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Shear thickening of dense suspensions due to energy dissipation in lubrication
layers between particles
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This paper deals with a theoretical study of the shear thickening effects in concentrated suspensions of
non-Brownian particles. Our analysis shows that an increase of the shear rate of the suspension flow leads to a
decrease of the mean thickness of the gaps between the nearest particles in dense suspensions. In turn, this leads
to the growth of energy dissipation in these gaps, which means an increase of the suspension effective viscosity
with the shear rate.
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I. INTRODUCTION

The classical Einstein theory [1] of suspension effective
viscosity ignores any interactions between the particles of
these systems and, therefore, deals with very dilute system
suspensions, where the volume concentration of the particles
does not exceed several percent. Generalization of the Ein-
stein’s theory, taking into account hydrodynamic and steric
interactions of the particles, has been made in the works of
Batchelor and Felderhof [2–5]. These theories lead to good
agreement with experiments when the volume concentration
of the particles is about 10%–15%. One of the important
qualitative conclusions of the theories [2–5] is that the
suspension effective viscosity decreases with the shear rate
γ̇ of the suspension flow. This conclusion is supported by
many experiments with moderately concentrated suspensions.

Experiments show that the rheophysics of dense suspen-
sions (where the particles’ volume concentration is �40%–
45%) qualitatively differs from that of the moderately con-
centrated systems, described by the Batchelor and Felderhof
theories. In part, the viscosity of the dense suspensions, at small
shear rates, decreases with γ̇ , as in the moderately concentrated
systems. However, starting with some critical magnitude of γ̇ ,
the viscosity increases with the shear rate. Growth of a fluid
viscosity with the shear rate is known as the shear thickening
effect.

For suspensions with a relatively small concentration of
particles (about 40%–45%), as a rule, quite smooth increase
of the viscosity with γ̇ is detected. In contrast, for suspensions
with higher concentrations (50%–60%) a sharp stepwise
increase of the viscosity with γ̇ is quite typical. For the systems
with irregularly shaped particles the stepwise jump of the stress
is significantly more than that for the suspensions of the smooth
spheres [6]. Overviews of works on the rheology of the highly
concentrated suspensions can be found in Refs. [7–13]. A
typical sketch of the dependence of viscosity of concentrated
suspensions on shear rate is shown in Fig. 1 (see also Ref. [8]).

The physical nature of the shear thickening effects has
not been understood yet. Some attempts of their explanation
are presented, for example, in Refs. [14–20]. Computer
simulations [14] demonstrate the appearance of the chainlike
structures whose axes are tilted about 45◦ from the suspension
velocity. These clusters appear due to the hydrodynamic forces
which push the particles to each other. Under the action
of the shear flow, these clusters rotate and disaggregate;

simultaneously, new clusters appear, and so on. This hydro-
dynamic clusterization of the particles can induce the shear
thickening phenomena in suspensions [14].

Shear thickening as a result of colloidal particles’ cluster-
ization, due to squeezing out of the particles (molecules) of
the solvent from the interstice between the nearest particles,
has been studied in computer simulations [21]. It was shown
that the squeezing effect can lead to significant increase of the
viscosity with the shear rate.

In [15] the rheological effects in dense suspensions have
been explained by formation and destruction of some internal
heterogeneous structures. Neither the type nor shape of these
structures has been discussed in these works.

Another explanation of the shear thickening effects has
been done in Refs. [16,17]. These experiments have shown
that increase of the shear rate of the suspension flow first
leads to appearance of the well-ordered layers of the particles.
These layers are parallel to the flow velocity and perpendicular
to the gradient of the flow. The further increase of the shear
rate induces destruction of these layers and chaotization of
the particles’ space distribution. The shear thickening effect
has been explained by the layers’ chaotization. No estimates
of dependence of the system viscosity on the shear rate have
been done in [16,17].

In the series of works [18–20] the rheophysics of the dense
suspensions has been described on the basis of the dynamical
theory of glasses. It was supposed that the suspension, under
the action of the flow, is separated into regions with different
concentration of the particles. Each of these regions has
an effective temperature, which has nothing in common
with the usual thermodynamic temperature of the system,
but describes fluctuations of the particle position due to
the random microscopical flows. This effective temperature
depends either on the global shear rate or on the applied
shear stress. The mathematical form of this dependence has
been postulated. The approach of [18–20] allows reproducing
the experimentally observed N- and S-like dependences of
the macroscopical stress on the shear rate. However, it is
based on many postulated assumptions and usage of many
fit parameters.

One needs to admit that a general, universally recognized
theory of the shear thickening effects in dense suspensions has
not been developed yet. It is quite possible that, at least, several
microscopical mechanisms can lead to this macroscopical
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FIG. 1. (Color online) Schematic representation of concentrated
suspension viscosity η vs shear rate γ̇ .

phenomenon. Separate consideration and analysis of these
mechanisms can allow us to clarify the microscopical physical
nature of the shear thickening effects and the conditions when
each of these mechanisms can dominate.

The aim of the presented work is theoretical analysis of
the effect of the energy dissipation in thin lubrication layers
between the closely situated particles on the macroscopical
viscosity of the dense suspensions. Analysis shows that this
mechanism can induce an increase of the viscosity with the
shear rate of the suspension flow.

II. PHYSICAL MODEL

The classical theory of the effective viscosity of highly
concentrated suspensions has been developed by Frankel and
Acrivos [22]. According to this theory the effective viscosity
η of a dense suspension can be estimated as

η = η0C
a

�
. (1)

Here η0 is the viscosity of the carrier liquid, a is the
particle radius, � is the thickness of the liquid layer between
the particles, and C is a parameter, determined by mutual
disposition of the particles. In Ref. [22] the estimate C = 9/8 is
recommended. Formula (1) is obtained under the assumptions
that the particle concentration is high and the strong inequality
� � a is held.

In the framework of the theory [22] the thickness � of the
liquid layers between the particles is constant and determined
by the stationary mutual disposition of the particles. However,
in the shear flowing suspension the distance � between the
nearest particles depends on time—the particles approach each
other, move away, and so on. Therefore, dissipation of energy
in the interparticle gaps, reflected in Eq. (1), also increases
and then decreases with time. Thus, the correct formula (1)
must include a mean magnitude of the ratio a/�. Generally
speaking, this means the ratio can depend on the macroscopical
shear rate γ̇ .

While considering the mutual movement of the particles,
illustrated in Fig. 2, two types of forces acting on them must
be taken into account. The first one is the hydrodynamic
Stokes force; the second one is the forces of potential repulsion
between the particles. The last force prevents the irreversible

Δ

FIG. 2. Sketch of the suspension under consideration. Arrows
illustrate the suspension flow.

aggregation of the particles under the action of the interparticle
disperse forces.

When the particles approach each other, the Stokes and
potential forces act in the opposite directions and the minimal
distance �min between the particles is determined by the
competition between these forces. Obviously, the minimal
distance �min decreases with γ̇ . Therefore one can expect
increase of the mean magnitude of the ratio a/�, and thus
growth of the effective viscosity η with γ̇ .

In the next part of the work the effective viscosity η

is estimated on the basis of this physical consideration.
For maximal simplification of calculations, we assume that
the particles are identical non-Brownian hard spheres, their
concentration is high enough, and the strong inequality � � a

is held.

III. MATHEMATICAL MODEL

As in [22] we will focus on effects inside the thin liquid layer
between two nearest particles. It is convenient to introduce a
coordinate system with the origin in the center of one of them
(say, of the first one), axis Ox, aligned along the velocity of the
macroscopical flow, and axis Oz directed along the gradient
of this velocity. We will denote the radius vector directed to
the center of the second particle as r, and the angle between r
and the axis Ox as θ (Fig. 3).

In the chosen coordinate system the components of the
macroscopical flow velocity v are

vx = γ̇ · z, vz = vy = 0, γ̇ = const,

where γ̇ is the macroscopical shear rate of the flow. For
convenience we will introduce the tensor � of the gradient
of the macroscopical flow and present it as follows:

� = E + �.

X

Z

θr

1

2

FIG. 3. Illustration of the interacting particles and the coordinate
system. The horizontal arrows mean the same as in Fig. 1.
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Here E and � are symmetrical and antisymmetrical parts of
the tensor �, respectively.

In the Cartesian coordinate system,

�ij = ∂vi

∂xj

, Eij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
,

�ij = 1

2

(
∂vi

∂xj

− ∂vj

∂xi

)
.

For the considered shear flow,

�xz = γ̇ , otherwise �ij = 0,

Exz = Ezx = 1
2 γ̇ , �xz = −�zx = 1

2 γ̇ .

In order to consider the relative motion of the particles
we will use the Batchelor-Green theory [23] of the hydrody-
namical interaction of two particles in a suspension of hard
spheres. This theory takes into account only pair interactions
between the particles, ignoring the effect of the third and other
particles on the relative motion of each pair. That is why
for concentrated suspensions this model can be considered
only as a first approximation, which allows us to estimate
the dissipation effects in the thin liquid layer between two
particles.

According to the theory [23], the relative motion of the
particles consists of the following components: (i) convective
motion due to the macroscopical flow of suspension, (ii) the
motion under the action of potential force of the particles’
interaction, and (iii) the diffusion motion.

The relative velocity of the convective motion can be
presented as [23]

V = r · � −
{
A

r · r
r2

+ B
(

I − r · r
r2

)}
(r · E), (2)

where A and B are coefficients, determined below; I is the unit
tensor defined as

Ii,j =
{

1, i = j

0, i �= j
.

The sign · means the dyadic multiplication, defined according
to the following rule:

For two vectors a · b = aibj ;
For a vector and a tensor β · a = βij aj .
The Einstein rule of summation over the coordinate indices

is used here.
Neglecting the diffusion motion, one can write an equation

of the relative motion of the particles in the following
form [23]:

dr
dt

= V − β(r) · ∇U, (3)

Here β is the coefficient of the relative mobility of the particles;
U is the potential of their interaction. According to the theory
[23,24] the coefficient β can be presented as

β(r) = 2β0

[
G(r)

r · r
r2

+ H (r)

(
I − r · r

r2

)]
,

β0 = 1

6πη0a
.

The Einstein rule of summation over the repeating indices
is used here.

In the asymptotic r → 2a the functions A, B, G, and H

can be estimated as [23,24]

G ≈ 4(ρ − 1), H ≈ 0.4,

A ≈ 1 − 8.15(ρ − 1), B ≈ 0.406 + 0.78

ln 2 (ρ − 1)
,

where ρ = r/2a.
Let us introduce a spherical coordinate system with the

radius r and polar angle θ (Fig. 2). Assuming that the potential
interaction between the particles is central, i.e., the potential
U depends only on the distance r between the particle centers,
Eq. (2) can be rewritten in the following form:

dρ

dt
= wr − 1

2a
βrr

∂U

∂r
, βrr = 2β0G(r), (4a)

ρ
dθ

dt
= wθ, ρ sin(ψ)

dψ

dt
= wψ, (4b)

where

wr = 8.15γ̇ ρ(ρ − 1) sin θ cos θ cos ψ,

wθ = −γ̇ ρ

[
sin2 θ + B

2
(cos2 θ − sin2 θ )

]
cos ψ,

(5)

wψ = γ̇ ρ
B

2
cos θ sin ψ,

w = V
2a

.

It should be stressed that the formulas (5) have been obtained
in the asymptote ρ → 1.

In concentrated suspensions the approximation of the pair
interaction between the particles, even in the asymptotic of
their close disposition, can lead to qualitatively incorrect
results. Indeed, in the case of the weak shear flow, when
the force of the potential repulsion −∇U dominates the
hydrodynamic force, Eqs. (3)–(5) lead to infinite growth of
the interparticle distance ρ with time. Obviously, in the dense
systems too large an increase of the distance between the
nearest particles is impossible because of the restricting effect
of the other particles. Thus the multiparticle effects, which do
not allow the particles to move far away under the action of
the potential repulsion, must be taken into account here.

There is no way to solve this problem strictly. In order to get
physically reasonable estimates, we will use here the concept
of the model of a tube, suggested by de Gennes and developed
by Doi and Edwards [25]. This model allows the taking into
account of the effect of the steric interaction in the dense
polymers and liquid-crystal systems on dynamical properties
of these systems. In the framework of this model, relative
motion of the particles (monomers, molecules) is restricted
by a tube. The shape and size of this tube is determined by
the concentration and features of the space disposition of the
particles.

Unlike the de Gennes–Doi-Edwards theory, the Brownian
motion of the particles does not play any role in the considered
suspensions. In part, in the model [25] the monomers of
a polymer chain, due to Brownian motion, can move in
the direction of the macroscopical flow and in the opposite
direction as well. That is why the tube is symmetrical with
respect to the flow. In the situation under consideration, the
motion of particle 2, illustrated in Fig. 2, in the direction
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FIG. 4. Sketch of the tube of possible positions of particle 2 above
particle 1.

opposite to the flow velocity (i.e., from the right to the left), is
impossible. At the same time the effect of the other particles
significantly restricts the vertical (in Fig. 2) motion of particle
2. In contrast, its motion in the direction of the flow (toward the
right in Fig. 2) is not restricted, since other particles, situated
to the right of particle 1, move in the same direction.

The size of the tube, where particle 2 can move without
significant resistance from the other particles except particle
1, is determined by the mean distance r0 between the centers
of the nearest particles. In the order of magnitude this distance
can be estimated as (see, for example, [22])

r0 = 2a

(
ϕm

ϕ

)1/3

, (6)

where ϕ is the volume concentration of the particles in the
suspension; ϕm is the dense packing concentration. Depending
on the type of the particle spatial disposition, ϕm varies from
0.6 to 0.72. Thus, the tube of the possible displacement of
particle 2 near particle 1 must be restricted left of particle 1 by
the semisphere whose center is in the center of particle 1. The
radius rc of this semisphere can be estimated as rc ∼ 2r0. To the
right of particle 1, the displacement of particle 2 is restricted
by the cylinder with the radius rc and the axis, aligned along
the flow velocity. This tube is shown in Fig. 4.

We must take into account that when particle 2 approaches
the tube boundary, the forces of potential repulsion from the
other particles will act on particle 2.

Taking this into account, we can modify the Eq. (4a) as
follows:

Left of particle 1 (π/2 < θ < π ),

dρ

dt
= wr − 2

a2
β0 (1 − ρ)

∂

∂ρ
[U (ρ) − U (ρc − ρ)]r .

Right of particle 1 (0 < θ < π/2),

dρ

dt
= wr − 2

a2
β0 (1 − ρ)

×
{

∂

∂ρ

[
U (ρ) − sin θ

∂

∂z
U (ρc − z)

]}
,

z = ρ sin θ, ρc = rc

2a
. (7)

Numerical solution of the system (4b), (7) allows us to
determine ρ and θ as functions of time t . In turn, this allows
us to determine the gap thickness �(θ ) = 2a[ρ(θ )–1] as a
function of the time t .

Now we must take into account that particle 2, moving in
the direction right from particle 1, in a certain time which
depends on the velocity of the particle’s relative motion, will
approach particle 3 (Fig. 4).

Obviously, at the moment when particle 2 is to the right
of particle 1 and the distance r between them exceeds r0,
these particles cannot be considered as the nearest ones, since
particle 2 will be closer to particle 3.

In order to solve Eqs. (5) and (7), one needs to determine the
initial conditions of these equations. It is reasonable to estimate
the dimensionless initial distance ρ(0) between particles 1 and
2 as the mean distance ρ0 = r0/2a between the particles in
the suspension. As for the initial angles θ0 and ψ0, one can
suppose that they are equiprobably distributed in the intervals
π/2 < θ0 < π , 0 < ψ0 < π . The chosen region for the azimuth
angle ψ0 corresponds to the upper part of Fig. 3, where particle
2 moves relatively to particle 1 from the left to the right. In the
lower half plane, corresponding to the interval π < ψ < 2π ,
this motion is in the direction from the right to the left. It is
obvious that the dissipation of the energy, which takes place
due to the particle motion in the lower half plane of Fig. 3,
is the same as the one in the upper half plane. That is why,
for simplicity, we restrict ourselves by consideration of the
energy dissipation in the upper half plane, corresponding to
the interval 0 < ψ0 < π .

Thus, the physical (measured) magnitude of the effective
viscosity η must be determined by the magnitude of the inverse
thickness 1/� of the interparticle gap, averaged over time
from the onset of the motion to the time T , determined by
the equality ρ(T ) = ρ0. Taking into account Eq. (1), we can
write

η = η0Ca
1

π

∫ π

0
dψ0

∫ π

π/2
sin(θ0)dθ0

1

T (θ0,ψ0)

×
∫ T

00

1

�(t,θ0,ψ0)
dt. (8)

To calculate the integral (8), first, we must solve nu-
merically Eqs. (4b) and (7) and also determine the time T

from the equation ρ(T ) = ρ0. These equations can be solved
numerically.

IV. RESULTS OF CALCULATIONS

Let us suppose that the potential U of the particle interaction
is the electrostatic potential due to double electrical layers near
the particle surface. We will use the following simple form of
this potential [26,27]:

U = − (Zq)2

8πε0εκ2a3
ln{1 − exp[−2a(ρ − 1)κ]}, (9)

which corresponds to the condition of the constant charge of
the particles while changing the distance between them. Here
1/κ is the Debye thickness of the double layer, Zq is the
charge of the particle surface, q is the electron charge, ε is the
relative dielectric permeability of the carrier liquid, and ε0 is
the vacuum permeability.
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FIG. 5. Results of calculations of the effective viscosity η vs the
shear rate γ̇ . Parameters of the system: a = 0.5 × 10−6 m, κa = 20,
ε = 70, η0 = 10−3 Pa s, Z = 2500. Lines 1 and 2 correspond to ϕ =
0.6ϕm and 0.9ϕm, respectively.

The results of calculations of the effective viscosity η vs
the shear rate γ̇ for two concentrations ϕ of the particles are
given in Figs. 5 and 6. The used parameters of the potential U

are quite typical for many aqueous suspensions [26,27].
The results demonstrate an increase of the effective vis-

cosity with the shear rate. In other words, the mechanism of
the energy dissipation in the thin lubrication layers between
the particles provides a quite measurable shear thickening
effect. The magnitude of this effect significantly depends on
the Debye thickness of the double electrical layer near the
particles. When the layers’ thickness is small as compared
with the particle diameter, the energy dissipation in the thin
lubrication layers between the particles leads to an increase
of the effective viscosity η (in the considered region of
γ̇ ) about several times and even more than an order of
magnitude. Qualitatively this conclusion is in agreement with
the experimental results, presented in [8,11–13,15]. In part,
experiment [11] demonstrates strong, i.e., more than an order
of magnitude, growth of the suspension viscosity with an
increase of the pH of the system. This means compression of
the Debye layers and, therefore, increase of the complex κa.
Especially strong growth has been observed on the part of the
rheograms, corresponding to the shear thickening behavior of
the suspension. A significant increase, on the shear thickening
part of the rheogram, of the viscosity of a concentrated
suspension with the particle radius a, has been observed in
experiments [12]. This conclusion is in agreement with the
results, presented in Fig. 6. Experiments [13] show strong,
more than an order of magnitude, increase of suspension

0 400 800

1

2
200

400

600

γ ( )s−1

η η/C 0

FIG. 6. Same as in Fig. 5 when ϕ = 0.7ϕm. Lines 1 and 2
correspond to κa = 100 and 20, respectively.

viscosity with the shear rate. Curve 1 in Fig. 6 indicates that
this growth can take place due to the considered mechanism
of the energy dissipation in the thin lubrication layers between
the suspended particles.

Unfortunately it is impossible to compare the theoretical
and experimental results quantitatively. The fact is, prac-
tically all experiments demonstrate significant decrease of
the suspension viscosity with the shear rate (shear thinning
effect) when the rate is small enough. The shear thickening
behavior is observed only when the shear rate exceeds some
critical magnitude. Therefore, in the real suspensions, the
internal mechanisms which lead to the shear thickening effects
compete with the ones which induce the shear thinning
phenomena. All these mechanisms must be taken into ac-
count in order to compare quantitatively a theory with the
experiments. However, a quantitative theory of the shear
thinning mechanisms in concentrated suspensions has not
been developed yet. One needs to note that experiments [13]
show a decrease of the threshold (for the beginning of the
shear thickening behavior) values of the shear rate while the
suspension pH increases. This is in agreement with the results,
presented in Fig. 6, which indicate that compression of the
double electrical layers near the particles (i.e., increase of the
parameter κ) leads to the more sharp growth of the viscosity η

with the shear rate γ̇ .
It should be noted that computer simulations [28] have

demonstrated significant effect of combination of thermody-
namic and lubrication forces between the close particles on
the shear thickening phenomena in the dense suspensions.
Results of our analysis are in principal agreement with these
simulations.

V. CONCLUSIONS

We have considered a microscopic mechanism of the
macroscopic shear thickening effect in the dense suspensions
of non-Brownian spherical particles. This model is based on
the idea of the theory [21] that the main dissipation of energy in
these systems takes place in the thin liquid layers between the
nearest particles. According to [21] the suspension effective
viscosity is proportional to the ratio a/�, where a is the particle
radius and � is the layer thickness. We take into account that,
in the shear flowing suspensions, the relative motion of the
particles leads to periodical decrease and increase of �. Our
analysis shows that the mean value of the ratio 1/� is an
increasing function of the shear rate γ̇ . This means that the
effect of the energy dissipation in the interparticle layers leads
to an increase of the suspension effective viscosity with the
shear rate.

In the experiments the described microscopical mechanism
of the macroscopical shear thickening effect can act simulta-
neously with the other internal mechanisms, including those
which lead to the shear thinning phenomena. For example, with
formation and destruction of the ordered layers of the particles
[8–10,15,16], with appearance of the chainlike structures [13],
with the space separation of the suspension into regions with
different concentration of the particles [17–19], and possibly
with other mechanisms.

Since strict theoretical study of rheological effects
in concentrated suspensions is impossible, goal-seeking
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experimental and computer investigations are necessary to find
out when each of these microscopical mechanisms plays the
main role in formation of the macroscopical rheological effect.

It should be stressed that the presented model deals only
with the mechanism of the shear thickening effect and does not
consider the mechanisms of the shear thinning phenomena (see
Fig. 1). That is why this model cannot describe the transition
from the thinning to the thickening effects. Therefore, it
does not allow estimating the threshold (for these transitions)
magnitudes of the shear rate. A theoretical description of
the shear thinning phenomena and, therefore, estimation

of the threshold magnitudes of the shear rate, requires a
special study.
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