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Multiple transient memories in sheared suspensions: Robustness, structure, and routes to plasticity
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Multiple transient memories, originally discovered in charge-density-wave conductors, are a remarkable and
initially counterintuitive example of how a system can store information about its driving. In this class of
memories, a system can learn multiple driving inputs, nearly all of which are eventually forgotten despite their
continual input. If sufficient noise is present, the system regains plasticity so that it can continue to learn new
memories indefinitely. Recently, Keim and Nagel [Phys. Rev. Lett. 107, 010603 (2011)] showed how multiple
transient memories could be generalized to a generic driven disordered system with noise, giving as an example
simulations of a simple model of a sheared non-Brownian suspension. Here, we further explore simulation
models of suspensions under cyclic shear, focusing on three main themes: robustness, structure, and overdriving.
We show that multiple transient memories are a robust feature independent of many details of the model. The
steady-state spatial distribution of the particles is sensitive to the driving algorithm; nonetheless, the memory
formation is independent of such a change in particle correlations. Finally, we demonstrate that overdriving
provides another means for controlling memory formation and retention.
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I. INTRODUCTION

The basic operations of memory—imprinting, reading, and
erasure—can occur rapidly. Examples are the flipping of a
magnetic domain, writing a nested sequence of values in
return-point memory [1], or aging and rejuvenation in glasses
[2,3]. The situation is drastically different for pulse-duration
memories in traveling charge-density waves [4,5], where a
memory can be gradually encoded into or erased from the
steady-state response of the system. If a series of equal-width
current pulses is applied to the system, the nonlinear voltage
response eventually becomes phase locked to the ends of the
pulses. Thus, the system has a memory of the pulse duration.

Moreover, charge-density wave carriers can simultaneously
store multiple memories. If a sequence of pulses is repeatedly
applied, the system will remember each of the pulse widths.
Counterintuitively, all but two will be forgotten in the steady
state. However, if sufficient noise is present, all of the
memories can be retained [6,7]. The defining features of
multiple transient memories are thus: (i) initially, the system
can learn multiple inputs, (ii) under continual application of
these inputs, the system will forget almost all of them, and
(iii) if sufficient noise is present, the system will remember the
inputs indefinitely.

Recently, Keim and Nagel [8] showed how multiple
transient memories could be generalized in a generic driven
disordered system with noise. Turning to classical driven
systems with disorder, they noted other examples of memories
stored in a steady state. For example, granular materials that are
driven by tapping [9] or shearing [10] assume a steady-state
density that is determined by the amplitude of the driving.
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With prior knowledge of this compaction behavior, simply
measuring the pack height after many driving cycles identifies
the driving parameter uniquely, i.e., the system has a single
memory in its steady state.

To demonstrate that particulate systems could possess
multiple transient memories, Keim and Nagel [8] employed
a simplified model that was developed by Corté et al. [11]
as a kinematic description of experiments of non-Brownian
suspensions under cyclic, low Reynolds-number shear [11,12].
In such systems, particles were found to follow irreversible
trajectories before self-organizing into a reversible steady
state, where the particles retrace their trajectories exactly
during every subsequent shear cycle.

In this system, a memory may be encoded by shearing
a system cyclically between strains γ = 0 and γ1. As the
system self-organizes, more and more particle trajectories will
become reversible for strains smaller than or equal to the strain
amplitude γ1. A memory is encoded as the sharp increase
in particle irreversibility for shears infinitesimally larger than
γ1 [8]. A configuration that is a reversible steady state for
amplitude γ1 is also reversible for any smaller shear amplitude,
γ < γ1. Hence, if multiple memories are stored in the system
by shearing to multiple different amplitudes {γ1,γ2, . . . ,γn},
γn being the largest, then once the system reaches the final
reversible steady state (i.e., complete reversibility for shears
up to γn), the smaller memories will have been forgotten.
There then remains only the onset of irreversibility at γn.
We note here that the system has effectively two memories
in the final steady-state configuration (in analogy with the
charge-density-wave system). One of these is, of course, at
γn; the other is the maximum strain in the opposite direction,
which in this work is fixed at γ = 0. These values mark the
two endpoints of the driving during the training cycles.

Crucially, if noise is present in the system, the suspension
can never reach its final fixed point where all the particle
trajectories would be fully reversible up to a strain amplitude
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γn. Thus the system explores a space of metastable states
and retains signatures of the inputs indefinitely. Because it is
effectively maintained in a permanent transient, if the pattern
of inputs is changed, the system will gradually acquire new
memories and shed the old ones. The ability to retain a memory
of the small inputs is never lost. This is a concrete example of
the emergence of plasticity in memory formation.

While multiple transient memories are likely a generic
phenomenon, a rigorous understanding of the conditions under
which they are feasible has yet to have been expressed. Here,
we address some of the issues underlying this question, by
further exploring the sheared suspension system and focusing
on three main themes: robustness, the structure of memories,
and overdriving. We begin by describing the basic simulation
algorithm in Sec. II. In Sec. III, we show that multiple transient
memories are robust and are present under several different
training algorithms. We then show that forgetting is gradual,
a crucial property that distinguishes transient memories from
other classes of memory. We demonstrate this over a range
of parameters and algorithm variants by reading out a small
memory after a single large shear has been applied. In Sec. IV,
we examine the spatial structure of particle configurations that
possess memories in the Corté algorithm, and we show how
this and other effects lead to a broadening of the memory
signature.

Finally, in Sec. V, we examine sheared suspensions driven
above the critical amplitude for irreversibility, γc, the largest
strain amplitude at which the system can self-organize to a
reversible steady state [11]. We show that even in the case of
overdriving, memories can be retained in the system just as for
smaller amplitude inputs. Thus memories are not necessarily
relegated to small amplitudes. Moreover, driving above γc can
be harnessed as a source of noise that allows memories to be
retained indefinitely.

The picture that emerges from this work is that multiple
transient memories are a robust feature manifest in a range
of simple models of suspensions under cyclic, low Reynolds-
number shear, that the details of memory retention and erasure
can be understood from the spatial structure of the particles,
and that overdriving can provide another avenue for controlling
memory formation.

II. DESCRIPTION OF SIMULATIONS

We use a variety of models to study the rearrangements
of particles in a viscous, non-Brownian suspensions under
cyclic low Reynolds-number shear. One of these models was
designed by Corté et al. [11]. A slight variant was used by Keim
and Nagel [8] to show multiple transient memories in sheared
suspensions. Although the models are very simplified, they are
justified on the basis that they reproduce many behaviors seen
in previous experiments [11].

The algorithm of Corté et al. [11] consists of three steps,
illustrated in Fig. 1: (1) N discs of diameter d are randomly
placed in a square box of area Abox with area fraction
φ = Nπ (d/2)2/Abox. We choose φ = 0.2 and use periodic
boundary conditions at the box edges. (2) The box is sheared
affinely in the x direction to an amplitude γ1 so that a particle
is translated a distance �x = γ1y, where y is the vertical
coordinate of the particle center. The particles are then returned

FIG. 1. Simulation algorithm of Corté et al. [11]. N discs of
diameter d are randomly placed in a square box with area fraction φ

(left). During each cycle, the box is sheared affinely by translating the
particle centers a distance �x = γ1y (right). They are then returned to
their previous positions (left). Any particle pairs that overlap at any
point during the cycle are given small displacements (left, dashed
circles), which determine the new positions for the next shear cycle.
Figure adapted from Ref. [11].

to their original positions. (3) Any discs that overlap each
other at any point during the shear (i.e., if their centers come
within a distance d) are given small, random displacements
(or “kicks”), once they have been returned to their unsheared
positions. In each variant of the algorithm that we study, a
different choice for the displacements is prescribed.

This very simple model reproduces several important
features of the sheared-suspension experiment. First, for small
shear amplitude (where the definition of “small” depends
on the area fraction), the system will eventually fall into a
reversible steady state (i.e., no particle pairs come within
a distance d of each other during the shear to γ1). Second,
for large enough shears, the particles never find a reversible
configuration (on the timescale of the simulation), and instead
each particle undergoes a random walk indefinitely. Third,
there is a critical γc (which depends on the area fraction, φ)
that separates these two regimes. These features were also seen
in the experiment [11].

Recently, Keim and Nagel [8] showed how such a system
that is driven below its critical amplitude (γ < γc) can store
multiple memories in its transient state, or in a steady state
when random noise is added. In the current study, we will
consider the different choices for the kicks applied to the
overlapping particles, as well as different forms of driving.
We also consider the effect of overdriving, that is the effect
of shears of amplitude γ > γc. In the present work φ = 0.2,
and empirically γc = 4.0. Without loss of generality, we set
the particle diameter d = 1.

III. ROBUSTNESS OF MULTIPLE TRANSIENT
MEMORIES

The capacity of a system with many metastable states and
many degrees of freedom to “learn” multiple memories under
cyclic driving appears to require dynamics with very few
essential features [8]. Here we test and study the generality
of this learning behavior under different algorithms. First, we
evaluate several variants of the original simulation algorithm.
We then consider one aspect of the kinematics that is necessary
for multiple transient memories: the persistence of a memory
over many cycles.
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FIG. 2. (Color online) Multiple memories observed using variants
of the kinematics. Memory signal, f ′′

mov, is plotted versus trial strain,
γ . Red triangles above and below curves indicate values used in
the training pattern. (a) Variant 1 in text, with an isotropic random
kick for each collision, after ∼104 cycles (average of 12 runs) [11];
(b) Variant 2: each particle kicked at most once per cycle, regardless
of number of collisions [8], after ∼104 cycles (12 runs); (c) Variant
3: equal and opposite kicks, after ∼104 cycles (12 runs, actual height
of clipped peak, 13, trough, −8); (d) Variant 4: equal repulsive kicks
after ∼103 cycles (12 runs, actual height of clipped peak, 62, trough,
−62); (e) Variant 5: Isotropic repulsion (simulating particle swelling)
after 200 cycles (5 runs, height of trough: −234). A single cycle is
plotted for each variant, taken from a period in that system’s evolution
when both memories are observable after each cycle, independent of
which γi was just applied.

A. Dependence on kinematics

To test whether memories are present after some number of
cycles, we evaluate f ′′

mov(γ ) ≡ d2fmov/dγ 2, where fmov(γ )
is the fraction of particles that collide in the course of a
trial deformation by γ . The quantity fmov(γ ) is cumulative,
including all particles colliding at shears up to γ , whereas
f ′

mov(γ ) measures the set of particles colliding at γ specifically.
The “training” from repeated shearing therefore depletes f ′

mov
just below the training value and enhances it above. This
change is observed as a peak in f ′′

mov for each γi when multiple
transient memories are present, as in Fig. 2(a). To find f ′′

mov,
we sample fmov at intervals of 0.04 in γ (except in Variant 5
below). We then take the discrete first and second derivatives
by subtracting the values at neighboring points.

Our simulations suggest that the multiple-memory behavior
is insensitive to qualitative changes in the kinematics. We
have assessed the robustness of the multiple-memory behavior
under five variants of the kinematics, all with φ = 0.2, N =
104. We average over multiple runs, each with a different
random initial condition. Representative results from each
variant are plotted in Fig. 2.

(1) Original kinematics of Corté et al. [11] (see Sec. II):
If, during a shear deformation cycle, two particles overlap,
then each particle is given a kick with random direction, and
magnitude drawn from a uniform distribution on [0, ε] where
here ε = 0.005. Particles are sheared cyclically with γ1 = 2
and γ2 = 3, and the smaller shear is applied five times for
each application of the large shear. Thus the pattern of shears
is 3,2,2,2,2,2, and in Fig. 2(a) this six-cycle pattern is repeated
for a total of ∼104 cycles.

(2) “Tag-kick-once” [8]: We use the same algorithm as in
Variant 1 except that each colliding particle is kicked only
once, independent of the number of other particles that it
overlapped. The kick is drawn from the same distribution as
in Variant 1.

(3) Momentum conservation: Kicks to interacting particles
are still drawn from the same isotropic random distribution
as Variant 1, and all parameters are the same. However, each
particle in a colliding pair receives an equal and opposite kick.
As in Variant 1, kicks from multiple collisions are applied
additively. Thus if any subset of the system does not interact
with particles outside that subset, its center of mass will not
move.

(4) Repulsion: Particles in an interacting pair receive kicks
away from each other, as defined by their positions at γ =
0. Kick magnitudes are equal and are taken from the same
distribution as in Variant 1. Notably, we find that the system
evolves at an approximately normal pace (including forgetting
of the memory of the smaller shear value), yet it usually does
not reach a reversible state within 2 × 106 cycles (for these
parameters).

(5) Dilation and repulsion: Instead of a shearing motion,
kinematics simulate uniform cyclic swelling of the particles to
a diameter γ d. As in the variants described above, we used a
training pattern with two values of γ , with the smaller value
repeated five times for each application of the larger value:
γi = 1.5, 1.1, 1.1, 1.1, 1.1, 1.1. We use ε = 0.01. Kicks to
overlapping particles are repulsive and have equal randomly
selected magnitude, as in Variant 4. For this algorithm we find
that γc ≈ 1.8, and we sample fmov at intervals of 0.02.

As seen in Fig. 2, each of these variants supports multiple
transient memories. Our results thus show that the phe-
nomenon is not sensitive to how particles interact, or even
to the geometry of deformation.

B. Gradual forgetting

One important feature of transient memories is that the
process of forgetting is gradual. This is observed in simulations
of non-Brownian sheared suspensions [8] and simulations of
traveling charge-density waves [6,7]. For sheared suspensions,
gradual forgetting is the property that a memory of γi will
persist even after one or more applications of a larger shear,
γj > γi . This feature helps distinguish transient memories
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FIG. 3. (Color online) Gradual forgetting of transient memories.
(a) fmov versus γ for systems that were driven once at a shear
amplitude γ2 = 3 after having been completely trained at γ1 = 2.
The kick size, ε, is given in the legend, and the arrows show the
direction of increasing ε. (b) The curvature of the data, f ′′

mov, shows
that the memory at γ1 = 2 is still present, even for large ε. As ε is
increased, the peak becomes broader and shorter. Inset: The data for
ε = 0.7 show that the memory can be read out even at this large a
kick size. All data were taken from averaging over multiple initial
configurations.

from other classes of memories. For example, in return-point
memory in ferromagnets, smaller memories are wiped out the
instant a larger field is applied [1,13]. The same holds for aging
and rejuvenation in glasses; a memory of a temperature Ti is
erased as soon as the glass is heated above Ti [2,3].

In Ref. [8], the kick size was small (0.005 � ε � 0.1). Here
we show that forgetting is still gradual (albeit more rapid)
when larger kicks are used (0.01 � ε � 1). Using the Corté
algorithm (Variant 1), we train an initially randomized system
(N = 105, φ = 0.2) with a single strain amplitude, γ1 = 2,
to a reversible steady state. Then, we apply a single shear of
strain amplitude γ2 = 3, and attempt to read out the memory
at γ1. We average multiple systems together to improve the
signal-to-noise ratio (between 3 and 400 systems), and we
sample fmov at intervals of �γ = 0.1.

We show the results in Fig. 3. We plot fmov and its curvature,
f ′′

mov, versus strain for each value of ε tested. A peak is clearly
visible for small kicks. As ε is increased, the peak becomes
broader and shorter. Nonetheless, there is still an identifiable
peak in f ′′

mov for kicks as large as ε = 0.7, as shown in
the inset to Fig. 3(b). (Examining the fmov data at ε = 0.7
by eye, one might not identify the memory at γ1 = 2. It is

remarkable that the memory can be easily identified by taking
two derivatives.) The intuitively appealing picture that emerges
is that the smaller the kick size, ε, the slower the erasing of the
memory at the lower shear value.

One way in which the memory might be surviving is due to
the distribution of random kicks used. In the Corté algorithm,
each colliding particle is given a kick with a random size
chosen uniformly between 0 and ε. Thus, even if ε is large,
some particles are given small kicks, and these particles alone
might store the smaller memory. To investigate this, we ran
simulations where a kicks of fixed size ε are applied (in random
directions) to colliding particles. In this case, we found that
the memory at γ1 = 2 was still present up to ε = 0.3.

We tested three other variants of the Corté algorithm, to
further test the generality of gradual forgetting. In each case
the system is first trained to a reversible state at γ1 = 2 and
then a single shear of γ2 = 3 is applied. The algorithms below
were used in both the initial training to the reversible state, and
in the final, disrupting shear.

(6) Annealing at zero shear: After every cycle, overlapping
particles are given random kicks until the system reaches a state
with no overlaps (in the unsheared configuration). Gradual
forgetting was observed at ε = 0.2 (no other values were
tested).

(7) Pure shear: Particle centers are sheared along trajec-
tories given by: �x = x[cosh( 1

2γ ) − 1] + y sinh( 1
2γ ), �y =

y[cosh( 1
2γ ) − 1] + x sinh( 1

2γ ). This is in contrast to simple
shear, where �x = γy and �y = 0, as in the Corté algorithm.
(The relationship between pure shear and simple shear is more
easily understood in terms of the instantaneous flow field,
which is defined in terms of the shear rate, γ̇ ≡ dγ (t)/dt . Pure
shear has velocity components vx = 1

2 γ̇ y, vy = 1
2 γ̇ x, whereas

simple shear has vx = γ̇ y, vy = 0.) Here gradual forgetting
was observed at ε = 0.3 (larger ε were not tested).

(8) Dilation: The particles are swelled to radius
√

1 + γ /π

(this radius is chosen so that the area of the interaction region
matches that for shearing). Gradual forgetting was observed
for ε = 0.1.

Thus, the property of gradual forgetting is not relegated
to small kicks and does not depend on the specific properties
of the Corté algorithm. It is a general feature of a range of
kinematics of non-Brownian particles.

IV. STRUCTURE OF A MEMORY

A. Pair correlation function

The two-dimensional (2D) pair correlation function,
g(x,y), affords us one method of characterizing the structure
of a system with one or more memories. The pair correlation
function is proportional to the probablity that two particles
will be separated by the displacement (x,y) and is normalized
so that g(x,y) = 1 for a uniform distribution of particles. A
complete memory of an amplitude γ1 imposes a constraint
on g(x,y). Because there can be no overlapping particles in
the unsheared configuration, there can be no particle centers
within a radial distance 1 from the origin. Furthermore, a
complete memory entails that no particle centers fall in this
region when the system is sheared continuously up to γ1. This
constraint creates a propeller-shaped region where g(x,y) = 0
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FIG. 4. (Color online) Pair correlation function, g(x,y), of trained
systems, where x and y are the flow and gradient axes, respectively.
(a) Complete memory of γ1 = 3. All particles lie outside the excluded
region created by the simple shear deformation. g(x,y) has peaks
at (±1,0) where there are cusps in the shape of the excluded
region. (b) Two memories at γ1 = 2 and γ2 = 3, trained with 102
cycles following the pattern: 3,2,2,2,2,2. Particles accumulate on
the boundaries of the two regions given by Eq. (1) for γ1 = 2 and
for γ2 = 3. This accumulation marks the formation of two memories.
Data in (a) and (b) were averaged over 200 systems with N = 104,
φ = 0.20, and ε = 0.1. (c) Isolated pairs of particles trained with
γ1 = 3 (averaged over 1.22 × 107 pairs, with ε = 0.1). The pair
structure for the full simulation (a) and for isolated pairs (c) are
qualitatively similar. Differences are caused by three-body effects.

for a complete memory, as shown in Fig. 4(a). The data
are averaged over 200 systems with N = 104, φ = 0.20, and
ε = 0.1. This excluded region is the set of points satisfying

−
√

1 − y2 ∓ γy � ±x �
√

1 − y2, (1)

for 0 � ±y � 1.
Two excluded regions for different values of γi will nest:

if γ1 < γ2, then the excluded region for γ1 is a subset of the
excluded region for γ2. This is equivalent to an observation
made in the introduction and in Ref. [8]: in the algorithms
explored here, complete reversibility at one value of γ dictates
complete reversibility for any smaller strain amplitude. When
the system has two or more memories, g(x,y) is depleted
of particles to a varying degree in each of the corresponding
excluded regions. We show this in Fig. 4(b) for a system driven
at two amplitudes: γ1 = 2 and γ2 = 3. The data are averaged
over 200 systems with N = 104, φ = 0.20, and ε = 0.1.

In both the partial and complete memories, the pair
correlation function has peaks at (±1,0). The peaks can
be understood by the following argument. If two particles
collide during a shear cycle, they will contribute to the pair
correlation function at two points inside the excluded region.

These particles undergo a random walk until they exit the
excluded region. Thus, isolated pairs of particles undergo a 2D
diffusion process with an absorbing boundary. The curvature
of the boundary of the excluded region of g(x,y) influences
the local density of particles exiting the region at that point,
large positive curvatures mean few particles will escape there,
while large negative curvatures lead to high accumulation at
the boundary. The boundary of the excluded region of g(x,y)
has concave cusps at (±1,0) (i.e., the curvature is negative
infinity), which leads to a divergent density of particles at
these points in the limit ε → 0.

This picture ignores three-body effects, which could spread
out these peaks. To test the relative strength of three-body
effects, we mimic the extreme low area-fraction limit of the
Corté kinematics. Namely, we simulate an ensemble of isolated
pairs of particles. We evolve the pairs by giving both particles
a random kick if they collide (which is equivalent to leaving
one particle at the origin and giving the other particle two
random kicks). The systems are each evolved to a reversible
state. We show the results in Fig. 4(c), where we plot g(x,y)
accumulated over 1.22 × 107 systems of two particles with
ε = 0.1. The diffusion picture qualitatively captures the peaks
in the pair correlation function at (±1,0). Comparing g(x,y)
from the diffusion simulation to the full simulation indicates
that three-body effects subdue the concentration of particles
along much of the boundary of the excluded region, except
near (±1,0).

B. Memory step function

When a system stores a partial or complete memory of some
amplitude, many pairs of particles are nearly touching at that
shear value. That is, the training has pushed the particles just far
enough so that they do not collide at the shear amplitude used in
the training. In examining the pair correlation function, g(x,y),
we see that this observation can be stated in the following way:
there is a high concentration of particles within a distance 2ε

from the boundary of the excluded region in g(x,y). Therefore,
many particle pairs that behave reversibly for a shear to γ1, will
collide when the system is driven to γ1 + 2ε. In the case of
a complete memory, this means that fmov(γ1) = 0, whereas
fmov(γ1 + 2ε) is finite. Consequently, one might expect a step
function in fmov at γ1 for small ε. Counter to this expectation,
none of the data reported by Keim and Nagel [8] show a step
function in fmov at the memory amplitudes.

To understand the apparent absence of a step function in
fmov, we consider a simpler system, where a step function
in fmov is clearly present. In Fig. 5(a) we show fmov for
simulations of 5 × 104 isolated pairs of particles that initially
overlap, trained by cyclic swelling (to diameter γ ). We vary the
kick size from ε = 0.3 down to 0.001. The fmov data approach
a step function at γ1 = 2 in the limit of small ε.

The step function is widened for isolated pairs of particles
under shear: if a particle lands near the points (±1,0), a very
large shear may be necessary for a collision. For example, a
particle that is displaced to the point (1 + ε,0) will not collide
with its partner, even for arbitrarily large strain amplitudes. If
displaced to (1 + ε,δ) (where δ > 0 is small), a shear of γ ≈
ε/δ is required for a collision: the smaller the displacement off
the y axis, δ, the larger γ must be for a collision. Although this
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FIG. 5. (Color online) Step function in the memory. (a), (b), and (c) fmov versus strain, γ , for systems with complete memory of γ1 = 2,
versus kick size, ε, trained with different algorithm variants: (a) radial swelling of isolated pairs of particles to diameter γ1, (b) shearing of
isolated pairs of particles, and (c) Corté algorithm. In (a), as ε approaches zero, the memory approaches a step function in fmov, since all pairs
are within 2ε of colliding at the end of the simulation. In (b), the step function is smoothed out and the height of the jump shortened. In (c),
three-body effects shorten and smooth the jump even more. In all cases, a smaller kick size, ε, steepens fmov at γ1. Data in (a) and (b) are from
5 × 104 isolated pairs of particles. Data in (c) are single systems of N = 105 particles (except for ε = 0.001, where N = 104). The arrow in (b)
shows the direction of increasing ε, which is the same in (a) and (c). (d) The size of the jump in fmov at γ1 = 2 for radial swelling of isolated
particles (•), for shearing of isolated particles (	), and for the Corté algorithm (�). (e) Slope of fmov on the right-hand side of γ1, scaled by ε.
In both (d) and (e), the data appear to plateau at a finite value for all three algorithms in the limit of small ε. The plateau value indicates the
degree to which the behavior is approximated by a step function.

effect is specific to a vanishingly small region of configuration
space of particle pairs [i.e., an ε neighborhood of the points
(±1,0)], this configuration is where g(x,y) is sharply peaked,
as was shown in Fig. 4. We show fmov for 5 × 104 isolated pairs
of particles that initially overlap, trained with cyclic shear of
strain amplitude γ1 = 2 in Fig. 5(b). The size of the jump is
less than unity because some pairs separate such that they will
never collide, even for arbitrarily large shear amplitudes [by
separating either vertically, or into the first or third quadrants
of the domain of g(x,y)].

Finally, three-body effects smooth the step function even
more. In Fig. 5(c), we show fmov for a single system with
N = 105 particles and area fraction φ = 0.2 driven at γ1 =
2 to a reversible state, under the Corté algorithm. (We used
N = 104 particles for ε = 0.001, due to the prohibitively long
computing times of a larger system.) As ε decreases, fmov

becomes steeper at γ1, but the curve does not have a punctuated
jump, except perhaps at the smallest kick size tested, ε =
0.001.

We have given a qualitative account of the disappearance
of the memory step function in fmov for a complete memory.
To be more quantitative, we articulate two measures of the
degree to which a particular fmov curve is approximated by
a step function. The first measure is the size of the jump in
fmov for a test shear to γ1 versus a test shear to γ1 + 2ε. For
a complete memory, the size of the jump is simply fmov(γ1 +
2ε), since fmov(γ1) = 0. We show this value versus ε in
Fig. 5(d). Whereas swelling of isolated pairs of particles gives
a perfect step (i.e., a jump of unity for all values of ε), shearing
of isolated pairs and including three-body interactions limit the
jump to a smaller value for small ε.

The second measure is the slope of fmov on the right-
hand-side of γ1, denoted by f ′

mov(γ1)+. For small enough ε,
the dominant length scale that dictates this slope will be ε,
due to a separation in length scales between the kick size,
ε, and the particle size. We plot the product εf ′

mov(γ1)+ in
Fig. 5(e). The data plateau to a finite value for small ε under

all three algorithms, indicating that the slope approaches this
prefactor times 1/ε. The prefactor indicates how well fmov is
approximated by a step function, which increases as we take
out three-body effects and change to a swelling system.

Both quantitative measures show that there is a step
function contribution to fmov in all cases. However, this step
function is broadened by at least two effects. Our results
indicate that three-body effects are the smaller contribution
to the broadening and shortening of the step function, when
compared with the effect of the cusp in the excluded region
for the shearing algorithm. This suggests that an experimental
system that employs particle swelling may have a sharper
signature of memory formation (assuming all other effects
stay constant).

C. Faster training with γ = 3,2,2,2,2,2 is an artifact of drift

Finally, we note one surprising feature found when training
two memories in the sheared suspension simulations. In
Ref. [8], when a system of N = 104 particles with area fraction
φ = 0.2 was trained simultaneously at two strain amplitudes,
γ1 = 2 and γ2 = 3, with the pattern of shears, 3,2,2,2,2,2, the
system organized to a fully reversible state in ∼30 000 cycles,
compared with ∼55 000 cycles if the system was trained with
just a single amplitude, γ1 = 3. We have investigated this effect
further, and we find that the effect is statistically significant,
and grows with system size (we tested system sizes from
N = 11 to N = 105). The effect is more pronounced in Variant
2 (“Tag-kick-once”), versus Variant 1 (original kinematics of
Corté et al.).

We find that the effect may be attributed to the ability
of particle pairs to drift: since in those two algorithms two
overlapping particles each receive a random kick in a random
direction, their center of mass may diffuse. This mechanism
speeds up training under a more “gentle” protocol of γ1 = 2
interspersed with γ2 = 3, which allows higher-density regions
to relax while minimizing the effect of particle pairs wandering
off and disturbing regions that had already been trained to a
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reversible state. When we incorporate momentum conserva-
tion into these algorithms (Variant 3, and another variant simi-
lar to “Tag-kick-once” and including momentum conservation)
so that diffusion of interacting particles is suppressed, we find
that the effect is almost completely eliminated.

V. DRIVING ABOVE THE THRESHOLD FOR
IRREVERSIBILITY

While we have treated different training values of γ as
more or less equivalent, in fact as γ is increased, it takes
longer and longer for the system to reach a reversible steady
state. Corté et al. [11] demonstrated that the characteristic
time for self-organization diverges at a value γc; this is a
critical transition in the conserved directed percolation class
[14]. For γ1 > γc, reversible (noninteracting) arrangements
of the particles may exist, but the system cannot reach them
through its self-organization process [11]. In the simulations
of memory effects reported above and in Ref. [8], all {γi} were
kept below γc, so that in the absence of external noise, the
system would always evolve to a reversible steady state with
only a single memory.

However, if we permit one or more γi > γc in the training
protocol, the system can never reach a reversible steady
state; some particles are kicked in each cycle. This restriction
bears a resemblance to that imposed by external noise [7].
Keim and Nagel [8] showed that when uncorrelated noise
is added to the particles’ positions on each cycle, with a
scale εnoise 
 ε, self-organization to reversibility is averted
and multiple memories may persist indefinitely. Similarly, we
expect that in the absence of noise, a system driven with
some γi > γc should sustain multiple memories indefinitely,
if it supports the formation of multiple memories at all.
Because our simulations must run for finite time, we consider
memories to be phenomenologically indefinite when they do
not decay over timescales much longer than the time required
to enter an apparent steady state; in this regime, changes in
memory strength are dominated by fluctuations and no decay
is discernible.

A. Forming memories above γc

Figure 6 shows that multiple memories are indeed possible
with γi > γc. We use the same parameters and kinematics as in
Fig. 2(b) (Variant 2). The training strain amplitudes are γ1 =
4.3,γ2 = 4.6, with training pattern γ1,γ2,γ2,γ2,γ2,γ2, repeat...,
and γc = 4.0. We observe that after ∼2 × 106 cycles, both
memories appear to be stable and present in each cycle, in
contrast to the “forgetting” behavior reported for {γi} < γc in
Ref. [8]. (To compute the curve, fmov was sampled at intervals
of �γ = 0.0429, so that sampling positions coincided with
both training values.)

B. Overdriving as noise

A second, more practical use of γ > γc is to simply
take the role of external noise in a training protocol that
otherwise has only {γi} < γc. We have realized this principle
by intermittently applying a γlarge � γc, which for suitably
small ε and infrequent application, disrupts the particles’
self-organized positions to prevent a reversible steady state,
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FIG. 6. (Color online) Multiple-memory behavior at strain values
above the critical threshold for irreversibility. Here γc = 4.0; γ1 = 4.3
and γ2 = 4.6 (red triangles at top). Driving above γc prevents the
system from reaching a reversible steady state with only one memory,
and so both training inputs are retained indefinitely. The smaller shear
value decays negligibly after ∼2 × 106 cycles. The curve plotted here
is from cycle 5.0 × 106 and is an average over 100 initial conditions.

but not so much as to completely destroy already formed
memories. We wish to apply this large shear every �tlarge

cycles, to mimic noise applied every cycle with a scale ∼0.1ε,
which is known to sustain memories indefinitely [8]. We use
the scaling of displacement for a random walk, �x ∼ t1/2, to
arrive at �tlarge ∼ 100. Since in Variant 2 of the kinematics
multiple collisions in a cycle do not add to displacements,
our large strain amplitude need only satisfy γlarge � γc; here
we choose γlarge = 100. For kinematics in which multiple
collisions are additive, such as Variant 1, γlarge would have to be
selected more carefully to avoid erasure of existing memories,
using the considerations outlined in Sec. III B.

(c)

(b)

(a)
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FIG. 7. (Color online) Multiple memories retained by occasional
application of a large strain. Training pattern is γi = 3, 2, 2, 2, 2, 2
(red triangles at top). Parameters and kinematics are the same as in
Fig. 2(b), but with ε = 0.015. Curves are offset by 1 for clarity.
(a) Without application of any strain greater than γc = 4.0, the
γ1 = 2 memory is essentially lost after 7 × 105 cycles shown here
(average of 48 runs). It is completely gone (by definition) when
the simulation reaches a steady state that is reversible for γ1 = 3
(∼1.2 × 106 cycles). (b) and (c) Simulation with γlarge = 100 applied
every ∼100 cycles. Large-amplitude shearing takes the role of
noise, preventing organization to a reversible steady state and so
indefinitely maintaining plasticity, the system’s susceptibility to
multiple memories. Curves show memories after ∼2 × 106 cycles,
(b) before and (c) after application of the large-amplitude strain.
The peaks in (c) at the two training amplitudes are still well defined
showing that this protocol “refreshes” the system without destroying
memories. Each curve is an average over 96 runs.
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The results of overdriving used as noise are shown in
Fig. 7, where multiple memories are sustained indefinitely,
long after an equivalent simulation without large-amplitude
shearing reaches a steady state with just one memory. This
technique has the advantage that the sustaining “noise” is
added in the same way that the driving signal is applied, rather
than relying on an additional noise mechanism that may be
difficult to introduce or control.

VI. CONCLUSION

In summary, we have explored multiple transient memories
in simulations of sheared suspensions, focusing on three
main themes: robustness, structure, and overdriving. We have
shown that multiple transient memories are a robust feature
that are manifest in a variety of very simple models of
suspensions under cyclic, low Reynolds-number shear. The
details of memory formation can be understood from the
spatial correlations of the particles.

We find that overdriving can provide another means for
controlling memory formation and retention. Remarkably,
memories can be stored, not only for training at γ < γc but
also at amplitudes γ > γc. Moreover, we have found that a
large shear that exceeds the critical value, γc, can be used as an
alternative to noise to allow memories to persist indefinitely.

As demonstrated by Keim and Nagel [8] and recapitulated
over a wider range of algorithm variants in this work, the
requirements for transient memories are relatively minimal.
The salient components appear to be a system that relaxes to a
reversible state under cyclic driving during a transient period
of irreversibility, and an ordering of reversible states, meaning
that a system reversible under a strain amplitude γ1 is reversible
under smaller shears, γ < γ1. Thus, we expect other sheared
disordered systems with these properties to exhibit transient
memories as well, such as granular materials [10,15], colloids
[16,17], foams [18], and filament networks [19], and under
other driving protocols, such as tapping [9]. These results,
combined with the previous studies of charge-density waves,
suggest that multiple transient memories may be a generic
feature in a wide class of driven disordered systems.
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