PHYSICAL REVIEW E 88, 032203 (2013)

Regime transitions of granular flow in a shear cell: A micromechanical study
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The regime transitions of granular flow in a model shear cell are investigated numerically with a stress-
controlled boundary condition. The correlations between the elastically and kinetically scaled stresses and the
packing fraction are examined, and two packing fractions (0.58 and 0.50) are identified for the quasistatic to
intermediate and intermediate to inertial regime transitions. The profiles and structures of contact networks
and force chains among particles in different flow regimes are investigated. It is shown that the connectivity
(coordination number) among particles and the homogeneity in the shear flow increase as the system goes
through the inertial, intermediate, and then quasistatic regimes, and there is only little variation in the internal
structure after the system has entered the quasistatic regime. Short-range force chains start to appear in the inertial
regime, which also depend on the magnitude of the shear rate. The percolation of system-spanning force chains
through the whole system is a characteristic of the onset of the quasistatic regime, which happens at a packing
fraction that is close to the glass transition, i.e., about random loose packing (0.58) but far below the isotropic
quasistatic (athermal) jamming packing fraction of random close packing (0.64). The tails of the probability
density distribution P(f) of the scaled normal contact forces for the flows in different regimes are quantified by a
stretched exponential P(f) = exp(—cf") with a remarkable finding that n ~ 1.1 may be a potential demarcation

point separating the quasistatic regime and the inertial or intermediate regimes.
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I. INTRODUCTION

Granular materials are widely encountered in nature and
in industries. The transportation, storage, mixing, fluidization,
and coating of solid powders are routine processes in indus-
tries, such as food, mining, chemical, and pharmaceutical.
In these processes, particulate materials can display very
complicated dynamic behavior due to both the complex
interactions between constituent particles and their interac-
tions with surrounding gas or liquid and walls [1]. Even
though we consider the cases where the interstitial fluid
plays an insignificant role and particle-particle interactions are
predominant, a general theory of the dynamics of grain flows
is still lacking [2]. Complexity in formulating such a theory
arises partly from the fact that particle flows can fall into three
distinct but interconnected regimes: quasistatic, intermediate,
and inertial. In the past, much effort had been dedicated to
studying the two ends of the spectrum. On one hand, slowly
sheared particles are in close contact, and the resulting stresses
are of quasistatic rate-independent Coulomb type. Continuum
theory of elastoplasticity is one of the many possible examples
that could be used to model the stresses in this regime [3,4] but
has serious shortcomings with respect to the smooth transition
between (almost) elastic and perfectly plastic regimes [5,6]. On
the other end, rapidly flowing assemblies of particles behave
inertially, and constituent grains are likely to be in contact
for a short time. The resemblance of particles in this highly
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agitated regime to gas molecules leads to the fact that the
so-called kinetic theory is used to describe the particle flows
in this regime [7-13]. Somewhere in-between the quasistatic
and the inertial flow regimes, a transitional regime can be
identified, which is also called the intermediate regime. The
flow characteristics in this regime have been investigated in
terms of dense kinetic theory [13]; their frictional-collisional
[14-16] or elastic-inertial [17—19] nature is recognized as one
of the most difficult problems in granular materials research
[20,21]. Although various constitutive equations proposed in
the literature (see, e.g., Ref. [6] and references therein) have
achieved a certain extent of success in depicting some aspects
of the corresponding regimes, they often become inapplicable
when there is a flow regime change.

The understanding of regime transitions and a regime
map for granular flows is essential in order to derive an
accepted general constitutive relation, which is applicable to
all flow regimes. There are a lot of studies concerning phase
change in granular flows under two kinds of system-scale
constraint: volume- or strain-controlled [17,22-25], stress-
controlled [6,18,26] or mixed stress-strain-control modes,
such as, e.g., triaxial tests [5]. The earliest paper devoted to
granular flow mapping can be attributed to Babic et al. [22].
In their paper, they employed a discrete element method
(DEM) to simulate a two-dimensional volume-controlled
system of simple shear flow with inelastic monosized disks.
They constructed a regime chart in the parametric space of
the volume fraction-dimensionless shear rate and divided the
space into three parts by considering the parameters of the
coordination number (CN) and collision frequency: quasistatic

©2013 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.88.032203

X. WANG, H. P. ZHU, S. LUDING, AND A.B. YU

flow, rapid flow, and transitional flow. A subsequent and more
comprehensive study in this field is due to Campbell [17],
who investigated a three-dimensional (3D) volume-controlled
system of simple shear flow with monosized, cohesionless,
and frictional particles. He found four flow regimes: elastic
quasistatic, elastic inertial, inertial collisional, and inertial
noncollisional. Since different aspects of granular flow were
examined in the determination of the flow regimes, the regime
charts due to Babic er al. [22] and Campbell [17] reflected
different fundamental physics. Campbell [ 18] attempted to link
the two regime charts and found that the quasistatic regime in
Ref. [22] did not correspond to any regime in Ref. [17] as
the densities considered were totally different. Considering
both volume-controlled and stress-controlled cases, Campbell
[18] compared the results from both cases and drew the
conclusion that there were significant differences between
these two types of systems and that rheological properties
obtained in the volume-controlled system might not be applied
to stress-controlled systems or vice versa. However, this
issue was closely examined and was placed in doubt later
by Aarons and Sundaresan [23,26]. They investigated both
volume-controlled and stress-controlled systems of simple
shear flow with monosized, spherical, and cohesive particles
and found that the rheological behavior of the particles was the
same regardless of whether the system was stress controlled or
volume controlled, and thus, the regime map was independent
of the type of system constraint. In a subsequent paper by
Campbell [27], the rheology of ellipsoidal particles under
volume-controlled conditions was studied, but the difference
between the two boundary conditions was not addressed.

Despite the useful conclusions drawn from these studies,
there is still no consensus regarding how an entire flow regime
map can be drawn and if a change in the system-scale constraint
has an influence on the regime map. Of the two types of
constraint, the stress-controlled condition is more relevant in
reality as there is always free space in which granular flow
can expand or compress in response to different stresses,
and particles always have to support a certain amount of
overburden. Exceptions are flows with a free surface [6] where
the particles experience no confining stress—however, this
extreme case will not be considered in this paper. In addition,
even though the quasistatic regime has been studied in detail
[6,28], there is no complete picture on the structures in different
flow regimes, which can offer deep insights into the underlying
physics of these regimes. Only recently has the concept of
structural anisotropy been added to constitutive models as it
represents a microscopic measure for the deformation history
(see Refs. [5,25,28], and references therein).

In the present study, we present a 3D DEM simulation to
examine regime transitions in a stress-controlled model shear
cell, one of the simplest practical devices in testing the rheolog-
ical properties of granular materials [29-31]. The main issues
we will address in this paper include: (a) the determination
of regime transitions in granular flow and (b) the evolution of
internal structures as the system goes through regime transi-
tions. To the authors’ knowledge, the second aspect has hardly
been touched in the literature. The connection between the
microscopic structure and the flow regimes will be examined as
part of this study. In particular, the regime below the jamming
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transition, which has only recently received experimental
attention in the slow quasistatic limit [32] will be studied at
different shear rates. The findings can offer some insight into
the dynamical characteristics for different flow regimes.

II. SIMULATION METHOD

A. DEM approach

In the present paper, a DEM approach [33] is used to
simulate granular flow in a rectangular cell, resembling large
radius annular shear cells. In such a simulation, a particle has
two types of motion: translational and rotational, described by
Newton’s laws of motion. Since fine particles are not involved
and air and moisture are not present here, forces other than
mechanical contacts, e.g., particle-fluid interaction forces, can
be neglected. As a result, the governing equations for the
translational and rotational motions of particle i with mass
m; and moment of inertia /; can be written as

dv; c g
mi S = Ej 'FY o+ FE, )
d(x)i
Ii7= Ej M;j, (2)

where v; and w; are the translational and angular velocities

of the particle, F; and M;; are the contact force and the

torque acting on particle i by particle or wall j, and F?{
is the gravitational force. The contact force is composed of
a (nonlinear Hertzian) elastic contact force and a damping
contribution. As for the torque (M;;) acting on particle i,
a rolling friction torque is also included in addition to the
torque generated by the tangential force on the particle. The
rolling friction torque is generated by asymmetric normal
forces and slows down the relative rotation between particles.
The details on the models for contact force and torque can
be seen elsewhere (e.g., Refs. [34,35]). The models used here
have been successful in exploring the fundamentals of various
systems (see Ref. [1] and references therein).

B. Simulation conditions

The configuration of a typical annular shear cell is shown in
Fig. 1(a), which is similar to the one considered in our previous
studies [36,37]. Here, to improve computational efficiency,
only a flat rectangular segment of the shear cell is simulated
[Fig. 1(b)], and periodic boundary conditions are used to
represent the symmetrical geometry of the whole annular
space. Note that the circumferential curvature is ignored in
this setting. However, the key operational features of the
shear cell are still maintained. This simplification has also
been used by other investigators to study other aspects of
annular shear cells [38,39]. The cell consists of an upper
platen and a lower platen [perpendicular to the Z axis and
with a uniform dark color in Fig. 1(b)], two stationary walls
[perpendicular to the Y axis and with a dark shaded color in
Fig. 1(b)], and two periodic boundary planes (perpendicular
to the X axis). Both the upper and the lower platens of the
cell are formed by 360 glued spherical particles that have the
same size and material properties as the flowing particles. This
sheared granular material in the cell consists of 5000 spherical
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FIG. 1. (Color online) Annular shear cell geometry: (a) the
section selected for simulating the shear cell under applied normal
pressure and shear velocities on platens and (b) snapshot of particles
under shearing between platens.

particles with a diameter of d. The cell dimensions are 12d
and 30d in the X and Y directions, respectively, the same as
those used in our previous studies [37]. The shear velocity of
the platens and the normal stress applied in the negative Z
direction were precisely controlled. Trial tests indicate that a
larger cell does not affect the results much (data not shown for
brevity).

For each simulation, the 5000 spherical particles were first
generated randomly and then were discharged at a preset rate
from the top without the upper platen. After a certain period of
time, the particles formed a packing on the lower platen. The
upper platen was then placed on the top of the packing. Using a
gravitational time scale as the unit of time from r = 40.0./d/g,
the lower platen was given a gradually increasing shear
velocity in the positive X direction, and the upper platen was
given both a gradually increasing shear velocity in the negative
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TABLE I. Physical parameters and conditions used in the present
paper.

Parameter Value Units
Young’s modulus (p,w) 2.5 x 10° mpdg /6
Poisson’s ratio (p,w) 0.3

Sliding friction coefficient (p — p), 1, 0.5

Sliding friction coefficient (p — w), W, 0.3

Rolling friction (p — p or p — w), W, 0.01 d
Coefficient of restitution, & 0.8

Time step 0.0001 Jd/g
Scaled stiffness, k* 3 x102-2.5 x 10°
Elastically scaled stress, o* 6 x 107°-0.3

Kinetically scaled stress, o’ 6 x1072-7.5 x 10*

Note: d is the maximum particle diameter, g (=9.81 ms™2) is the
magnitude of g, and p is the density of particles.

X direction and a gradually increasing normal stress in the
negative Z direction. At t = 70.0./d/g, the velocities and
normal stress reached the preset target values. From then, the
bulk properties of the system were closely monitored. If these
properties only showed minor fluctuations around constant
values, then the system was assumed to be in steady state. It
was observed that the shearing systems quickly became steady.
Consequently, at + = 80.0,/d/g, the process of calculating
microstructural and dynamic properties started and was carried
out until the simulations finished at t = 160.0,/d/g.

Following the approach of Campbell [17,18], scaled
physical properties were adopted in this paper, including
elastically scaled stress o* = od/k, kinetically scaled stress
o' = o /pd*y?, and scaled stiffness k* = o' /o* = k/pd>y?,
where o is the applied normal stress, p is the particle density, d
is the particle diameter, y is the effective shear rate due to the
platens, and k is the material stiffness. The physical meaning
of o* is the particle deformation induced by the applied stress,
relative to its size [17,18]. The scaled physical parameters
vary, whereas, other parameters are kept constant. The packing
fraction will be used as a key parameter to study the regime
transition. The simulations showed that the fluctuations in the
cell height were less than 1% of its average value after the
flows reached their macroscopically steady state for the cases
considered. This indicates that the packing fraction has little
variation in the steady state of the system. To eliminate the
effect of the fluctuation, the packing fraction for each case is
averaged from ¢t = 80.0,/d/g tot = 160.0/d /g in which the
flow is considered to be in the steady state. The input and output
parameters and their values are listed in Table I. The material
stiffness & was estimated by k = (8/3) ER, where E is the
effective Young’s modulus, defined as 1/E = 2(1 — o?)/Ej,
and « and E, are the Poisson ratio and Young’s modulus
of particles, respectively. R is the effective radius, defined as
1/R = 2/Ry, where Ry =d /2 is the radius of the particles [40].
Our focus in this paper is to understand the physics of the
flow regimes and regime transitions from the viewpoint of
structural evolution. So, the range of the scaled parameters in
this paper is not as extensive as those used in the previous
studies [17,18,23,24,26].
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FIG. 2. (Color online) Variation in elastically scaled applied
stress (0*) with packing fraction (v) for different values of scaled
stiffness.

III. RESULTS AND DISCUSSION

In this section, we will first consider the determination of
regime transitions, which are controlled by varying the values
of shear rate and applied pressure. The variation in the internal
structure is then examined in relation to the regime transitions.
Finally, the corresponding distribution of the normal forces
among particles is analyzed.

A. Determination of regime transitions

Figure 2 shows the dependence of the elastically scaled
applied stress (o) on the packing fraction (v) for different
values of the scaled stiffness (k*). When there is no inertial
effect in the system (quasistatic regime), particles are confined
by their neighbors and only interact elastically. In this
case, the particle deformation only depends on the applied
stress. As the system constraint (applied normal stress) is
relaxed, inertial effects become increasingly significant, and
the particle deformation is more and more sensitive to the
shear rate. Figure 2 shows that, when v > 0.58, the data
corresponding to different values of k* tend to collapse into
one master curve, indicating that the elastically scaled stress
of the dense systems is independent of k* (shear rate) in the
quasistatic regime. For v < 0.58, the data for different k*’s start
to deviate from each other, implying the appearance of inertial
effects. As a result, v = 0.58 is a critical packing fraction
that separates the quasistatic and intermediate regimes, lower
than 0.65 as determined in Ref. [24]. A possible reason is
that, in the present paper, the existence of two stationary walls
perpendicular to the Y direction facilitates the formation of
force chains, whereas, there are no walls in the system in
Ref. [24].

In order to determine the transition between the inter-
mediate flow and the inertial flow, we employed the same
method used by Ji and Shen [24] and Aarons and Sundaresan
[26]. The method involves identifying the correlation between
kinetically scaled stress 0’ = o/ pd?y? and packing fraction v.
According to Campbell [18], the stresses are proportional to
the product of the transported momentum and the transport
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FIG. 3. (Color online) Variation in kinetically scaled applied
stress (o) with packing fraction (v) for different values of scaled
stiffness.

rate for particles. For inertial flows, both the transported
momentum and the transport rate are proportional to the
shear rate. As a result, the stresses scale quadratically with
the shear rate in the inertial regime so that the kinetically
scaled stress ¢’ = o/ pd*y? can be used to identify the inertial
regime. The results from this scaling are shown in Fig. 3. It
is observed that the data collapse below v = 0.50, but when
the packing fraction is high (e.g., v > 0.58), the data for ¢’
for different values of k* demonstrate significant differences,
showing that the kinetically scaled stress is greatly dependent
on k* for shear rates in the quasistatic regime. This indicates
that the stress for all the flows scales kinetically with the
packing fraction below a threshold density and, thus, the flows
are in the inertial regime. The same data collapse behavior
and dependence of o* and ¢’ on v can also be observed
in volume-controlled systems [17,24]. Thus, we are able to
show that the rheological properties of granular flows under
volume- and stress-controlled conditions are actually the same
as suggested by Aarons and Sundaresan [26].

Different k* values were used in Figs. 2 and 3. Similar to the
treatment of Aarons and Sundaresan [26], we can determine the
regime transition sets of (o*,k*) and (¢’,k*). The points close
to the lines v =0.58 and v = 0.5 in Figs. 2 and 3 are considered
as the quasistatic to intermediate, and intermediate to inertial
regime transition points, respectively. Correspondingly,
(0*k*) = (6x107225%x10°), (6x1072,3x10%,
(6 x 1072,3 x 10%), and (6 x 1072,3 x 10%), and
(0 k%) = (14,841.242.5x10%), (1623.16,3 x 10%),
(180.35,3 x 10%), and (20.00,3 x 10?) were obtained for
the quasistatic or intermediate regime transition, whereas,
(0*k*) = (9x107025x10%), (1.5x10743 x 10%),
(6 x 107%,3 x 10%), and (6 x 1073,3 x 10?), and (¢',k*) =
(2.226,2.5 x 10°), (4.058,3 x 10%), (1.804,3 x 10%), and
(2.000,3 x 10%) are for the intermediate or inertial regime
transition.

With all the transition points determined above, we are able
to obtain a flow regime map. Figure 4(a) shows the regime
map in the parametric space of (o*,k*). On one hand, if k*
(shear rate) is fixed, the decrease in o* causes the system to
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FIG. 4. (Color online) Regime map in the parametric space
of: (a) (¢*,k*) and (b) (¢/,k*). The phase boundary between the
quasistatic and the intermediate regimes is determined in Fig. 2. The
phase boundary between the intermediate and the inertial regimes is
determined in Fig. 3.

change from the quasistatic to the intermediate and, finally,
to the inertial regime. This is reasonable because, for a given
shear rate, decreasing the applied stress reduces the constraint
on the system, allowing the system to expand. On the other
hand, when o* (applied stress) is fixed and very large, the
system always stays in the quasistatic regime no matter what
value the shear rate is, i.e., there is no path between quasistatic
and intermediate regimes in the parametric space of (o*,k*)
for fixed o*. For lower o*, the system contact constraints
are mitigated so that particles can exhibit inertial effects as
the shear rate becomes larger (k* becomes smaller), i.e., the
particles become more agitated and the system goes through
the transition from the intermediate regime to the inertial
regime.

We can also draw the regime map in the parametric space
of (0/,k*) as shown in Fig. 4(b). The results in the figure
indicate that the system changes from the quasistatic to the
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intermediate and, finally, to the inertial regime when the shear
rate is fixed and the applied stress (') is lowered. Another
important feature is that, when o’ is low enough, the system
always stays in the inertial regime. This is understandable
since ¢’ by definition is the ratio of elastic stress (force chain
intensity, as discussed below) and kinetic energy in the system.
A small value of ¢’ indicates that particles in the system are
highly agitated, which, naturally, is the characteristic of the
inertial regime. As o’ becomes larger, large scale force chains
become increasingly predominant. In this case, for a fixed o”,
the decrease in k* (or the increase in shear rate) will make the
system transit from the intermediate to the quasistatic regime
due to the increased applied pressure (or particle deformation).
Note that the developing trend of the borderlines between two
regimes would change if k* is out of the range considered in
Fig. 4. More detailed information can be seen in Ref. [18].
Furthermore, only one of the two regime plots is unique since
they are connected via the definition of k* = o’/ *.

We have also considered the effect of particle material
properties, including sliding friction, rolling friction, and the
normal restitution coefficient on the features considered above.
These properties do not affect the qualitative trends of o* and
o’ with v much, but they have an influence on the values of
the critical packing fraction for the regime transitions. For
example, an increasing sliding friction coefficient decreases
both critical packing fractions for the quasistatic to intermedi-
ate, and intermediate to inertial regime transitions. Increasing
rolling friction lowers the value of v for the transition into
the quasistatic regime, whereas, the increase in restitution
coefficient boosts the value for the intermediate or inertial
regime transition. Such issues will be discussed in more detail
in another paper.

B. Structural analysis

In order to qualitatively examine the structure of the studied
shear flows, we first look at the contact networks under
different conditions of (o *,k*). It should be noted that, as
the variation in the magnitude of normal force is huge for
different cases in the present paper, it is inconvenient to
compare the normal force networks using a universal scaling
(typical examples of normal force networks can be found in
Refs. [28,41-43]). As a consequence, we plot the networks
of scaled normal forces (f), which is defined as the ratio of
normal contact forces (F},) to the average normal contact force
((F,)) for a specific case, i.e., f = F,/(F,). In this way, we
can compare the network or connectivity profiles of different
cases using the same scale. In the contact network diagrams
of the present paper, each stick represents a line joining the
centers of two contacting particles, and its thickness stands
for the magnitude of the scaled normal contact force between
them. To be illustrative and to avoid artifacts in the vicinity
of the walls, the figures are constructed based on the particles
in the central slice (2d in thickness) along the shear (x-axis)
direction.

Figure 5 shows the contact force networks for k* =
3 x 10? and eight different values of o* together with the
corresponding packing fractions and average coordination
numbers. The average coordination number is the bulk average
for all the sheared particles in the system. In Fig. 5(a), o*
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FIG. 5. (Color online) Networks of scaled forces (f = F,/ (F,)) and the corresponding average coordination number and packing fraction
when k* = 3 x 107 for different 6*’s: (a) 3 x 107, (b) 3 x 1073, (c) 6 x 1073, (d) 1.5 x 1072, (e) 3 x 1072, (f) 6 x 1072, (g) 0.15, and (h) 0.3.

takes a relatively low value of 3 x 107, and the system is in
the inertial regime, i.e., relatively dilute with packing fraction
0.32. An average coordination number of 1.45 means that
multiparticle contacts are infrequent and connectivity among
particles is very low. Scaled contact forces of both high
and low magnitudes exist in the system, implying the high
heterogeneity of the force network in the inertial regime. As
o* increases to 6 x 1073 [Fig. 5(c)] via the value of 3 x 1073
[Fig. 5(b)], the system goes through the inertial regime and
reaches the boundary between the inertial and the interme-
diate regimes. The connectivity among particles increases as
manifested by the increase in the coordination number from
1.45 to 3.42 due to the increasing system constraint and the
resultant growth in the packing fraction. It is also noticed that
there is an increasing number of weak scaled contact forces
in the background, implying that their percentage increases
in the process, whereas, that of the strong scaled forces is
diminishing. The system enters the intermediate regime as
o* increases beyond 6 x 1073, for example, to 1.5 x 1072
[Fig. 5(d)] and 3 x 1072 [Fig. 5(e)]. The characteristic of
this stage is that the internal structure becomes more and
more closely knit, which is manifested by the steady increase
in the average coordination number from 3.42 to 4.79. In
addition, both the relatively infrequent appearance of the
large scaled forces and the stronger background of the weak
forces indicate that the system considered becomes more dense
and homogeneous. After o* increases above the boundary
value of 6 x 102 [Fig. 5(f)], the system starts to enter the
quasistatic regime. Figures 5(g) and 5(h) demonstrate the
contact networks when o* = 0.15 and 0.3, respectively. Note

that, in the quasistatic regime, there seems to be little visible
variation in the dense internal structure despite an increase
in connectivity, implying the high stability of the internal
structure of quasistatic flows. For a more quantitative analysis
of the contact network under different densities in the inertial
and quasistatic regimes, see Refs. [25,44] and references
therein.

We compare our results with the contact force networks
of a simple shear flow in different flow regimes reported in
Ref. [18] and find that the agreement is apparent, despite the
fact that the contact forces in Ref. [18] are not scaled by their
average in each case. The networks shown in Figs. 5(a), 5(d),
and 5(e) in the present paper are consistent with the collisional
and elastic-inertial networks reported in Figs. 2(d), 2(c), and
2(b) in Ref. [18], respectively. The quasistatic networks shown
in Figs. 5(g) and 5(h) in this paper also agree well with
their counterpart in Fig. 2(a) in Ref. [18]. This agreement
implies that there are some universal features of granular
flows in the same flow regime, even if the flows have different
configurations or boundary conditions.

The research on force chains has been a very important
component in the demarcation and characterization of different
flow regimes (see Ref. [45], for example). It has been reported
that the parts where there are no force chains can be associated
with the existence of inertial effects [46]. In this paper,
we examine the characteristics of force chains (if any) for
different flow regimes for the considered systems. To this
end, following the work of Peters er al. [45], we define a
force chain as a quasilinear particle assembly where stress is
concentrated; concentrated stress means that the contact forces
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FIG. 6. (Color online) Networks of large scaled forces (f > 1)
and the corresponding average coordination number and packing
fraction when k* = 3 x 10? for different o*’s: (a) 3 x 107%,
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with magnitudes greater than the average form connected force
chains. Therefore, we remove, from Fig. 5, the scaled contact
forces (f) with magnitudes less than or equal to one where
the cutoff is an arbitrary but convenient or simple choice.
The remaining scaled forces satisfy the condition of f > 1,
i.e., F, > (F,). For brevity, only four cases corresponding to
Figs. 5(a), 5(b), 5(d), and 5(e) are plotted in Fig. 6. Note that
the quantitative examination of the quasilinear and particle
assembly conditions is beyond the scope of this paper, but we
can provide some qualitative descriptions here.

Figures 6(a) and 6(b) depict the structure of large scaled
forces (f > 1) in the inertial regime. The difference is that the
case in Fig. 6(b) is closer to the boundary between the inertial
and the intermediate regimes. The main interaction mode in
Fig. 6(a) is binary collisions, with no strong concentrated
force chains formed in the system. This clearly corresponds
to the traditional rapid flow or the inertial-collisional regime
reported in Refs. [17-19]. In Fig. 6(b), the particle interactions
become more frequent than those in Fig. 6(a). Some local
contact clusters or chains appear, implying that the flow could
be in the so-called inertial-noncollisional regime reported in
Refs. [17-19]. According to Campbell [17-19], particles
should break free from force chains in the inertial regime
so there are no significant long force chains in this regime.
However, we find that there are some (temporary) short-
range force chains with three to four stress-bearing particles
in the inertial regime in Fig. 6(b). Therefore, the inertial-
noncollisional regime may include not only particle clusters,
but also short force chains for some cases. In Fig. 6(c), one
can find that system-spanning force chains start to form in the
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intermediate regime with a respective increase in connectivity
and the packing fraction. Considering the force chains are
short in the inertial flow, we may conclude that the appearance
of system-spanning force chains, instead of the short force
chains in granular flows with high shear rates, can be used
as an indication of the emergence of quasistatic effects. As
o* increases further, the number of the system-spanning
force chains grows, and inertial domains (i.e., no force
chains) are gradually “squeezed” out of the system. When
the inertial effects disappear with the application of higher
normal stresses, the system enters the quasistatic regime as
shown in Fig. 6(d), which is characterized by the percolation
of system-spanning force chains through the whole cell [32].

At this point, we should remark that Campbell [18]
proposed a different method to determine the quasistatic
to intermediate regime transition points. According to his
method, the points where the data for different k*’s deviate
from the critical state (or transition) are considered as the
indicators of the quasistatic to intermediate regime transition.
This method is not suitable for some cases considered here as
demonstrated in the examination of the relevant force chains.
Figure 6(c) belongs to the intermediate regime according to the
flow chart drawn in Fig. 4(a), and it is in the low stress critical
state [18] as shown in Fig. 2. According to the criterion in
Ref. [18], Fig. 6(c) would belong to the quasistatic regime
since its corresponding point in the (v,0*) space in Fig. 2
does not deviate from the critical state line. However, the
strong scaled force network in Fig. 6(c) clearly shows that the
system-spanning force chains have not percolated the whole
system yet and some part of the cell space is still dominated
by inertial domains (with no force chains formed), implying
that the flow is in the intermediate regime.

C. Force statistics

The force network among particles in a static or dynamic
state can be analyzed in terms of the force probability
distribution, which can give us some hints regarding the
general behavior of granular systems [28,47]. Many studies
have been devoted to determining the shape of the probability
density distribution of the normal contact forces between
particles P(f) and its variation under different conditions
[48-51] in addition to the long-range correlations in the forces
[28]. Efforts have also been made to investigate the signature
change in P(f) when systems go through jamming transitions
[51-53]. In this paper, we use similar ideas to determine if
there is any change in the shape of P(f) as the granular flow
changes between different flow regimes. Note that, due to shear
and the consequent anisotropy, the orientation angle of the
contact forces is important for the analysis of two-dimensional
force distributions (see Ref. [54] and references therein). This
complicated issue in three dimensions will be considered in
our future study.

The probability distributions of the scaled normal contact
force f(=F,/(F,)) for flows under different conditions are
shown in Fig. 7. In general, the distribution becomes wider
as the flow goes through the quasistatic, intermediate, or
inertial regime transitions. In the quasistatic regime, the force
distributions obtained in the present paper have a similar trend
to those for static packings obtained in Refs. [28,48,49]. The
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FIG. 7. (Color online) Probability density distributions of the
scaled normal forces (f = F,/(F,)) for different o*’s when:
(a) k* = 2.5 x 10° and (b) k* = 3 x 10%. Quasistatic to intermediate,
and intermediate to inertial phase boundaries are marked as By
and B;, respectively. The solid and dashed lines stand for the force
distributions obtained by Mueth et al. [48] and van Eerd et al. [49],
respectively. The insets show the variation in the average contact
force ((F,)) with o*.

force chains percolate the whole system, and the majority of
particles contribute to the network bearing large forces as, for
example, shown in Fig. 6(d). At the same time, the average
normal force (F),) is large (see the insets of Fig. 7 for the
variation in (F,)), and the distribution is relatively even. In the
intermediate and inertial regimes, the force chains gradually
disappear, and an increasing number of particles interact by
collisions. The examples of the force networks in the inertial
regime can be seen in Figs. 6(a) and 6(b). Only a limited
number of collisions are noticeable, and most interactions are
fairly weak, resulting in a very small (F,,) (the insets of Fig. 7).
As aresult, the corresponding scaled force distribution is rather
wide.

In Fig. 7, we include the force distributions corresponding
to the boundary points of the quasistatic to intermediate (Byg;)
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FIG. 8. (Color online) Variation in the power index n in Eq. (3)
with packing fraction v for different scaled stiffnesses. Note that
all the points on the quasistatic to intermediate regime boundary
(highlighted as boundary points) have n values close to 1.1.

and intermediate to inertial (Bj) transitions. Although the
distributions vary for B; under different values of k*, they
remain invariant for Bg;. This is confirmed for many other
values of k* (data not shown for brevity). That is, the force
distributions of the granular flows under different shear rates
share a common feature when they go through the quasistatic
to intermediate transition. The tails (large f range) of the force
distributions can be fitted by a stretched exponential,

P (f) = exp(—cf™), 3

where ¢ and n are fitting parameters. This functional form
is consistent with the one in Refs. [28,49]. In this paper, the
best-fitting values of n close to the inertial to intermediate and
intermediate to quasistatic regime boundaries are examined
in terms of its correlation with v as shown in Fig. 8. The
best fitting to the force distributions of Bg; under different
k*’s corresponds to n = 1.1 with a typical variation or
uncertainty of 0.05. Using n = 1.1 as a demarcation point, n >
1.1 is for a flow in the quasistatic regime, and a higher value of
n means the flow is deeper into the quasistatic regime; n < 1.1
corresponds to a flow in the intermediate to inertial regime, and
a lower n signifies larger inertial effects. We note that this is
a remarkable common feature in the force distributions for all
the considered flows at different k*’s, and one can tell if there
is any significant inertial component in a granular flow from
the tail of its force distribution. Therefore, the value of n can
potentially serve as an alternative indicator for the emergence
of the quasistatic regime.

D. Coordination number in regime transitions

In this section, we try to quantitatively explain why the
demarcation between the quasistatic and the intermediate
regimes works from the microdynamic perspective. Figure 9(a)
shows the variation in the CN with the packing fraction (v) for
different scaled stiffnesses k*. The data can be categorized into
two groups, divided by a demarcation point corresponding to
v = 0.58 with a critical coordination number of around 5.6
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FIG. 9. (Color online) Variation in coordination number with: (a) packing fraction v, (b) elastically scaled applied stress o*, and
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packing fraction of 0.58. The inset shows the scaling between CN — CNj and v — vy with the dotted curve standing for the best fit given in

Sec. III D.

(which is close to the isostatic point 6.0). In the first group
where v < 0.58, the CN increases with the decrease in k*
(or the increase in shear rate) for a given v; whereas, in the
second group where v > .58, the variation in the CN with v is
independent of k*, and the data of the CN collapse more or less.
The first group belongs to the flow regimes in which inertial
effects play an obvious role and any increase in shear rate
enhances particle contacts; the flow characteristics are, hence,
influenced by the shear rate (i.e., k*). As a result, the data in the
first group should be in the intermediate or inertial regimes. For
the second data group, the fact that the increase in shear rate
cannot cause any change in particle contacts indicates that the
force chains have percolated the whole system. Naturally, the
corresponding systems are practically rate independent and,
thus, belong to the quasistatic regime.

In Sec. IIT A, we showed that the data of o * collapse when v
exceeds the same critical packing fraction (0.58). As a result,

one would expect that there should also be a data collapse
between the CN and the o* when the CN is higher than its
critical value (~5.6). To test this speculation, we plot the
correlation between the CN and the o* for different k*’s in
Fig. 9(b). As expected, the data pattern presented in this figure
is highly similar to that in Fig. 2, and the data for the CN
and o* collapse when the CN exceeds ~5.6. Therefore, it is
also feasible to use the correlation between the CN and the o°*
to determine the intermediate or quasistatic regime boundary.
For the correlation between the CN and the ¢/, there is no such
collapse as indicated in Fig. 9(c) neither for the inertial nor for
the quasistatic regime.

In Sec. IIIB, we showed that, as the flows enter the
quasistatic regime, the force chains percolate through the
whole system and all the particles in the system are tightly
confined in the contact network as observed in Figs. 5(g)-5(h)
and 6(d). This phenomenon is reminiscent of global jamming
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in granular packings [55] and strongly resembles the observa-
tions of jamming under shear [32]. The packing fraction (0.55),
corresponding to the onset of global jamming [55], appears
close to the one (0.58) for the quasistatic to intermediate
transition in the present study. However, changes in packing
fractions as small as 0.03 can lead to enormous changes in the
CN and even more in o* so that one has to be careful when
defining differences in jamming packing fractions [25,28]. It
would be of interest to examine further if and how global
jamming is truly related to this regime transition.

The concept of jamming has long been used to describe the
transition to rigidity of a series of disordered materials, such as
foams, granular matter, and glasses [56,57]. The behavior of
materials near and above the jamming transition is extensively
studied with regard to the correlation between the average
coordination number and the packing fraction, whereas, much
less attention has been given to the regime below jamming
[32]. It is found that, both experimentally and numerically,
a granular system going through a global jamming transition
exhibits the following two attributes [58—63]: (a) The average
coordination number CN of the system increases sharply at the
transition point when increasing the packing fraction v above a
certain value vy (see Ref. [28] and references therein), and (b)
the CN still increases as a function of Av(Av = v — 1y) above
vo with the transition point defined as (v,CNy). Both attributes
are suspect to finite size effects and have to be considered very
carefully.

For frictionless spheres [28,58—61], a simple scaling feature
exists above the jamming transition point in the form of
CN—CNj = (v — 1p)?, where 8 ~ 0.5, whereas, for frictional
particles, different values of vy and CNj are identified with
very similar values of B. More recently, Imole et al. [25]
reported that the jamming transition packing fraction is also
a function of the applied deformation mode, but they also
confirmed that the scaling holds almost perfectly, whereas,
it is independent of force laws [62]. To check the scaling
law in the present sheared system, we plot CN — CNj against
v — v in the inset of Fig. 9(a) (vp and CNj are 0.58 and
5.6, respectively). We can see that the data collapse (except
for the smallest k*), indicating that the flow becomes globally
jammed when v is larger than 0.58, is the demarcation point for
the quasistatic to intermediate transition. We can get the best
fit for the data points as ACN = 14.021 Av — 21.007(Av)>?,
where ACN = CN — CNj and Av = v — vy with a correlation
coefficient of 0.992. Thus, the correlation between CN — CN
and v — vy takes a quadratic form in the present granular
flows instead of the square-root form found in the static
granular packing [58-62]. This may be attributed to the fact
that, although the structural change in the present system can
be analyzed in terms of global jamming transition, dynamic
granular flow may be very different from static granular
packings.

IV. CONCLUSIONS

The shearing of particles in a model shear cell under stress-
controlled conditions has been investigated numerically using
the discrete element method. Granular flows under different
conditions of scaled stiffness (k* =k/pd>y?) and scaled
normal stress (o* = od/k) are considered, and the packing
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fraction (v) and kinetically scaled stress (o’ = o/ pd?y?) for
each flow are calculated. The data collapse between ¢* and
v for different k*’s when v > 0.58 is considered as the lower
limit packing fraction of the quasistatic regime, whereas, the
data collapse between o’ and v for different k*’s when v < 0.50
is deemed as the indication (upper limit) of the inertial regime.
This regime demarcation method of identifying two critical
packing fractions is consistent with that used in Ref. [24] but
is different from that using the low stress critical state [18].

The internal structures of the flows in different regimes
(quasistatic, intermediate, or inertial) have been investigated
concerning the evolution of contact networks and force chains
for different combinations of o* and k*. The results show
that the different attributes of the three flow regimes and
the corresponding transitional behaviors can adequately be
reflected in the contact networks or force chains together with
the information about the average coordination number and
packing fraction. A striking result found here is that, contrary
to common belief, short-range force chains are observed in
the inertial regime for large shear rates. The implication of
this finding for the inertial (transitional) regime is that such
a flow may contain not only particle clusters as shown by
Campbell in Ref. [18], but also short or localized force chains.
Furthermore, the percolation of system-spanning force chains
is a characteristic of the quasistatic regime.

The force statistics analysis shows that the force distribution
becomes increasingly wide as the flow transits from the
quasistatic to the inertial regime, a phenomenon also observed
in thermal systems when temperature increases. The tail of the
probability density distribution of scaled normal forces can be
well approximated by the form P(f) = exp(—cf"). The power
index n may serve as a new flow regime indicator with n >
1.1 for the quasistatic regime and n < 1.1 for the intermediate
and inertial regimes. This critical » may vary with material
properties, which should be studied in the future.

The correlation between the CN and the packing fraction
v is established to testify the robustness of the present demar-
cation method. It is found that the dependence of the CN on
o* can also be used to identify the quasistatic to intermediate
regime transition since the same data collapse happens as that
between CN and v. By examining the correlation between
CN and v, we confirm, as observed earlier in quasistatic
situations [25,60], that the transition to the quasistatic regime is
related to the global jamming transition. A square-root scaling
between ACN (=CN — CNy) and Av (=v — vy) also exists for
the present sheared system. This result indicates that, although
granular shear flows can differ from granular packings in many
ways, the snapshots and the averaged (isotropic) properties of
their internal structures are comparable. They may share some
common characteristics, which should be explored further in
future studies, especially concerning anisotropy [25].
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