting exponent

γ = 0.14 ± 0.05 (10)

is found to be almost independent on the sheet size L, ball
diameter R, and compression ratio λ0 [see Figs. 4(b) and 5].
In this context, it is also important to note that the value of γ

obtained from the long-time (ωt � 1) asymptotic behavior

F ∝ F0 (ωt)−γ (11)

FIG. 4. Typical fittings of force relaxation data: (a) Data from the
graph in Fig. 2(b) are fitted with Eq. (2) in log-log coordinates of φ =
ln(F/F0) (dimensionless) versus time t (minutes); the inset shows
the short-time asymptotic 1 − f ∝ tη in the log-log coordinates
(f = F/F0). (b) Log-log plots of dimensionless φ (1) and ψ =
ln(1 − F/F0) (2) versus t in minutes. Straight lines: data fitting with
Eqs. (2) and (5), respectively (L = 240 mm; R = 27 mm; λ0 = 0.25).
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FIG. 5. Log-log plots of dimensionless ψ = ln(1 − F/F0) versus
t in minutes: (a) data from Fig. 2(b); inset shows the long-time
asymptotic f ∝ t−γ . (b) L = 180 mm, R = 22.1 mm, λ0 = 0.65.
Symbols: experimental data. Straight lines: data fitting with Eq. (5).

is equal to the value (10) found from the full time range fitting
by Eq. (9).

It is pertinent to recall that the stress relaxation behavior
in randomly crushed elastoplastic aluminum foils under the
uniaxial constraint λ0 = const differs from stress relaxation
(1) observed in experiments with hand folded papers (see
Ref. [22]). Furthermore, in experiments when the compression
force was suddenly removed at t > 0, we have not detected any
change in the height of the compressed specimen, in contrast
to the logarithmic height increase (2) observed in experiments
with hand folded papers (see [42]).

III. DISCUSSION

During the uniaxial compression of a hand folded elasto-
plastic foil a part of the work of deformation U (λ) is
lost, whereas the rest is accumulated in the form of elastic
energy (E) distributed among the existing and new crumpling
creases. Numerical simulations suggest that E ∝ U [29,30].
Accordingly, once the compression is suddenly stopped at the
moment t = 0, the total elastic energy stored in the crumpling
network is equal to

E(0) =
N0∑
i=1

ei(0) ∝ F0(λ0), (12)

where N0 is the number of crumpling ridges in the crumpling
network, while ei(t) � 0 is the elastic energy stored in the i

ridge (1 � i � N0) [8,16].
Our observation that there are no changes in the specimen

size and shape after the compression force is withdrawn
suggests that the elastic stresses in the crumpling creases of
elastoplastic foils are less than the yield stress. Nevertheless, at
λ0 = const, the elastic energy stored in the crumpling creases
dissipates [see Fig. 2(b)] due to stress relaxation caused by
processes on the aluminum microstructure level (see Ref. [38])
and friction in the sheet self-contact points (see Refs. [29,30]).
Consequently, the compression force decreases in time as

F (t) ∝ E(t) =
N(t)∑
i=1

ei(t), (13)

where N (t) � N0 is the number of ridges storing elastic
energy at t > 0. Hence, the force decay behavior (9) provides
information about the kinetics of energy dissipation in the

crumpling network. In this context, the difference between
the force decay behavior in randomly crushed viscoelastic
papers (1) and elastoplastic aluminum foils (9) suggests that
the kinetics of elastic energy dissipation in the crumpling
network is dependent on the material rheology.

A. Kinetics of energy dissipation in crumpling network

Let us denote the distribution of elastic energy in the
crumpling network at t = 0 as {ei(0)}N0

0 . At times t > 0 the
crumpling network undergoes irreversible transitions from
the initial state to states with different distributions {ei(t)}Nt .
The transition {ei}N0

0 → {ei}Nt takes place at a random instant
of time τi controlled by the waiting and/or relaxation time
distributions in the crumpling network. The conditional prob-
ability p(t,dt) that the crumpling network will undergo the
transition during the time interval (t,t + dt) provided that the
transition did not occur before time t can be expressed as
p(t,dt) = Pr(t � τi � t + dt |τi � t). In the limit of dt → 0,
the conditional probability is p(t,dt) = d ln P (τi � t), where
P (τi � t) is the system’s survival probability, that is, the
probability that the transition from the initial state did not
happen prior to the time instant t . So, the survival probability
P (τi � t) governs the energy dissipation in both time and
frequency domains.

It is easy to understand that if the system dynamics is
governed by the extreme value statistics, the evolution of
elastic energy E(t > 0) should obey the following kinetic
equation:

dE

dt
= E0

dP

dt
= −E0f (t), (14)

where f (t) = dPC/dt and PC(t) = 1 − P (t) are the probabil-
ity density and cumulative distribution functions, respectively.
The explicit form of extreme value distribution function f (t)
is determined by statistics of dissipation events.

B. Statistics of energy dissipation in crumpling networks

Generally, the energy dissipation in a crumpling network is
controlled by distributions of waiting (τwi) and/or relaxation
(τri) times. The former is defined as the time to the event of
dissipation, whereas τri characterizes the relaxation rate of
individual relaxation event ei(t) ∝ e0i exp(−t/τri). Accord-
ingly, the kinetics of energy dissipation is governed by the
distribution of minimum relaxation times, if τwi � τri , or by
the distribution of maximum waiting times, if τwi � τri .

Specifically, if τwi � τri and the relaxation times are
randomly distributed, the statistics of energy dissipation is
controlled by the distribution of minimal relaxation times
obeying the Weibull statistics [44]. Accordingly, if the relation
(13) holds with N = const � 1, from Eq. (14) follows the
stretched exponential relaxation behavior (3).

Controversially, if τwi � τri and the waiting times are
randomly distributed, the statistics of energy dissipation is
controlled by the distribution of maximum waiting times.
According to the central limit theorem of extreme value
theory the maximal point of the multiplicative Poisson process
is governed by Fréchet statistics [45]. Consequently, if the
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relation (13) holds with N (t) � N0, from Eq. (14) with

f (t) = γ

ωγ tγ+1
exp[−(ωt)−γ ] (15)

follows the experimentally observed relaxation behavior (9).
Notice that Eq. (15) represents the Fréchet probability density
distribution function, where γ > 0 is the scaling exponent and
ω−1 plays the role of time scale. Accordingly, Eq. (14) can be
rewritten in the form

dE

dt
= γE0

t

(
1 − E

E0

)
ln

(
1 − E

E0

)
, (16)

which does not explicitly include the time scale. Notice that
no systematic dependence of ω on L, R, or λ0 was observed
in our experiments. Thus, the relaxation behavior (9) suggests
that the energy dissipation in the crumpling network of an
elastoplastic crushed aluminum foil is governed by the waiting
time distribution belonging to the domain of attraction of the
max-stable distribution of the Fréchet type.

In contrast to this, in the case of τwi ≈ τri the energy
dissipation is not expected to obey any extreme value statistics.
Therefore, in this case the elastic energy evolution should
not obey Eq. (14). Specifically, in Ref. [22] it has been
argued that the stress relaxation in crushed viscoelastic paper
(1) is governed by the activated processes of elastic energy
redistribution and dissipation.

C. Model of energy dissipation in crumpling
network with τwi � τr i

Although the Fréchet distribution is one of the three extreme
value distributions [44], to the best of our knowledge, the
relaxation behavior of type (9) was never reported in the
literature. Nonetheless, the simplest model leading to Eq. (9)
can be formulated as follows. At t = 0 the elastic energy
stored in the crumpling network with Nn ridges is randomly
distributed among N0 � Nn ridges. Following the ideas of
Ref. [56], the dissipation of elastic energy can be treated
as a Poisson process defined for t > 0 and characterized
by two random variables: the waiting times {τwi}Nt and the
dissipation rates (or durations) {τri}Nt . If τri � τwi , the number
of ridges conserving the elastic energy at t > 1 is equal to
N (t) = N0[1 − PC(t)], whereas the rest of the N0PC(t) ridges
are in the state with ei

∼= 0. Therefore, the total energy stored
in the crumpling network is expected to behave as

E(t) =
N(t)∑

i

ei(0) ∝ E0
N (t)

N0
= E0 [1 − PC(t)] , (17)

where PC(t) is the cumulative distribution of maximum
waiting times obeying the Fréchet statistics.

Consequently, taking into account relationship (13), the
force relaxation behavior (9) is immediately followed from
Eq. (17). Furthermore, the force relaxation in the frequency
domain can be obtained in a straightforward way (see [51])
by taking the one-sided Fourier transform of waiting time
probability density function (15).

Although our experiments do not provide information about
mechanisms of energy dissipation in a crumpling crease of
crushed aluminum foil, the relaxation behavior (9) suggests
that the relaxation times (durations) of consecutive dissipation

events are much less than the waiting times between them,
that is, τwi � τri . So, one can speculate that the elastic energy
dissipation in crushed aluminum foils under the constraint
λ0 = const can be ruled by the sudden jumps in the points
of sheet self-contact which are controlled by the friction
phenomena. Furthermore, the elastic energy stored in a
crumpling crease can dissipate by the short range diffusion
mechanisms, such as Coble and Nabarro-Herring creep (see
Ref. [38], and references therein) with the relaxation time (of
around 5 min [38]) much less than the characteristic waiting
time (of the order of 1 h).

D. Mapping of energy dissipation processes into processes
of random walks on fractal crumpling networks

It is a straightforward matter to expect that the distribution
of waiting times {τwi}Nt in the crushed thin sheets is controlled
by the scaling properties of fractal crumpling networks storing
the major part of elastic energy. Hence, the Poisson process of
elastic energy dissipation can be mapped into a random walk on
a fractal crumpling network (to this respect, see Refs. [47,48]).

The dynamics of random walk on a fractal network is
governed by the network spectral dimension ds = 2D/DW ,
where D is the fractal dimension (e.g., mass, self-similarity, or
Hausdorff dimension) of the network and DW is the random
walk dimension [57–59]. If ds < 2, then DW > D and the
random walk is recurrent, whereas if ds > 2, then DW < D

and so the random walk is transient [58]. Therefore, the number
of sites (ridges) unvisited by a random walker on the fractal
crumpling network of fixed size Nn exhibits the power-law
asymptotic decay

N ∝ t−(ds−2)/2, (18)

if the spectral dimension of crumpling network ds > 2 [60]. If
relations (13) and (17) hold, from Eqs. (11) and (18) it follows
that the scaling exponent γ is related to the spectral dimension
of the crumpling network as

γ = ds/2 − 1 > 0, (19)

as long as ds > 2. Hence, the independence of scaling
exponent (10) of the L,K , and λ0 suggests that the spec-
tral dimension of crumpling networks in randomly crushed
aluminum foils

ds = 2(1 + γ ) = 2.3 ± 0.1 (20)

is independent of geometric constraints, but it can be material
dependent. Specifically, we noted that the value (20) differs
from the spectral dimension of crumpling network ds =
1.53 ± 0.06 < 2 which was found in experiments with a hand
crushed paper (see Ref. [8]). Although a specific reason for
this difference is unclear, it may be attributed to different
rheology of viscoelastic paper and elastoplastic aluminum
foils. Consequently, the statistics of elastic energy dissipation
appear to be different for crumpling networks with ds < 2
(τwi ≈ τri) and ds > 2 (τwi � τri), respectively.

IV. CONCLUSIONS

Summarizing, we found that under a sufficiently fast uni-
axial compression a randomly folded aluminum foil displays
linear force-effective relative deformation behavior (6). As
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soon as the compression ratio is fixed, the decrease of uniaxial
compression force exhibits rather unconventional time behav-
ior (9). We argue that this finding suggests that the dissipation
of elastic energy in a crumpling network can be considered
as a fractal Poisson process with the Fréchet distribution of
maximum waiting times. Furthermore, we suggest that the
energy dissipation process can be mapped into the problem
of transient random walk on the fractal crumpling network
with the spectral dimension ds > 2. The difference between
the elastic energy dissipation statistics in the crumpling
networks of randomly crushed viscoelastic papers (ds < 2)
and elastoplastic aluminum foils (ds > 2) is outlined.

In this regard, it is pertinent to point out that our arguments
are rather generic and should hold at the nanoscale [61], as
well as at the geological scales [62]. So, our findings offer a
general insight into the physics of crumpling and provide a
framework to understand the relaxation processes in randomly
folded matter of different nature.
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