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Intruder-induced asymmetry in compartmentalized granular gases
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The clustering behavior of a compartmentalized monodisperse granular gas with the addition of one heavy
intruding particle is investigated experimentally. Depending on the number of particles, the presence of a heavy
intruder leads to three population states: a homogeneous state, an expelled clustering state, and a fully clustering
state. These states are found to be consistent with the clustering of a purely monodisperse granular gas in an
asymmetric compartmentalized structure. We obtain an exact relation between the size of an intruder and the
elevation of the compartment bottom. This relation quantifies the particle-expelling ability of a heavy intruder, and
suggests that the one-intruder system is a type of asymmetric system with an intruder-size-related asymmetrical
index ξ . Under the framework of the flux model, a ξ -associated � function is proposed to quantitatively reproduce
the experimental results.
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I. INTRODUCTION

The rich and complex phenomenon of a granular gas
makes it become one of the paradigms for understanding
nonlinear and nonequilibrium physics. Merely through in-
elastic collisions between grains and through the change of
container geometry, bidisperse granular gases display diversity
in their macroscopic behavior (especially in their mixing
and separation) that usually goes beyond our understanding
[1–4]. In compartmentalized systems [5–8], this diversity in-
cludes competitive clustering [9,10] and oscillatory clustering
[11–16], relying on the driving condition and the number of
particles.

The interaction between grains of the same species is
seemingly simple. Adding one intruder into a monodisperse
gas, however, could lead to a dramatic change in several
physical properties of the whole system [17–20]. This can
be exemplified by the change in the condensation temperature
when one intruder is inserted into a monodisperse gas [21].
Through collisions, a heavier intruder transmits more kinetic
energy to expel background grains, and on the contrary,
a lighter intruder absorbs energy to trap the motion of
grains. This expelling-trapping process illustrates the complex
mechanism of granular oscillation [22,23]. Since a bidisperse
granular gas can be viewed as a monodisperse gas with the
addition of grains of other species, a closer scrutiny of a
monosystem starting with few intruders and then with more
intruders should be helpful to correctly predict the behavior
intrinsic to a binary system.

It has been found that an intruder-fluid mixture behaves
like a monodisperse gas in a container with a higher or lower
barrier height [24]; however, the particle-expelling ability of
an intruder has not yet been quantitatively explored. To this
end, we perform a series of experiments to compare the particle
population of a one-intruder system with that of an asymmetric
one [25–27]. A one-intruder system refers to a monodisperse
gas in a symmetric structure containing one intruder (cf.
Fig. 2), while an asymmetric system indicates a monodisperse
gas in an asymmetric structure (cf. Fig. 3). We witness three
distinct states of particle distribution in two compartments for
both systems as the total number of particles N increases. They

are the homogeneous state, expelled clustering state (ECS),
and fully clustering state (FCS). There is a clear difference
between ECS and FCS, separated by a critical N , denoted
as Ncr. From the Ncr of each system, we will obtain for
the first time a relation between the intruder size d and the
asymmetrical index ξ .

II. EXPERIMENT

Our experimental apparatus consists of an electromagnetic
shaker, which offers a vertically sinusoidal oscillation with
dimensionless acceleration � = (2πf )2a/g, where a is the
shaking amplitude, f is the frequency fixed at 20 Hz, and
g is the gravitational acceleration. On the top of the shaker
we tightly mount an acrylic rectangular container T0 of
dimensions W × H × D = 50 × 150 × 7.5 mm3 (where W is
the container width, H the height, and D the depth), which is
divided into two equal compartments of width w = 22.5 mm
by an acrylic wall 5-mm thick. At a height h = 40 mm above
the compartment bottom, the wall has a rectangular opening of
dimensions S × D = 2.5 × 7.5 mm2 (where S is the opening
height). The stainless steel balls (mass density 7.92 g/cm3) of
diameter dB = 1 mm are adopted as the background particles,
whose size allows them to pass through the opening. A larger
steel ball of various diameters d = 4 ∼ 7 mm is used as the
intruder, which is always confined in compartment L (CL).

To explore the effect of a heavy intruder on the final
distribution of background particles, we first adopt an intruder
of diameter d = 5 mm and randomly deposit the background
particles of number N within the two compartments as the
initial condition. After subjecting these particles to a vertical
shaking of � = 8 for 480 s, which is long enough to stabilize
the particle population, we turn off the shaker and record the
number of particles NL at CL. By collecting all data for each
N , the particle fraction at CL, χL(=NL/N), is plotted in Fig. 1,
where the upward and downward arrows denote the directions
of the system evolution. It can be found that all the particle
systems for various initial depositions approach a certain
steady state, indicated by the red dotted points. As shown
in Fig. 1, there is a critical value of N ≈ 340, above which two
steady states (i.e., the upper and lower branches) are observed.
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FIG. 1. (Color online) The particle fraction at CL, χL, versus the
total number of particle N for the one-intruder system, composed
of the background particles of 1 mm and one heavy steel intruder
of diameter d = 5 mm, denoted by the symbol 1S5. Initially all the
particles are randomly placed within the two compartments, and then
we count the number of particles at CL after 480-s oscillation of
� = 8.0. The arrows represent the directions of the system evolution,
and the red dotted points denote the final steady states.

In addition, Fig. 1 reveals that when N < 200, particles would
distribute themselves uniformly between CL and compartment
R (CR), indicated by χL ≈ 0.5, and when 200 < N < 340,
most particles would cluster in CR , indicated by χL < 0.5.

According to the direction of the arrows in Fig. 1, we
are able to obtain the critical N , called Ncr, one of the
characteristics of the system, by simply performing the
oscillation test under the initial condition of all particles being
placed in CL. This is because such an initial condition (i.e.,
beginning from χL = 1 for all N ) will lead to the steady states
in the upper branch, and thus one can obtain Ncr directly from
the discontinuous curve formed by the red dotted points. Now,
based on this specific initial condition and with the same
driving condition as the previous test, we obtain the χL-N
relation for each intruder diameter d, as shown in Fig. 2, which
yields two findings. First, we observe that each curve with the
same d starts from about 50%, then drops to a minimum. For
each d, the curve sharply jumps up at Ncr, and then smoothly
approaches 100%. These features are distinguished by three
stages. Stage I describes the uniform distribution when N

is small. As N increases and N < Ncr, the gas goes into
stage II, where the majority of particles are expelled by the
intruder and condense in CR . From this clustering pattern,
we term it the expelled clustering state (ECS). In stage III,
where N > Ncr, the initial deposition forces those particles
to stay at CL, resulting in most particles to cluster with the
intruder. This is referred to as the fully clustering state (FCS).
The second finding is that, if we denote the coordinates of
the lower and upper jump points as (Ncr,χ

−) and (Ncr,χ
+) in

Fig. 2, when d increases, Ncr increases, χ− decreases, and χ+
roughly increases.

The same initial and driving conditions are then applied
to an asymmetric-compartmentalized monodisperse system,
where the asymmetry is made by elevating the compartment
bottom of CL by �z (cf. Fig. 3). For this asymmetric system,
an imperfect pitchfork bifurcation has been observed in the
χL-vb phase diagram [28], where the particle number N is kept

FIG. 2. (Color online) χL versus N for the one-intruder system,
composed of the background particles of 1 mm and one heavy steel
intruder of diameter d mm, denoted by the symbol 1Sd . The initial
condition is that all the particles are placed at CL, and each data point
is obtained by averaging 5 measurements of counting the number
of particle at CL after 480-s oscillation of � = 8.0. Three stages of
the distribution are observed as N increases: particles are uniform
(stage I), clustering away from the intruder (stage II), or clustering
with the intruder (stage III). Stages II and III are separated by a critical
number Ncr, which depends on the size of the intruder.

constant and vb(=af ) is the shaker’s driving velocity. Different
from the χL-vb relation, this work will explore the χL-N
relation where vb is kept constant. We prepare six asymmetric
containers with �z = 3 ∼ 8 mm, whose other dimensions are
the same as the container T0. This asymmetry is parameterized
by the asymmetrical index ξ , which is defined as �z/h.
Figure 3 signifies the experimental similarity between the
one-intruder and the asymmetric systems, where the variable
of one intruder is changed into that of compartment bottom
elevation. We also find three stages of particle population in the

FIG. 3. (Color online) χL versus N for monodisperse gases
composed of particles of 1 mm in the asymmetric structure. Each
data point is obtained with the same initial and driving conditions as
in Fig. 2. Here in the symbol (k L), “k” represents �z = k mm and
“L” denotes that all particles are initially deposited at CL. The feature
of χL is similar to that in the one-intruder system. The only one case
of initially placing the particles at CR is also illustrated, showing that
the curve for (3 R) goes along the lower branch at stage III.
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FIG. 4. (Color online) (a) The critical number Ncr plotted against
the intruder diameter (lower horizontal axis) for the one-intruder
system and against the compartment bottom elevation (upper hori-
zontal axis) for the asymmetric system. The solid line represents the
theoretical Ncrd relations obtained from the flux model, in which
the parameter ε is given by the relation ε = (N/50) + 1. Inset: The
increasing tendency for the critical number density n+

cr at CL at the
beginning of stage III. (b) An MD simulation result showing that ε is
a function of N . The data points are determined from the simulation,
and the solid line with the equation ε = (N/50) + 1 is very close to
these red points within the range of 25 < N < 400.

asymmetric system. When N is small, a uniform distribution is
expected. As N increases and N < Ncr, most particles cluster
at CR (deep compartment); however, particles will cluster at
CL (shallow compartment) when N > Ncr. It is found that a
more shallow compartment (a larger �z and ξ ) results in a
larger Ncr, a smaller χ−, and a larger χ+.

As can be seen in Figs. 2 and 3, the same trend of χL versus
N implies that there is a one-to-one correspondence between
the two systems. This can be explained by combining the plot
of Ncr versus d and that of Ncr versus �z in Fig. 4(a). The figure
shows that when (d − 1) and �z are used as the horizontal
axis, both data for Ncr in Figs. 2 and 3 seem to collapse into
a straight curve-fitting line: Ncr = a1(d − 1) + b1 (or Ncr =
a1�z + b1), with a1 = 21.45 and b1 = 255.59. Since a larger
d (or �z) causes a more violent motion for particles, we need
more particles that increase collisions to suppress the violence,
explaining the positive slope a1. Accordingly, the parameter
a1 characterizes the increase of Ncr as the intruder size (or �z)
increases, while the parameter b1 represents the value of Ncr for
monodisperse gases composed of particles of 1 mm in a sym-

metric structure. Moreover, the limiting case of d = dB = 1,
which corresponds to �z = 0, states that when the intruder
is exactly the background particle, the one-intruder system
degenerates to a symmetric one. Based on the (d − 1) versus
�z correspondence, it is plausible to propose the one-intruder
system as an asymmetric one with the asymmetrical index ξ ,
which is expressed by

ξ = (d − dB)/h, (1)

where dB = 1 mm is adopted in this study.
The existence of this correspondence between the two

systems does not imply that other macroscopic responses of
the two systems are the same. In a system with an intruder, the
intruder may transfer more transverse momentum to the small
particles as compared to the asymmetric system. This indeed
explains our observation that under the same initial condition
(all particles deposited at CL), the time to attain the steady
state for particles in the one-intruder system, with the help
of a higher transverse momentum by the intruder, is smaller
than the time required in the asymmetric system. Thus, the
correspondence represented by Eq. (1) is simply based on the
two systems’ similarly increasing trend of Ncr when d (or �z)
increases. This value of Ncr is the minimum number above
which most particles will not able to jump over the barrier;
hence the Ncr value generally reflects the total jumping ability
of particles (i.e., a higher Ncr corresponds to a higher jumping
ability) of both systems.

Moreover, the inset of Fig. 4(a) shows the plot of the
critical number density n+

cr versus (d − 1) and �z, where
n+

cr = Ncrχ
+/V is the particle number per unit compartment

volume at the beginning of stage III. Here V = VL − VI is used
for the one-intruder system and V = VL for the asymmetric
system, with VL and VI being the volume of CL and that of the
intruder, respectively. n+

cr can be realized as the critical number
density in one compartment, beyond which particles will form
a stable clustering therein.

III. FLUX ANALYSIS

The Ncr-d relation for the one-intruder system can be
analytically predicted by using the phenomenological flux
model [5,7,9]. In this model the flux function F (N ), charac-
terizing the outflux from one compartment to another, takes
the form F (N ) = (m/2πT )1/2(gDSN/	) exp (−mgh/T )
for a monodisperse system, where N , m, T , D, S,
and 	, respectively, denote the particle number in that
compartment, mass of one particle, granular temperature,
container depth, opening height, and compartment ground
area. When a system is composed of two species i and
j , the flux for species i is extended to F

(2)
i (Ni,Nj ) =

(mi/2πTi)1/2(gDSNi/	) exp (−migh/Ti), where each
species has its own granular temperature Ti which
depends on both Ni and Nj [16]. Since the intruder
at CL does not migrate to CR , the correspondence of
(d − 1) versus �z allows us to replace the outflux of the
background particles of number Ni at CL in the one-intruder
system with the outflux from CL in the corresponding
asymmetric system, i.e., F

(2)
iL (Ni,Nj ; d) = FL(Ni ; h − �z).

Furthermore, the dynamical equilibrium for the particle
inflow and outflow between CL and CR requires F

(2)
iL = FR ,
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where FR is the outflux from CR . Thus, we arrive at
FL(NL; h − �z) = FR(NR; h), namely,

NL√
TL

exp

[−mg(h − �z)

TL

]
= NR√

TR

exp

(−mgh

TR

)
. (2)

In Eq. (2), every quantity can be obtained from our direct
measurement except the granular temperature TL(R). It can
be determined by the balance of energy dissipation rate due
to collisions and energy input rate from external oscillation
within each compartment. By taking into account the particle-
wall collisions in the energy input rate, this balance leads
to [21,29]

TL(R) = α/(NL(R) + β)2, (3)

where α = m(eaf 	)2/[4πd4(1 − e)2] and β = 	/(
√

2πd2).
Here we assume that the coefficients of normal restitution
for all collisions are the same, and will adopt e = 0.9 for
simplicity. The correctness of Eq. (3) has been studied from a
molecular dynamics (MD) simulation, showing that the mean
kinetic energy of bidisperse granular gases is about 7 to 30
times higher than the theoretical value of T [16]. In this
study, we deal with this inconsistency, which comes from the
simplicity inherent in this flux model, by simply modifying T

with an additional factor ε, i.e., T = εα/(N + β)2. This factor
can be further estimated by performing an MD simulation to
simulate the actual average of kinetic energy of N particles
in a container. Our simulation adopts the soft-core MD code
[30], and all of the parameters in this simulation, such as
the container parameters (container’s height), the particle
parameters (mass, diameter of a background particle), and the
shaking parameters are given as those used in our experiment.
By taking the average of the recorded 50 000 sets of data within
50 s, we obtain the mean kinetic energy, denoted by TMD,
from which we obtain ε = TMD/T = TMD/[α/(N + β)2] for
different N . Figure 4(b) shows the ε-N relation, where
ε is found to depend on the number of particles N and
this dependence can be approximated by a linear equation
ε = (N/50) + 1 within the range of 25 < N < 400.

In view of this modification, Eq. (2) reduces to

�z = h − h

(
N − NL + β

NL + β

)2

− εα

mg(NL + β)2
ln

[
NL(NL + β)

(N − NL)(N − NL + β)

]
. (4)

To analytically solve NL, we nondimensionalize Eq. (4) by the
length scale h and propose a function �N (x) as

�N (x) = (2x − N )(N + 2β)

(x + β)2

− α̂

(x + β)2
ln

[
x(x + β)

(N − x)(N − x + β)

]
, (5)

where x and α̂ stand for NL and εα/(mgh), respectively.
Since �N (x) mathematically equals to �z/h, it physically
amounts to the asymmetrical index ξ [= (d − dB)/h] for the
one-intruder system.

A quick glance at this function tells us that �N (x) = 0 if
x = N/2, which indicates that a uniform distribution is an
equilibrium state for a symmetric case (ξ = 0). Meanwhile,

FIG. 5. (Color online) The analytical result from the flux model.
(a) The function �N (x) goes from positive infinity to negative infinity
within the range of 0 � x � N , and it intersects with the horizontal
axis at one to three points depending on the N number. (b) The
diagram of �N (x∗) with the horizontal axis rescaled as x∗(=x/N ).
The shape of �N (x∗) looks like a line going from (0,+∞), passing
through (1/2,0), and to (1,−∞), twisted in a counterclockwise
fashion, at the point (1/2,0). For a fixed N , �N (x∗) = 3/40 (indicated
by the horizonal dashed green line) has one to three solutions.

we find that �N (x) → +∞ as x → 0+ and �N (x) → −∞ as
x → N . A close examination of �N (x) by setting the values of
α̂ and β with our measurement reveals its features, as follows.

First, we see in Fig. 5(a) that when N is small (N < N0),
�N (x) is monotonically decreasing; however, when N

is large (N > N0), �N (x) has two extreme points, at
which d�N (x)/dx = 0. Here, N0 is the solution of 0 =
d�N (x)/dx|x=N0/2, and physically it is the total number of
particles at which the bifurcation occurs for ξ = 0.

Second, let us consider the equation �N (x) = 3/40, which
corresponds to d = 4 mm (or �z = 3 mm). In Fig. 5(b), show-
ing the enlarged plot around �N (x∗) = 0 with the horizontal
axis rescaled as x∗(=x/N = χL), we observe that this equation
has one to three solutions, depending on N . When N < 331,
there is only one solution at x∗ = χL1 with 0 < χL1 < 0.5;
however, when N > 331, there are three solutions at x∗ =
χL1,χL2,χL3 with 0 < χL1 < 0.5 and 0.5 < χL2 < χL3 < 1.
For different N we plot these solutions in Fig. 6, which displays
the bifurcation nature and the three-stage distributions that
resemble the experimental results in Figs. 2 and 3.

Third, when N = 331, �N (x∗) = 3/40 has two solutions
at x∗ = χ− and χ+, with 0 < χ− < 0.5 < χ+ < 1. The two
solutions are the counterparts of the two points (331,χ−) and
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FIG. 6. (Color online) The analytical result from the flux model.
The plot of the solutions χL of �N (x∗) = 3/40 vs N . The one-
solution regime with χL ≈ 0.5, the regime with χL < 0.5, and the
three-solutions regime are, respectively, denoted as stages I, II, and
III. The upper domain at stage II is called a “forbidden zone” since
there is no solution within 0.5 < x∗ < 1. The symbols “�” and
“×” respectively refer to the experimental data for d = 4 mm and
�z = 3 mm with random initial conditions. The two insets show
the profiles of the flux-related function F ∗ = [F (2π/m)1/2(	/gDS)]
against NL, pinpointing the solution(s) of F ∗

L(NL) = F ∗
R(N − NL) in

Eq. (1) when �z = 3 mm for N = 280 and 400.

(331,χ+) in the bifurcation diagram of Fig. 6. Therefore,
we give Ncr = 331 for the case d = 4 mm (or �z = 3 mm),
which is close to our experimental data. The same procedure is
applied to other values of d, generating the increasing relation
between Ncr and d, which is plotted in Fig. 4(a). Surprisingly,
with the choice of ε = (N/50) + 1, the Ncr-d relation is found
to approximate our experimental data.

Fourth, the flux analysis offers all possible equilibrium
states that are independent of the initial conditions; however,
the majority of our previous experiments are limited by a
given initial confinement. To check the consistency of our
analysis and measurement, we further conduct many tests for a
one-intruder system with d = 4 mm and an asymmetric system
with �z = 3 mm by randomly depositing particles at CL and
CR at the beginning of each test. These outcomes fit well into
the analytical curve, as shown in Fig. 6.

Fifth, we notice that within the range of 0.5 < x∗ < 1,
there is no solution for �N (x∗) = 3/40 if N < Ncr. The null-
solution region is characterized by the “forbidden zone” at
stage II in Fig. 6, which indicates that it is never the case for
most particles to condense at CL when N < Ncr, regardless of
any initial conditions. This zone, which will degenerate as ξ

declines to zero, is a consequence of the symmetry breaking
(or the intruder-induced asymmetry), resulting in a horizontal
flow of most particles into a specific compartment.

Finally, our experiment reveals that no data point lies
on the central branch at stage III. This is attributed to
the condition of d�N (x∗)/dx∗|x∗=χ2 > 0, which requires
that if χ2 and χ2 + δχ are the solutions of �N (x∗) =
3/40 and �N (x∗) = [3 + δ(�z)]/40, respectively, then the
infinitesimal δχ and δ(�z) obey δχδ(�z) > 0. This, how-
ever, contradicts our anticipation that to reach a new
equilibrium state which slightly deviates from the orig-
inal one, the more shallow CL is used [δ(�z) > 0],
the lower number of particles NL is expected (δχ < 0). In
short, δχδ(�z) > 0 would not exist.

IV. CONCLUSION

We have demonstrated that the one-intruder system be-
haves like an asymmetric one with the asymmetrical index
ξ = (d − dB)/h. The index enables us to quantify the particle-
expelling ability of one heavy intruder in a compartmentalized
granular gas. We have found that the equilibrium states of
particle distribution appear to bifurcate at a critical number
of particle Ncr, which is shown to be an increasing function
of d. Through the flux model analysis, we have associated
the parameter ξ with a proposed � function, which predicts
all possible equilibrium states that are compatible with our
observations. By manipulating the particle-expelling ability,
i.e., by adjusting the intruder size, we aim to control and
drive a unidirectional flow of background particles in a
multicompartmentalized system. Future work will explore this
issue in more detail.
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