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Criticality in alternating layered Ising models. II. Exact scaling theory
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Part I of this article studied the specific heats of planar alternating layered Ising models with strips of
strong coupling J1 sandwiched between strips of weak coupling J2, to illustrate qualitatively the effects of
connectivity, proximity, and enhancement in analogy to those seen in extensive experiments on superfluid helium
by Gasparini and co-workers. It was demonstrated graphically that finite-size scaling descriptions hold in a variety
of temperature regions including in the vicinity of the two specific heat maxima. Here we provide exact theoretical
analyses and asymptotics of the specific heat that support and confirm the graphical findings. Specifically, at
the overall or bulk critical point, the anticipated (and always present) logarithmic singularity is shown to vanish
exponentially fast as the width of the stronger strips increases.
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The previous paper, Part I [1], considered a range of exactly
soluble alternating layered Ising (ALI) models and presented
extensive plots of their specific heats. The primary motivation
(as explained in Part I) was to illustrate and study theoretically
the phase-transition phenomena of “proximity,” “connectiv-
ity,” and “enhancement” as highlighted experimentally by
recent studies of superfluid helium by Gasparini and co-
workers [2–7]. However, the ALI models have intrinsic interest
as instructive examples of the general two-dimensional (2D)
layered Ising models. The exact solubility of the general lay-
ered models was reported in 1969 [8] and noted and developed,
independently, in the context of randomly coupled systems by
McCoy and Wu [9] and further studied in Refs. [10,11].

Specifically, our work addresses ALI models in which,
in a standard infinite two-dimensional square lattice with
Ising spins at each site, (i,j ), infinite strips of width m1 are
coupled by nearest-neighbor (NN) energies of strength J1 in
alternation with infinite strips of width m2 = sm1 and coupling
J2 = rJ1. More explicitly, the NN couplings between spins
at sites (i,j ), (i,j + 1), and (i + 1,j ) in the same strip are
independent of j but equal to J1 for i = 1,2, . . . ,m1 but to J2

for i = m1 + 1,m1 + 2, . . . ,(m1 + m2), and so on with overall
period (m1 + m2). The boundary spins separating layers are
thus at i = 1 + n(m1 + m2) and at i = 1 + (n + 1)m1 + nm2

for n = 0,±1,±2, . . . .
This paper then presents the details of the exact calculations

on which the plots (and discussion) of Part I was based. In
Sec. I, we present the specific integrals for the free energy
without giving detailed derivations, because the ALI models
are special cases of the general layered models [10,11] where
the details can be found. The explicit forms of the integrals
were used to plot the specific heat for the alternating layered
systems shown in Figs. 2 and 3 of Part I. Around the overall or
unique bulk critical point Tc(r,s) the specific heat diverges
logarithmically with an amplitude A(r,s) that is shown in
Sec. II to decrease exponentially fast with increasing m1. In
Sec. III, we examine the behavior of the free energy near T1c

and T2c, which are, respectively, the bulk critical temperatures
of uniform 2D Ising models with strong couplings J1 and weak
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couplings J2, or, otherwise, the limiting temperatures of the
specific heat maxima for infinitely wide layers. The conditions
for the data collapse shown in Figs. 4 and 5 of Part I are thus
verified. In Sec. IV, we show that finite-size scaling holds in
both regimes, whenever data collapse occurs. Finally, Sec. V
studies the behaviors of the enhancements in the two regimes,
while the paper ends with a short summary.

I. THE FREE ENERGY

Layered Ising models were studied earlier in Refs. [8–12].
As the alternating layered model with cyclic boundary con-
ditions imposed in the infinite vertical direction, and free
boundary conditions in the horizontal layered direction are
special cases, the calculation for the free energy per site,
f (J1,J2; m1,m2; T ), is almost identical to that in Refs. [10,11].
Thus for layers of thickness m1 and couplings J1 sandwiched
between layers of thickness m2 and couplings J2, one has

−f (J1,J2; T )

kBT
= ln[(2S1)m1 (2S2)m2 ]

2(m1 + m2)

+ 1

m1+ m2

∫ π/2

0

dθ

π
ln

1

2
[W+

√
W 2 − 4],

(1)

where, for i = 1,2, we use here and below

Si = sinh 2Ki, Ci = cosh 2Ki, (2)

with

K1 = J1/(kBT ), K2 ≡ rK1, (3)

while the function W (T ; J1,J2; m1,m2; θ ) is given by

W = U+
1 U+

2 + U−
1 U−

2 + 1
2 (C1C2 − 1)V1V2, (4)

in which for i = 1,2,

U±
i = U±(ti ,mi) = 1

2

(
α

mi

i + α
−mi

i

) ± 1
2

(
α

mi

i − α
−mi

i

)
gi,

Vi = (
α

mi

i − α
−mi

i

)
ḡi , (5)

where we have introduced the basic temperature variables ti
via

ti = (1 − Si)/
√

2Si ≈ 2Kic − 2Ki ≈ 2Kic(T/Tic − 1),

2Kic = ln(
√

2 + 1), (6)
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which are identical to the variables used in Refs. [13,14], but
differ from symbols t1 and t2, defined in (I.13) and (I.18) of
Part I although by only a constant factor when close to T1c and
T2c, respectively. The amplitude functions in (5) are then

gi = gi(ti ; ω)

= [
ti

√
1 + t2

i (1 − ω2) + ω2
√(

1 + t2
i

)(
2 + t2

i

)]/
Yi,

ḡi = ḡi(ti ; ω) = ω
√

1 − ω2/Yi,

Yi = Y (ti ; ω) =
√(

ω2 + t2
i

)(
1 + ω2 + t2

i

)
, (7)

while ω = sin θ , and the layer spacings m1 and m2, enter
through

αi = α(ti) = ci +
√

c2
i − 1,

ci = c(ti) = 2t2
i + 2ω2 + 1. (8)

We note that by comparing with Eqs. (2.5) in Ref. [13] one finds
c(t) = c� with 1 − 2ω2 = cos(π�/n). It is also easily seen that
2Yi =

√
c2
i − 1. Conversely, we also have the relations

Ci =
√

1 + t2
i

[√
2 + t2

i − ti
]
,

(9)
Si = 1 + t2

i − ti

√
2 + t2

i .

The terms U+
i = U+(ti ,mi) in (4) are related to the free

energy f ∞(mi ; Ji ; T ) of an infinite strip of width mi with
coupling energy Ji , which is [14]

−f ∞(mi ; Ji ; T )

kBT
= ln(2Si)

2
+ 1

πmi

∫ π/2

0
dθ ln U+(ti ,mi).

(10)

The remaining terms in (4) are related to the interaction
between the strips. If J2 → 0, so that the system becomes
uncoupled, the relations (6) yield t2 → (2S2)−1/2 → ∞, which
is used in (8) to give α2 → 4t2

i → 2/S2. Consequently,
from (5) we have U+

2 = 1
2α

m2
2 = 2m2−1/(S2)m2 , and from (7)

we find g2 → 1 and ḡ2 → 0. These results establish U−
2 = 0

and V2 = 0. In this limit, the free energy in (1) becomes

−f (J1,0; T )

kBT
= m1 ln(2S1) + 2m2 ln 2

2(m1 + m2)

+ 1

π (m1 + m2)

∫ π/2

0
dθ ln U+(t1,m1), (11)

which is the free energy per site for infinite strips of width
m1, coupling J1, separated by empty infinite strips of width
m2. This is identical to the result in (10), except that the factor
1/m1 in (10) is replaced by 1/(m1 + m2), while the additional

constant term 2m2 ln 2/(m1 + m2) does not contribute to the
specific heat.

For completeness, we also let J1 = 0 to find

−f (0,J2; T )

kBT
= m2 ln(2S2) + 2m1 ln 2

2(m1 + m2)

+ 1

π (m1 + m2)

∫ π/2

0
dθ ln U+(t2,m2). (12)

For future purposes [entailed in establishing relations (I.19),
and (I.21)], we recall the modified temperature Ť (T ), intro-
duced in (I.20), and then define

−f (0,J2; Ť )

kBT
= m2 ln(2S2) + 2m1 ln 2

2(m1 + m2)

+ 1

π (m1 + m2)

∫ π/2

0
dθ ln U+(−t2,m2).

(13)

Using (5), we may rewrite (4) as

W = 1
2

(
α

m1
1 + α

−m1
1

)(
α

m2
2 + α

−m2
2

)
+ 1

2

(
α

m1
1 − α

−m1
1

)(
α

m2
2 − α

−m2
2

)
G(t1,t2; ω), (14)

in which we have

(Y1Y2)G(t1,t2; ω) = (Y1Y2)[g1g2 + (C1C2 − 1)ḡ1ḡ2]

= [
t1t2

√(
1 + t2

1

)(
1 + t2

2

) − ω2
]
(1 − ω2)

+ω2
√(

1 + t2
1

)(
1 + t2

2

)(
2 + t2

1

)(
2 + t2

2

)
.

(15)

For the uniform Ising model the ratio r = J2/J1 is unity,
so that t1 = t2 and α1 = α2. We now use (7) and (9) to show
that G in (15) reduces to G = g2

1 + S2
1 ḡ

2
1 = 1. As a result (14)

simplifies to

W = 1
2

(
α

m1
1 + α

−m1
1

)(
α

m2
1 + α

−m2
1

)
+ 1

2

(
α

m1
1 − α

−m1
1

)(
α

m2
1 − α

−m2
1

)
= (

α
m1+m2
1 + α

−m1−m2
1

)
. (16)

Consequently, the free energy in (1) becomes

−f (J1,J1; T )

kBT
= 1

2
ln(2S1) + 1

π

∫ π/2

0
dθ ln α1, (17)

which is the same as the free energy of the uniform Ising
model [9].

The specific heat of the alternating layered model, which
is the second derivative of the free energy in (1), is thus given
by

C(J1,J2; m1,m2; T )

kB

= K2
1

d2

dK2
1

[
−f (J1,J2; T )

kBT

]

= −2m1K
2
1

(m1 + m2)S2
1

− 2m2(rK1)2

(m1 + m2)S2
2

+ K2
1

π (m1 + m2)

∫ π/2

0
dθ

[(
d2W

dK2
1

)/
(W 2 − 4)1/2 − W

(
dW

dK1

)2/
(W 2 − 4)3/2

]
. (18)
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These are the formulas used to plot the specific heats in the
figures in the previous paper, Part I [1].

In considering the expression (I.1) for the specific heat
near the bulk critical point Tc, it is natural, having dealt with
the amplitude A(r,s) of the logarithmic singularity, to inquire
as to the leading background term B(r,s). As our notation
suggests, this is expected, on the grounds of duality [15], to
be continuous through Tc so that there is no discontinuity
associated with bulk criticality. However, the calculation of
the dependence of B(r,s) on m1 proves not straightforward
and has not been attempted (although the continuity is surely
supported by the numerics reported in Part I).

II. AMPLITUDE FOR THE LOGARITHMIC DIVERGENCE

The amplitude of the logarithmic divergence in (I.1) is
obtained [10,11] by expanding the term inside the square root
in (1) as

1 − 4/W 2 = A2
1(J1/kB)2[(1/T ) − (1/Tc)]2 + A2

2θ
2 + · · · ,

(19)

where the coefficient A1 is given by Hamm in (1.8) of Ref. [11]
as

A1 = 2m1
(
1 + S−1

1c

) + 2m2r
(
1 + S−1

2c

)
,

S1c = sinh 2Kc, S2c = sinh(2rKc). (20)

The integration over θ around the origin yields

C(T )/kB = −A(r,s) ln |1 − (T/Tc)| + O(1),

r = J2/J1, s = m2/m1,

A(r,s) = A2
1K

2
c

2πA2(m1 + m2)
, Kc = J1

kBTc

. (21)

Since we only have two kinds of bonds, the sum in (1.9) of
Ref. [11] can be evaluated to obtain

A2
2 = (

ε
m1
1c − ε

−m1
1c

)2
[

S2
1c(

ε1c − ε−1
1c

)2 + S2
2c(

ε2c − ε−1
2c

)2

− S1cS2c

(
z1cz

−1
2c + z2cz

−1
1c

)
(
ε1c − ε−1

1c

)(
ε2c − ε−1

2c

)
]
, (22)

where the temperature dependent parameters are

zi = zi(T ) = tanh(Ji/kBT ),
(23)

εi(T ) = zie
2(Ji/kBT ),

while zic = zi(Tc) and εic = εi(Tc). Notice that εi(T ) depends
only on Ji , and at the critical temperature Tic of a uniform
planar Ising model whose coupling energy is Ji , we have

εi(Tic) = 1 ⇒ Kic = Ji/(kBTic) = 1
2 ln(

√
2 + 1), (24)

which is equivalent to (I.5) [1]. The general critical temperature
expression (I.4) is equivalent to

ε
m1
1 (Tc)εm2

2 (Tc) = 1 or ε1cε
s
2c = 1. (25)

From (24) and (25), we find Tc < T1c, and Tc → T1c either as
s → 0 or as r → 1. For r �= 1 and s �= 0, we find ε1c > 1 and
ε2c < 1, so that ε

m1
1c = ε

−m2
2c → ∞ in the limit m1 → ∞. We

shall consider the scaling behavior for the two cases separately.

(1) Now consider the scaling limit for r �= 1, m2 = sm1

fixed, and m1 → ∞ such that s → 0. We find from (24)
and (25)

ln ε1(Tc) − ln ε1(T1c) = −s ln ε2(Tc) ≈ −s ln ε2(T1c). (26)

Now we substitute (23) into this relation to find

2J1

kB

[
1

Tc

− 1

T1c

]
+ ln

[
tanh(J1/kBTc)

tanh(J1/kBT1c)

]

≈ s ln

[
1 + e−2rJ1/kBT1c

e2rJ1/kBT1c − 1

]
. (27)

After expanding the left-hand side around T1c and using (24)
on the right we find

4K1c[(T1c/Tc) − 1] ≈ spr,

pr = ln[(
√

2 − 1)r + 1] − ln[(
√

2 + 1)r − 1]. (28)

Consequently for s → 0, we have

A1 = 4m1[1 + O(s)],

A2 = ε
m1
1c − ε

−m1
1c

ε1c − ε−1
1c

+ O(1) ≈ sinh m2pr

spr

. (29)

The amplitude of the logarithmic divergence scales as

A(r,s) ≈ 8K2
1cprm2

π sinh(prm2)
+ O(s). (30)

For r = 1, we have pr = 0, which reproduces the original
Onsager result [9,13,14]. For m2 → 0, we find sinh(prm2) →
prm2, so that (30) again reproduces the Onsager result. In
the opposite limit m2 → ∞, we find the amplitude decays
exponentially fast as

A(r,s) = (
8K2

1c/π
)
prm2 e−prm2 . (31)

(2) In order to have a nonvanishing logarithmic amplitude
for fixed s = m2/m1, with m1 → ∞, one must let r → 1.
Accordingly, we study the amplitude of the logarithmic
singularity in the scaling limit that (1 − r)m1 is fixed. In similar
fashion to our derivation of (27), we use (24) and (25) to find

1

Tc

≈ 1

T1c

[
1 + s(1 − r)

1 + s

]
,

r

Tc

≈ 1

T1c

[
1 − 1 − r

1 + s

]
. (32)

Expanding terms in (20) and (22) as a series in 1 − r , and
keeping only the leading two terms, we obtain

S1c ≈ 1 + 2
√

2K1cs(1 − r)

1 + s
,

S2c ≈ 1 − 2
√

2K1c(1 − r)

1 + s
,

z1c/z2c ≈ 1 + 2K1c(1 − r),

z2c/z1c ≈ 1 − 2K1c(1 − r), (33)

ε1c ≈ 1 + 4K1cs(1 − r)/(1 + s)

≈ e4K1cs(1−r)/(1+s),

ε2c ≈ 1 − 4K1c(1 − r)/(1 + s)

≈ e−4K1c(1−r)/(1+s).
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Substituting these asymptotic relations into (20) and (22), we
find

A1 ≈ 4m1(1 + s),

A2 ≈ (1 + s)2

4K1cs(1 − r)
sinh

[
4K1csm1(1 − r)

(1 + s)

]
. (34)

Consequently, the scaling form of the amplitude of the
logarithmic divergence of the specific heat is

A(r,s) ≈ 16K2
1csq

π (s + 1) sinh[2sq/(1 + s)]
,

q = 2K1c(1 − r)m1. (35)

For r = 1, one has q = 0, and this expression again repro-
duces the original Onsager result. For r < 1, with m1 → ∞,
we have q 	 1 so the denominator is exponentially large,
which means the amplitude is exponentially small. This
and (31) are central results that explain why the logarithmic
singularity at Tc becomes essentially unobservable in Figs. 2–4
of Part I.

III. BEHAVIOR NEAR T1c AND T2c

Near T1c, the specific heat of the weaker strip is small, and
so in Part I we introduced a net contribution

C1(J1,J2; T ) = (1 + s)[C(J1,J2; T ) − C(0,J2; T )]. (36)

In Fig. 5 of Part I [1], the scaling plots of C1 reveal that the
behavior becomes independent of m2 for T near T1c. In this
section, we examine the condition for such behavior to hold.
We define the free energy corresponding to C1(J1,J2; T ) as

f1(J1,J2; T ) = (1 + s)[f (J1,J2; T ) − f (0,J2; T )]. (37)

For fixed weakness ratio r = J2/J1, we can see that from (8)
and (6) that α1 
 1 for t1,ω 
 0. Because r �= 1, for T 
 T1c

(t1 
 0), we have t2 �= 0 and α2 > 1. Thus for m2 sufficiently
large, α

m2
2 	 α

−m2
2 , and we may drop terms involving α

−m2
2

in (14) to arrive at the form

W ≈ α
m2
2 W1(t1,t2; m1) = α

m2
2

[
1
2

(
α

m1
1 + α

−m1
1

)
+ 1

2

(
α

m1
i − α

−m1
1

)
G(t1,t2; ω)

]
, (38)

in which G(t1,t2; ω) was defined in (15). Similarly we find

U+(±t2,m2) = α
m2
2 [1 + g2(±t2)] + O

(
α

−m2
2

)
. (39)

Consequently the free energy introduced in (37) becomes

−f1(J1,J2; T )/(kBT ) = 1

2
ln(S1/2) + (πm1)−1

∫ π/2

0
dθ

× [
I1(t1,t2; m1) + O

(
α

−m2
2

)]
,

I1(t1,t2; m1) = ln W1(t1,t2; m1) − ln 1
2 [1 + g2(t2)].

(40)

It is easy to see from this that f1 is essentially independent of
m2. Therefore, in the temperature range where α

m2
2 	 α

−m2
2 ,

which is the case for those plots in Fig. 5 of Part I, the
specific heat difference C1(T ) defined in (36) becomes, indeed,
independent of m2.

To understand the behavior of the integral in (40), we
compare it with the free energy of uncoupled strips when
the horizontal coupling, say J̄2, is set to be identically zero
in the weaker strips while the vertical couplings J2 remain
nonzero. Since the original papers [10,11] on layered Ising
systems address the more general case with vertical couplings
unequal to the horizontal couplings, we may easily obtain the
free energy for such a case as

−f (u)(J1; J2; T )/(kBT ) = [2(m1 + m2)]−1

[
m1 ln(2S1) + m2[ln 2 + ln(1 + C2)] + 2

π

∫ π/2

0
dθ ln W (u)

]
, (41)

where, in the integrand, we now have

W (u) = 1
2

(
α

m1
1 + α

−m1
1

) + 1
2

(
α

m1
1 − α

−m1
1

)
g(u)(t1; J2),

(42)

g(u)(t1; J2; ω) = g1(t1) +
ω2(1 − ω2)

[−t1

√
1 + t2

1 +
√(

1 + t2
1

)(
2 + t2

1

) − 1
]

(
ω2 − 1

2 − 1
2C2/S2

)
Y1

,

where we recall that Y1 = Y (t1; ω) is defined in (7). In
I1(t1,t2; m1) of (40), the second term is related to the surface
free energy, while the first term is very similar to the free
energy of uncoupled infinite strips of width m1, each with one
of its boundary columns having vertical couplings J2. This can
be seen for t2 > 0 by rewriting the function G given by (15)
as

G(t1,t2; ω) = g1(t1)

+ω2(1 − ω2)Y1
−1

[−t1

√(
1 + t2

1

)
R1(t2; ω)

+
√(

1 + t2
1

)(
2 + t2

1

)
R2(t2; ω) − Y2

−1
]
, (43)

in which we have

R1(t2; ω) = 1 + 2t2
2 + ω2

Y2
(
Y2 + t2

√
1 + t2

2

) ,

(44)

R2(t2; ω) = 2 + 2t2
2 + ω2

Y2
[
Y2 +

√(
1 + t2

2

)(
2 + t2

2

)] .

When r �= 1, for t1 
 0 we find that t2 is large and positive, so
that R1(t2; ω) and R2(t2; ω) are not singular. It is easily seen
from (43) and (42) that though the functions G and g(u) are
different, both differ from g1(t) by factors which are of the
order ω2/Y1, which do not contribute to the scaling function
as shall be shown later in Sec. IV.
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Similarly, for T 
 T2c, so that α2 
 1, but α1 > 1, we see
that whenever α

m1
1 	 α

−m1
1 , we may drop the terms α

−m1
1

entering W in (14), to find

W = α
m1
1 W2(t1,t2; m2) + O

(
α

−m1
1

)
,

W2(t1,t2; m2) = 1
2

(
α

m2
2 + α

−m2
2

) + 1
2

(
α

m2
2 − α

−m2
2

)
G(t1,t2),

U+(t1,m1) = α
m1
1 [1 + g1(t1)] + O

(
α

−m1
1

)
. (45)

As a consequence we find from (1) and (12) that

−f2(J1,J2; T )

kBT
= m1 + m2

m2kBT
[−f (J1,J2; T ) + f (J1,0; T )]

(46)

= 1

2
ln(S2/2) +

∫ π/2

0

dθ

πm2

[
ln W2(t1,t2; m2)

− ln
1

2
(1 + g1) + O

(
α

−m1
1

)]
. (47)

Since f2 is independent of m1, the plots of C2(T ) in Fig. 6 of
Part I [1] for different m1 lie on the same curve demonstrating
the data collapse.

From (8), we find for ω ∼ 0 the results

α
−m1
1 ≈ e−2|t1|m1 ∝ e−2m1/ξ1(T ),

(48)
α

−m2
2 ≈ e−2|t2|m2 ∝ e−2m2/ξ2(T ),

where ξi(T ) is the bulk correlation length of the uniform Ising
model with couplings Ji . This means that if r increases, so
that t2 becomes closer to t1, then for (38) to hold, so that data
collapse occurs as shown in Fig. 5 of Part I [1], we must have
m2 large. Likewise as r increases, one sees that relations (45)
still are valid provided m1 is large with the consequence that
data collapse still occurs near T2c.

Even though (45) in (47) looks similar to (38) in (40), there
are significant differences. In the regime T 
 T1c the deviation
t2 is large and positive, while for T 
 T2c, one finds that t1 is
a large negative number, so that instead of (43), G in (15) for
T 
 T2c behaves as

G(t1,t2; ω) = g2(−t2)

+ω2(1 − ω2)Y2
−1

[
t2

√(
1 + t2

2

)
R1(|t1|; ω)

+
√(

1 + t2
2

)(
2 + t2

2

)
R2(t1; ω) − Y1

−1
]
, (49)

where R1(|t1|; ω) and R2(t1; ω) are seen from (44) to be
nonsingular for t1 large. Comparing this relation with (43),
the flipping of the sign of t2 in g2 is the reason that the rounded
peak at T1max is below T1c, while T2max is aboveT2c. This then
sets the stage for what otherwise might be regarded as a purely
phenomenological introduction of the modified temperature
variable Ť (T ) = T2c − (T − T2c) in (I.20).

IV. SCALING FUNCTIONS

We now consider f1 in (40) in the scaling limit m1 → ∞
and T → T1c, and show that its scaling function is identical
to that in (10) for a infinite strip of width m1 and couplings
J1 [14]. In fact we shall show that when the differences in the
integrands are of the order ω2/Y1, as in (43) or in (42), the

scaling functions remain unchanged. We shall outline now the
steps used to obtain the scaling function.

Step 1. We first change the integration variable in (40) to
ω = sin θ , and then split the interval of integration over ω into
two parts, namely, [0,1] → [0,c/m1] + [c/m1,1], where here
and below we take c = ln m1. Then we will approximate the
integrand differently in the two distinct intervals.

Step 2. In the interval [0,c/m1], ω and t1 are small, so we
make the approximation

g2 ≈ 1, α
m1
1 = e2m1 arcsin

√
t2
1 +ω2 ≈ e2X1 ,

X1 =
√

τ 2
1 + φ2, τ1 = m1t1, φ = m1ω,

G(t1,t2) = g1 + O(ω2/Y1)

≈ t1
/√

t2
1 + ω2 = τ1/X1. (50)

Note especially the introduction of the scaling variable τ1; this
is used in order to conform to the convention of the previous
papers [13,14] in place of the scaling variable x1 used in Part
I [1]. But, as seen from (6), the two variables are related simply
by a constant, i.e., τ1 = 2K1cx1 with 2K1c = ln(

√
2 + 1).

Using (50), the integrand in (40) can now be written as

I1 ≈ ln W1 ≈ H(τ1,φ) = ln[cosh 2X1 + sinh 2X1(τ1/X1)].

(51)

After changing the variable of integration from ω → φ =
m1ω, we split the interval of integration of φ to [0,c] =
[0,1] + [1,c].

Step 3. In the interval ω ∈ [c/m1,1], we find, in (38), αm1
1 	

α
−m1
1 , so that α

−m1
1 can be dropped in W1, and the integrand

in (40) becomes

I1(ω) ≈ ln
{
α

m1
1

1
2 [1 + G(t1,t2; ω)]

} − ln 1
2 [1 + g2(t2; ω)].

(52)

Step 4. The integration over ω in the interval for the
integrand in (52) is then split into two parts [c/m1,1] =
[1/m1,1] − [1/m1,c/m1]. We denote the integrals over
[1/m1,1] by

�1 = 1

π

∫ 1

1/m1

dω√
1 − ω2

ln α1,

�1 = 1

πm1

∫ 1

1/m1

dω√
1 − ω2

[ln(1 + G) − ln(1 + g2)]. (53)

In the interval ω ∈ [1/m1,c/m1], we use (50) for the integrand
in (52), so that

I1 ≈ H′(τ1,φ) = ln
[
e2X1 1

2 (1 + τ1/X1)
]
. (54)

Changing the variable of integration ω → φ = ωm1, and
combining it with the integral over the interval [1,c] of the
integrand in (51) in step 2, we obtain

δH(τ1,φ) = H(τ1,φ) − H′(τ1,φ)

= ln[1 + e−2X1 (X1 − τ1)/(X1 + τ1)]. (55)

For φ � c, we find

δH(τ1,φ) ≈ e−2X1 (X1 − τ1)/(X1 + τ1) � 1. (56)

Thus, the interval of integration [1,c] can be extended to [1,∞]
with negligible error.
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Step 5. Combining all the steps, we find

f1(J1,J2; T ) ≈ F1(τ1) + �1 + �1, (57)

where with H(τ1,φ) defined in (51) and δH(τ1,φ) defined
in (55), we have

F1(τ1) = 1

m2
1π

[∫ 1

0
dφ H(τ1,φ) +

∫ ∞

1
dφ δH(τ1,φ)

]
.

(58)

From (43), we find that for ω ∈ [0,c/m1] or [1/m1,c/m1],
the terms of the order of ω2/Y1 may be dropped; thence the
scaling function for an infinite strip of finite width in (10) and
the scaling function for (40) can differ only through the term
in �1 introduced in (53). Since T 
 T1c, we find that g2(±t2)
is not singular, while its contribution is of order 1/m1; hence
it does not contribute to the scaling function.

Step 6. The integrals for the derivatives of �1 in (53) can
be calculated explicitly. After keeping only the scaling terms
we find

K2
1
d2�1

dK2
1

= 8K2
1

π

∫ 1

1/m1

dω√
1 − ω2

ω2
(
1 + ω2 + t2

1

) − t2
1 (t2 + ω2)[(

1 + ω2 + t2
1

)
(t2 + ω2)

]3/2

= (
8K2

1c

/
π

)[
ln m1 + 3

2
ln 2 − ln

(
1 +

√
τ 2

1 + 1
) − 1 + 1√

τ 2
1 + 1

]
+ O

(
ln m1

m1

)
. (59)

The explicit calculation of the second derivatives of �1 is very messy. However, it is easy to see that only the lower limit of the
integration at 1/m1 can contribute to the scaling function. For ω ∼ 1/m1, the integrand can be expanded as a series in terms of
t1 and ω with the results, on keeping only the leading terms,

K2
1
d2�1

dK2
1

≈ −K2
1

πm1

∫ 1

1/m1

dω

[
4t1(

t2
1 + ω2

)3/2 + 4

t2
1 + ω2

− 8t2
1

(t2 + ω2)2

]
≈ −4K2

1c

π

[
1

τ1

(
1 − 1√

τ 2
1 + 1

)
+ 1

1 + τ 2
1

]
. (60)

As a cross-check, we have also verified that this agrees with the tedious explicit calculations. As the difference between G and
g1 are of the order of ω2/Y1, we find that by replacing G by g1 in �1 does not change the scaling function. This means that
near T1c, the net specific heat C1(J1,J2; T ) defined in (I.11) has the same scaling behavior as an infinite strip of width m1 and
couplings J1. Specifically, we find

C1(J1,J2; T ) ≈ A0 ln m1 + Q(τ1) ≈ C∞(J1; T ), A0 = 8K2
1c

/
π = 2[ln(

√
2 + 1)]2/π, (61)

where

Q(τ1) = 1

2
A0

[ ∫ 1

0
dφ

d2

dτ 2
1

H(τ1,φ) +
∫ ∞

1
dφ

d2

dτ 2
1

δH(τ1,φ)

+ 3 ln 2 − 2 ln
(
1 +

√
τ 2

1 + 1
)

−
(

2 + 1

τ1

)(
1 − 1√

τ 2
1 + 1

)
− 1

1 + τ 2
1

]
. (62)

Letting σ = 0 in (2.62) of Ref. [14] we find that the scaling
function given there is almost identical to this result; however,
the difference term −A0π/4 in (2.62) of Ref. [14] turns out to
be a slip [16]. More recently the finite-size scaling functions
for the Ising model have been shown [17] to be of universal
character.

Now to study the specific heat near the lower special
region T 
 T2c, we may use the same steps to analyze the
integral in (47). Because of (49), for φ = m2ω ∈ [0,1], we
find that (45) becomes

W2 ≈ H(−τ2,φ) = ln[cosh 2X2 − sinh 2X2(τ2/X2)], (63)

where

τ2 = m2t2, X2 =
√

τ 2
2 + φ2; (64)

for φ ∈ [1,∞], the integrand is approximated by

δH(−τ2,φ) = ln[1 + e−2X2 (X2 + τ2)/(X2 − τ2)]. (65)

Consequently, the integral in (47) becomes

f2(J1,J2; T ) ≈ F2(−τ2) + �2 + �2, (66)

where

F2(−τ2) = 1

m2
2π

[ ∫ 1

0
dφ H(−τ2,φ) +

∫ ∞

1
dφ δH(−τ2,φ)

]
,

(67)

�2 = 1

π

∫ 1

1/m2

dω√
1 − ω2

ln α2, (68)

�2 = 1

πm2

∫ 1

1/m2

dω√
1 − ω2

[ln(1 + G) − ln(1 + g1)]. (69)

Again the derivatives of �2 and �2 can be evaluated, with
results which can be obtained from (59) and (60) by replacing
τ1 by −τ2, and m1 by m2. The second derivative of F2(−τ2)
can also be evaluated to find [18] for T ∼ T2c,

C2(J1,J2; T ) ≈ A0 ln m2 + Q(−τ2), τ2 = t2m2. (70)

Finally, comparing the free energy in (13) with U+ given by (5)
with (46) with W2 given in (45), and then using (49), we find
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that for T ∼ T2c,

(1 + s−1)C(0,J2; Ť ) = C2(J1,J2; T ) + O(ln m2/m2)

≈ A0 ln m2 + Q(−τ2), (71)

where Ť is defined in (I.19) relating to t2 → −t2.

V. ENHANCEMENT

Since the lower maxima of the specific heats C2(J1,J2; T )
of the coupled system are above T2c, while the maxima of the
specific heats C(0,J2; T ) of the uncoupled system are below
T2c, we have introduced in the specific heats C(0,J2; Ť ) whose
free energy is defined in (13) and which has the same behavior
as C2(J1,J2; T ) for T ∼ T2c as shown in (71). We have also
defined in Part I [1] the net enhancement of the specific heat
as

E(J1,J2; m1,m2; T )

= C(J1,J2; T ) − C(J1,0; T ) − C(0,J2; Ť (r)). (72)

Near T1c, we find that C(0,J2; Ť ) is similar to C(0,J2; T ) in
that it is relatively small and nonsingular and, in fact, does
not contribute to the scaling function. We may use (36), (10),
and (11) to rewrite the enhancement as

E(J1,J2; m1,m2; T ) = C1(T ) − C∞(T )

1 + s
+ δC, (73)

where we define the difference δC as

δC = C(0,J2; T ) − C(0,J2; Ť (r)) 
 0. (74)

Indeed for e−2m2/ξ2(T ) � 1 we find that C1(T ) has the same
scaling behavior as C∞(T ). From (61), we thus find that the
enhancement is of the order of a correction to scaling. As (59)
gives the magnitude of the corrections to scaling, we find
that (73) becomes

E(J1,J2; m1,m2; T ) ≈ B0(r) ln m1 + B(r,τ1)

m1 + m2
, (75)

where B0(r) and B(r,τ1) are functions of order unity whose
forms can be gauged from Figs. 9 –11 of Part I. On the other
hand, we find from (71) the corresponding result

E(J1,J2; m1,m2; T ) ≈ B̂0(r) ln m2 + B̂(r,τ2)

m1 + m2
, (76)

for T near T2c, when e−2m1/ξ1(T ) � 1, with B̂0(r) and B̂(r,τ2)
appropriate functions of order unity. As the relative strength
r increases, T2c and Tc approach T1c, because T2c = rT1c

and T2c < Tc < T1c. This also mean that the regimes in
which (61) or (71) are valid shrink. The explicit form of these
corrections to scaling and the functions B0(r), B(r,τ1), B̂0(r),
and B̂(r,τ2) are not easy to obtain exactly and the computations
have not been attempted. Comparing with (I.23), we have
B0(r) = B+(r) and B̂0(r) = B−(r).

VI. SUMMARY

For the alternating layered Ising model, we show there
exists a well defined critical temperature, at which, the specific
heat diverges according to (21). However, for fixed relative
strength r = J2/J1 �= 1, and s = m2/m1 �= 0, we find the
amplitude A(r,s) decreases exponentially fast in m2. For large
enough m1 and m2 the specific heat also has two distinct
maxima satisfying the relations Tc < Tmax1 < T1c and T2c <

Tmax2 < Tc. These general results agree with the experiments
on superfluid helium by Gasparini and co-workers [2–7].

Near T1c, we find the net specific heat, C1(T ) defined
in (36), obeys finite-size scaling as established in (61) when
e−2m2/ξ2(T ) is negligible. On the other hand, near T2c, the
lower maximum, we find the corresponding C2(T ), whose
free energy is defined in (46), obeys the finite-size scaling
given by (71) when e−2m1/ξ1(T ) is small; remarkably, the sign
of the appropriate scaled temperature deviation T − T2c is then
reversed from that for an infinite strip of finite width. However,
this corresponds qualitatively to the observed enhancement in
the experiments induced by the proximity effects of ordered
regions below the true bulk critical point.

It should be noted, however, that modeling the experimental
systems would be improved by using three spatial dimensions
and, furthermore, Ising spins would better be replaced by XY

spins.
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