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Criticality in alternating layered Ising models. I. Effects of connectivity and proximity
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The specific heats of exactly solvable alternating layered planar Ising models with strips of width m1 lattice
spacings and “strong” couplings J1 sandwiched between strips of width m2 and “weak” coupling J2, have been
studied numerically to investigate the effects of connectivity and proximity. We find that the enhancements of the
specific heats of the strong layers and of the overall or “bulk” critical temperature Tc(J1,J2; m1,m2) arising from
the collective effects reflect the observations of Gasparini and co-workers in experiments on confined superfluid
helium. Explicitly, we demonstrate that finite-size scaling holds in the vicinity of the upper limiting critical
point T1c (∝J1/kB ) and close to the corresponding lower critical limit T2c (∝J2/kB ) when m1 and m2 increase.
However, the residual enhancement, defined via appropriate subtractions of leading contributions from the total
specific heat, is dominated (away from T1c and T2c) by a decay factor 1/(m1 + m2) arising from the seams (or
boundaries) separating the strips; close to T1c and T2c the decay is slower by a factor ln m1 and ln m2, respectively.
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I. INTRODUCTION

Many experiments performed on 4He at the superfluid
transition in various spatial dimensions [1], reveal excellent
agreement with general finite-size scaling theory [2,3]. Fur-
thermore, when small boxes or “quantum dots” of helium were
coupled through a thin helium film, effects of connectivity and
proximity were discovered and quantified [4–9].

To gain some more detailed theoretical insights into the
proximity effects, we study here the specific heats of an
alternating layered planar Ising model, which consists of
infinite strips of width m1 lattice spacings in which the
coupling or bond energy between the nearest-neighbor Ising
spins is J1, separated by other infinite strips of width m2 bonds
(or lattice spacings) whose coupling J2 is weaker. This is
illustrated in Fig. 1.

When J2 vanishes, the model becomes a system of
noninteracting infinite strips of finite width, each of which
essentially behaves as a one-dimensional Ising model. This
means, in particular, that the specific heat is not divergent but
rather has a fully analytic rounded peak. However, as long
as J2 �= 0, the system is a two-dimensional (2D) bulk Ising
model, whose specific heat per site diverges logarithmically
at a unique bulk critical temperature Tc(J1,J2; m1,m2) in the
form

C(T )/kB ∝ −A(r,s) ln |1 − (T/Tc)| + B(r,s) + · · · , (1)

where we have introduced the basic weakness or coupling ratio
r and the relative separation distance s, namely,

r = J2/J1 < 1, s = m2/m1. (2)

In fact, as will be shown in Part II [10], the amplitude A(r,s) of
the logarithmic divergence decays exponentially as a function
of m1 or of m2 [10]; indeed, at fixed s and r → 1, the amplitude
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decays as Pm1e
−Pm1 , where P ∝ (1 − r)s/(1 + s) as m1 →

∞. This behavior is evident for r = 0.3 in Fig. 2(a), which
shows that the divergence, while obvious and dominant for
m1 = m2 < 3, rapidly becomes no more than a minuscule
spike, which soon becomes invisible on any graphical plot.
On the other hand, for greater values of the coupling ratio r

the logarithmic divergence remains dominant for larger values
of m1 and m2 as seen in Fig. 2(b). But returning to Fig. 2(a) with
r = 0.3, one observes that as soon as the strip widths m1 = m2

exceed three lattice spacings, there appear two further specific
heat peaks, albeit rounded; these grow rapidly in height and
sharpness, and as m1 and m2 increase, they soon dominate the
plots.

Now Fig. 2 is based on exact analytic calculations ex-
pounded in Part II of this article [10]. In fact, the analysis
of the finite-size behavior of planar Ising models based on the
exact solution of Onsager, as extended by Kaufman [11], goes
back to the work of Fisher and Ferdinand [12,13] in 1969.
Specifically, the solubility of arbitrarily layered planar Ising
models was first noted and reported at a conference in Japan
[13], while independently, McCoy and Wu [14] developed and
analyzed randomly layered Ising models. The thermodynamics
for regularly layered models was developed by Au-Yang and
McCoy [15] and Hamm [16], while the scaling behavior of
a single strip of finite width was elucidated by Au-Yang and
Fisher [17].

In general the bulk critical temperature can be simply stated,
for a layered distribution, as [13]

kBTc〈〈ln coth(Jx/kBTc)〉〉 = 2〈〈Jy〉〉, (3)

where the brackets 〈〈·〉〉 denote an average over the distribution,
random or regular of the distinct number (say n < ∞) of lattice
spacings constituting a layer of finite width. For the alternating
layered Ising model, this becomes

2J1(1 + rs) = kBTc[ln coth(J1/kBTc)

+ s ln coth(rJ1/kBTc)], (4)
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FIG. 1. The planar, square lattice alternating layered Ising model
considered. The widths m1 and m2 are measured in nearest-neighbor
lattice spacings a, while nearest-neighbor Ising spins σi = ±1 are
coupled via pair Hamiltonians Jij σiσj with Ji,j = J1 or J2 as
illustrated schematically. On the seams at lattice sites with x =
n(m1 + m2)a + a for n = 0,±1,±2, . . . , the vertical bonds are of
energy J1, while the horizontal bonds are of strength J1 on the right
but J2 on the left; conversely, for the seams at x = (n + 1)m1a +
nm2a + a the vertical bonds have strength J2, while the horizontal
bonds on the right are of energy J2 but J1 on the left.

which depends only on the weakness ratio r and the relative
separation s.

Then as m1 and m2 become large, the upper and lower
rounded peaks approach limiting values T1c and T2c [as evident
in Fig. 2(a)], which, in fact, match the corresponding bulk
(i.e., uniform) two-dimensional Ising models with coupling
constants J1 and J2. Thus the limiting values T1c and T2c(r)
are known [11,12,14] and given by

kBT1c/J1 � 2.269 185 312,
(5)

kBT2c/J1 � r · 2.269 185 312.

It proves easy to establish the expected inequalities

T2c(r) � Tc(r,s) � T1c. (6)

II. QUALITATIVE OBSERVATIONS

To explore further and develop the analogies with the
observations on superfluid helium systems, we retain the value
of the weakness ratio r = 0.3 [used in Fig. 2(a)] but increase
the relative layer separation to s = 2. The results for m1 = 8
and 16 [as used in Fig. 2(a)] are presented in Fig. 3 (see the
solid curves). As anticipated, no sign of any singularity at Tc

is visible. It should be noted, nonetheless, that were one to
examine the overall spontaneous magnetization M0(T ) one
would find—and on a plot see—that M0 vanished identically
for T > Tc but was nonzero [and varying as ∝ (Tc − T )β

with β = 1
8 for 2D Ising layers [2,3,14]] as soon as T < Tc.

In the experiments on superfluids the analogous statement
concerns the overall superfluid density ρs(T ) [1]; this vanishes
identically above the overall or bulk λ transition at Tλ(≡Tc) but
is detectable, via setting up persistent superflow fluid currents,
below Tλ [6,8]. [In a bulk three-dimensional (3D) superfluid
ρs(T ) varies as (Tλ − T )ζ with ζ � 0.67, but in a planar 2D
superfluid film of thickness L, ρs(T ) increases discontinuously
at the corresponding superfluid transition temperature Tc(L) on
lowering the temperature [1].]

On the other hand, the temperatures of the upper and lower
rounded maxima increase (and decrease, respectively), as m1

increases in Fig. 3. But now, using the explicit results for the
infinite strip of finite width [17], we also show, as dashed
curves in Fig. 3, the totally decoupled r = 0 (or J2 = 0) plots

FIG. 2. (Color online) (a) The specific heats per site with relative
strength r = J2/J1 = 0.3 and relative separation s = m2/m1 = 1
for m1 = 2,4, . . . ,16. The amplitude A(r,s) of the logarithmic
divergence at Tc(r,s), which dominates for m1 = 2, decreases rapidly
as m1 increases. Thus, the small spike at the “true” bulk critical point
Tc (indicated by the dotted vertical line), becomes barely visible
for m1 � 8. (b) Plots of the specific heats for fixed m1 = m2 = 16
and so s = 1 but for increasing relative strength r . Note that the
logarithmic peak at the overall or bulk critical point Tc(r,s), indicated
by short vertical dotted lines, remains clearly visible when r = 0.7
and dominates entirely when r = 0.9. The vertical dashed lines
denote the positions of T2c(r). Unlike part (a), now the spike
remains evident at m1 = 16 when r ↑ 1. However, as A(r,s) becomes
small, two quite distinct rounded peaks appear moving toward the
limiting values T2c(r) (denoted by vertical dashed lines) and T1c, as
m1 = m2 → ∞.
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FIG. 3. (Color online) The specific heats of alternating layered Ising models with relative strength r =0.3 [as in Fig. 2(a)] and relative
separation s = 2 for m1 = 8,16. The dashed plots denote the corresponding decoupled specific heats when J2 = 0 (r = 0), while the dotted
lines represent the specific heats when J1 = 0 (or r → ∞). The inset displays the distinct maxima near T2c, dotted below but solid above.

for the two cases m1 = 8 and 16. Clearly the uncoupled upper
maxima fall below T1c just as do the coupled (r = 0.3) results.
(It is worth noting, however, that for a finite n × n Ising lattice
with periodic boundary conditions, as studied by Ferdinand
and Fisher [12], the maxima in the specific heats lie above
the bulk critical temperature T1c.) Nevertheless, there is clear
evidence of a coupling or proximity effect in that the specific
heats for the alternating, coupled system lie markedly above
those for the decoupled (r = 0) strips. This same effect is seen
in the experiments when finite boxes are coupled by a helium
film [6,8].

Complementary phenomena are observed around the lower
maxima. Thus the dotted plots in Fig. 3 show the finite-width
result for the situation r → ∞, or, more intuitively, J1 = 0,
for m1 = 8 and 16 (i.e., m2 = 16 and 32). These decoupled
specific heats appear as very sharp, but still finitely rounded,
spikes. However, it must be noted that these r → ∞ maxima
lie below T2c, in accord with expectation for a finite-width
strip. On the other hand, the maxima of the coupled alternating
system lie above the limiting value T2c as seen clearly in the
inset in Fig. 3. Once again there is an unmistakable proximity
or enhancement effect that is also found in the experimental
studies [6,8].

As a next step of our qualitative exploration, we present
in Fig. 4 the effects of varying the relative separation s for
significantly wide, m1 = 18, strips spaced apart by weaker
strips of relative strength r = 0.3 (as before). In this case
the first point to notice is that Tc(r,s) increases quite rapidly
towards T1c as the separation s approaches zero. Next, the

uncoupled (r = 0) specific heats near T1c (shown dashed as
in Fig. 3) all have maxima located at the same temperature,
determined only by m1 = 18 for finite-width strips, while
their magnitude is determined by s simply via normalization,
either through relative area or on a per-site basis. However,
there is still clear enhancement in the coupled layers even
though the corresponding rounded maxima deviate very little
in location from the uncoupled case. By contrast near T2c,
as illustrated by the inset, the displacements even of the
uncoupled maxima (shown dotted), depend significantly on
the relative separation ratio s. Again, nonetheless, there
is proximity induced enhancement of the peaks both in
magnitude and displacement above T2c.

Finally, we may enquire about the level of the specific
heats around the bulk critical point Tc or in the vicinity
of the minima observed in Figs. 2–4 that lie roughly at
Tmin � 1

2 (T1c + T2c). One may ask, for example, how well the
levels are approximated by appropriately weighted sums of
the uncoupled peaks around T1c plus some, perhaps reversed
contribution from T2c. For these purposes, however, we need
to proceed more quantitatively.

III. SCALING EXPLORATIONS NEAR THE MAXIMA

We would like to relate the observations embodied in
Figs. 2–4 to more general scaling concepts. To this end,
recall [2,3,12,13] that a bulk system with a critical temperature
Tc may be characterized by a correlation length ξ (T ) which
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FIG. 4. (Color online) Specific heat plots for relative strength r = 0.3 [as in Figs. 2(a) and 3] but with relative separations s = 1/3, 1, and
5/3 when m1 = 18. Again the decoupled r = 0 behavior is seen in the dashed plots, while for the opposite limit r → ∞ the plots are dotted.
The short vertical lines locate the bulk critical points Tc(r,s), which decrease as s increases. The inset shows various coupled and uncoupled
maxima near T2c.

diverges on approach to criticality as

ξ (T ) ≈ ξ0/|t |ν with t = (T/Tc) − 1 → 0, (7)

where ν is a characteristic critical exponent, while ξ0 is a
length of order the lattice spacing a, or molecular size, etc.
For 2D Ising systems one has [2,3,12,14] ν = 1, whereas for
superfluid helium in three bulk dimensions ν � 0.67 [1]. Then
in a system limited in size by a finite length L = 	a, the scaling
hypothesis asserts, in general terms, that when 	 and ξ (T ) are
large enough, the rounding of critical point singularities is
primarily controlled by the ratio y = L/ξ (T ).

Consequently, for the finite-size behavior of the specific
heat per site, which diverges in bulk as |t |−α where α is
typically small (or even negative), the basic scaling hypothesis
may be expressed as

C(	; T ) ≈ 	α/ν[Q(x) − Q0]/α, (8)

where Q(x) is the scaling function, while the scaled tempera-
ture is

x = 	1/ν t ∝ y1/ν = [L/ξ (T )]1/ν, (9)

and Q0 > 0 is a constant parameter. The exponent α in
the denominator in Eq. (8) allows for the limit α → 0,
which yields, with Q(0) → Q0, a logarithmic singularity as is
appropriate for 2D Ising systems. One may then take

C(	; T ) ≈ (Q0/ν) ln 	 + Q(	1/ν t) (10)

as the basic hypothesis where, for use below, we note that
at criticality one has C(	; Tc) ≈ (Q0/ν) ln 	 + Q(0). In fact,
this hypothesis has been established explicitly for infinite Ising
strips of width 	 and Q(x) has been explicitly determined [17].

A. Upper maxima near T1c

To apply these concepts to our layered Ising system, in
the first case for the upper maxima near T1c, we recall from
Figs. 3 and 4 that leaving aside relatively small enhancements
in magnitude, the total specific heat C(J1,J2; T ) approaches
rather well the limiting forms [17] of a suitably normalized sin-
gle strip of width m1. Accordingly, we subtract a contribution
from noncoupled weaker Ising strips by defining

C1(J1,J2; T ) = (1 + s)[C(J1,J2; T ) − C(0,J2; T )], (11)

where the normalization factor (1 + s) is needed for the scaling
plots now to be examined. Finally in accord with (10) and the
subsequent remark we introduce the upper or stronger net
finite-size contribution

�C1(J1,J2; T ) = C1(J1,J2; T ) − C1(J1,J2; T1c), (12)

in which the value at the limiting critical point T1c has been
subtracted. If we accept the identifications 	 ⇒ m1 and t ⇒
t1 = (T/T1c) − 1 and recall ν = 1, we might expect �C1(T )
to obey scaling in terms of the scaled temperature variable

x1 = m1[(T/T1c) − 1] ≡ m1t1. (13)
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FIG. 5. (Color online) Scaling plot vs x1 = m1t1 for the upper
or stronger net finite-size contribution, namely, �C1(J1,J2; T ) as
defined in the text for strong strips of width m1 = 18 at various
separations but fixed r = 0.3. The solid curve is the plot of the specific
heat of an infinite strip of width m1 = 18 and coupling J1 when its
value at the bulk critical temperature T1c is subtracted [17].

This expectation is well supported by the plots in Fig. 5 for
m1 = 18 and s = n/3 for n = 1,2, . . . ,5: the “data collapse”
is strikingly well realized.

Beyond this, however, explicit calculations [10] show that,
asymptotically, �C1(T ) is simply related to the limiting
scaling function Q∞(x1) for an infinite strip of coupling J1 and
width m1 already known explicitly [17]. Specifically, allowing
for normalization, yields

�C1(J1,J2; T ) ≈ (1 + s)[C(J1,0; T ) − C(J1,0; T1c)]

≈ Q∞(x1) − Q∞(0), (14)

where, to complete the description we report [10]

(1 + s)C1(J1,J2; m1,m2; T1c)

≈ C∞(J1; m1; T1c) ≈ A0 ln m1 + Q∞(0);
(15)

A0 = 2[ln(
√

2 + 1)]2/π,

Q∞(0) ≈ 0.306 81A0,

which (recognizing that ν = 1 for 2D Ising models) is in accord
with (10). Note that in this limit not only has the dependence
on m2 dropped out but also the dependence on J2. However,
as regards the enhancement seen in Figs. 2–4, we know that
m2 and J2 do play a role. This will be studied further below.

B. Lower maxima near T2c

Let us now shift attention to the behavior of the specific heat
peaks of the alternating system, near the lower (or weaker)
limiting critical point T2c. The rounded maxima are shown in
detail in the insets of Figs. 3 and 4. Now we can follow the

FIG. 6. (Color online) Scaling plots versus the scaling variable
x2 = m2t2 for the lower or weaker net finite-size contribution
�C2(J1,J2; T ), as defined in relations (16) and (17), for strips of
width m2 = 16 and r = 0.3 for various relative separations. The solid
curve represents the corresponding asymptotic form Q∞(−x2) −
Q∞(0), for an infinite strip of finite width and coupling J2, with
the temperature reflected about T = T2c [17]. The dashed curve
represents data for a wider strip with m2 = 60.

procedure that led to the definition (11). Thus we consider the
normalized difference

C2(J1,J2; T ) = (1 + s−1)[C(J1,J2; T ) − C(J1,0; T )]. (16)

Then, following again the previous analysis, the weaker net
finite-size contribution may be defined as in Eq. (12), by

�C2(J1,J2; T ) = C2(J1,J2; T ) − C2(J1,J2; T2c). (17)

It is natural to suppose that �C2(T ) might obey scaling in
terms of the new scaled temperature variable

x2 = m2[(T/T2c) − 1] ≡ m2t2. (18)

This hypothesis is tested in Fig. 6 and, evidently, is
remarkably successful, exhibiting excellent data collapse. But
more remarkable yet is the evidence provided by the solid line
plotted in Fig. 6. This derives directly from the limiting scaling
function for an infinite strip [17] of coupling J and finite width
m but with the sign of the argument reversed. In other words,
the previous asymptotic form (14) is now, as established in
Part II [10], replaced by

�C2(J1,J2; T ) ≈ (1 + s−1)[C2(0,J2; Ť ) − C2(0,J2; T2c)]

≈ Q∞(−x2) − Q∞(0), (19)

where the modified temperature Ť is simply attained by
reflecting about T2c; explicitly we have

Ť (T ) = T2c − (T − T2c) = 2T2c − T . (20)
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It is appropriate to recall (15) which may now be rewritten to
complement (19) as

(1 + s−1)C2(J1,J2; m1,m2; T2c) ≈ C∞(J2; m2; T2c)

≈ A0 ln m2 + Q∞(0), (21)

in which the values of A0 and Q∞(0) are given in Eq. (15). We
may note, further, that in this limit the original dependence on
both J1 and m1 has vanished; but, once more, there are clear
residual effects associated with the proximity and interlayer
couplings.

IV. ENHANCEMENT EFFECTS

To address the behavior of the specific heats beyond the
leading scaling behavior revealed in Figs. 5 and 6, we may
define an “enhancement” by subtracting from the total specific
heat per-site contributions deriving from the corresponding
independent uncoupled strips. However, in doing this we
must recognize—following Fig. 6 and the result (19)—that
a reversed or reflected temperature variable is needed around
T2c. To this end we utilize the modified temperature variable
Ť (T ) defined in Eq. (20). Thus we specify the net enhancement
for fixed m1 and m2 by

E(J1,J2; m1,m2; T )

= C(J1,J2; T ) − C(J1,0; T ) − C(0,J2; Ť (r)). (22)

It is worth remarking parenthetically that in adopting this
definition of the enhancement we are, in particular, utilizing
the theoretical result (19) proved for the alternating Ising strips
[10]. In more general situations (such as confined superfluid
helium) the last term in Eq. (22) should be replaced by an
asymptotic term obtained through an appropriate initial data

FIG. 7. (Color online) Plots of the enhancement E(t) versus
t = (T/Tc) − 1 for m1 = 8, r = 0.3 and various relative separations
s. The short vertical lines above Tc(r,s), i.e., for t > 0, are the
corresponding positions of T1c, while below Tc(r,s), they locate T2c.

analysis of the behavior close to T2c such as led to the original
(finite m2) form in Fig. 6.

In Fig. 7, we plot the enhancement for our alternating Ising
strips with r = 0.3 as a function of t = [(T/Tc) − 1] for m1 =
8 and various separations s. One sees that the logarithmic
divergence at t = 0 is barely visible for s = 1, and essentially
disappears for s > 1. In addition, as expected, the magnitude
of the enhancement decreases as s (or m2) increases; but by
what law?

To address this question we recall, first, that the leading
correction to the asymptotic form of the specific heat of
an infinite strip of finite width m must arise from the two

FIG. 8. (Color online) The enhancementE(t) multiplied by (m1 +
m2): (a) for m1 = 8 as in Fig. 7, and (b) for m1 = 16. The short vertical
lines locate the corresponding upper limiting critical points T1c.
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nonvanishing boundary free energy contributions [12,14,17,
18] which yield a total specific heat term of relative order
1/m. The effects of this are already evident in Fig. 6 where the
primary contribution (solid curve) is, especially for x2 � 2,
more closely approached by the data for m2 = 60 than that
for m2 = 16. It is clear that such corrections must arise also
in the bulk alternating strip system from the regularly spaced
modified boundaries or seams. By the same token, boundaries
or surface effects play similar roles in the experiments on
the dimensional crossover behavior of bulk specific heats of
helium [1,4] and should enter to some degree also for small
helium boxes coupled via helium films, etc. [6,8,9].

Accordingly, Fig. 8 presents the enhancements E(t) versus
t ∝ [T − Tc(r,s)], but now multiplied by the factor (m1 +
m2) which clearly should account in leading order for the
density of seams in the bulk. It is striking that the maxima
(close to T1c) and the minima (near T2c) appear to rapidly
approach almost constant values. This represents strong
evidence that the enhancement E(J1,J2; m1,m2; T ) is of order
1/(m1 + m2) as the relative separation s = m2/m1 increases at
fixed m1.

However, by comparing Figs. 8(a) and 8(b), it becomes
clear that the behavior of the rescaled enhancement peaks that
approach T1c, when s increases, depend quite noticeably on m1,

FIG. 9. (Color online) The rescaled enhancement (m1 + m2)E(T ) for r = 0.3 is plotted for m2 = 32, and m1 = 8,16,32,64 in (a) showing
that data collapses occur near T2c. The framed inset shows more detail near T1c as a function of t1 = (T/T1c) − 1. In (b) the plots are for
m1 = 32, and m2 = 8,16,32,64. Now the data become independent of m2 near T1c. The behavior near T2c is plotted versus t2 = (T/T2c) − 1
in the frame.
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FIG. 10. (Color online) Plots of the rescaled enhancement (m1 + m2)E(T ) for r = 0.5 as in Fig. 9. The short vertical lines denote the
positions of Tc(s).

the width of the strong strips. Specifically, the enhancement
peaks become both narrower, as indeed implied by Fig. 6, and
taller as m1 grows.

Consequently, we will separately investigate the behavior
of the enhancement close to T1c, noting that some logarithmic
dependence on m1 might be present; in complementary fashion
there might be a logarithmic variation with m2 in the vicinity
of T2c. Nevertheless, Fig. 8 suggests that the enhancements
rescaled by (m1 + m2) might approach more or less constant
shapes in the interval T2c < T < T1c.

Then, since the expected scaling behavior must switch in
the region between T1c and T2c, we anticipate, on the one
hand, that the rescaled enhancement near T1c as functions of

t1 = (T/T1c) − 1 are independent of m2 in accord with the
data collapse seen in Fig. 5, while on the other hand, near T2c

the rescaled enhancements as functions of t2 = (T/T2c) − 1
depend on m2 but become independent of m1, as borne out by
Fig. 6.

Accordingly, in Figs. 9–11 we plot the enhancements
rescaled by (m1 + m2) for the relative strengths r = 0.3, 0.5,
and 0.7, respectively. In parts (a) of these figures, the plots
are for fixed m2 = 32, with stronger strips of widths m1 =
8n for increasing values of n(�8). Evidently, the rescaled
enhancements are close to independent of m1 for T near T2c.
The framed plots in the figures present more detail as a function
of t1.
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FIG. 11. (Color online) The rescaled enhancements (m1 + m2)E(T ) for r = 0.7: (a) for m2 = 32, and m1 = 8n for n = 2,3, . . . ,7,8; data
collapse occurs near T2c, while the frame shows details near T1c vs t1; (b) for m1 = 32, and m2 = 8n for n = 2,3, . . . ,7,8; the plots near T1c

are now independent of m2, while the behavior near T2c is shown in the frame.

In part (b) of Figs. 9–11, the widths of the stronger strips are
fixed at m1 = 32, while m2 = 8n increases. Now data collapse
is seen near T1c. In the frames the reduced enhancements
are plotted near T2c as functions of t2 for the increasing
values of m2.

Inspection of Figs. 9–11 demonstrates that as m1 increases,
the upper maxima approach T1c from below, and grow steadily
in height resembling the corresponding specific heats shown
in Fig. 2(a). By contrast, the lower rounded peaks of the
rescaled enhancements, though much smaller, lie above the
limit T2c and similarly grow in height as m2 increases. These

observations in comparison with Figs. 2(a), 3, and 4 and
the subsequent scaling analyses utilizing relations (10), (15),
and (21), strongly suggest the presence of a logarithmic
dependence of the peak heights on m1 for T > Tc, but on
m2 for T < Tc.

To investigate this issue concerning the vicinities of T1c

and T2c further, we have calculated the critical values of the
rescaled enhancements, namely, (m1 + m2)E(T1c) and (m1 +
m2)E2c(T2c), for r = 0.3, 0.5, and 0.7 and for eight specific
values of m1 or m2, respectively, in the range 8 up to 64. The
results are plotted vs ln m1,2 in Fig. 12.
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FIG. 12. (Color online) The rescaled enhancement (m1 +
m2)E(r; T ) evaluated at the limits (a) T1c and (b) T2c for three values
of r , plotted versus ln m1 and ln m2, respectively. The linear fits are
as specified in Eq. (23) and Table I.

Evidently the data are well described by the form

(m1 + m2)E±
c (m) � B±(r) ln[m/m±

0 (r)], Tic ≷ Tc, (23)

where fitted values of the amplitudes B±(r) and offsets m±
0 (r),

for the upper and lower maxima, are set out in Table I. Both the
amplitude and the offset appear to vary exponentially rapidly
with r in the region, say 0.2 < r < 0.8.

Beyond the relatively slow logarithmic growth of the en-
hancement maxima at both limits, T1c and T2c, it is reasonable,
on the basis of Figs. 9–11, to speculate as to the limiting

TABLE I. Amplitudes and offsets for the rescaled enhancements
at T1c and T2c as shown in Fig. 12. Note that the very large value
m−(0.3) = 12 600 combined with the small value for B−(0.3) yields
B− ln(8/m−

0 ) = −0.207, which agrees with the plot in Fig. 12(b).

r = 0.3 r = 0.5 r = 0.7

B+(r) 0.0800 0.2071 0.5115
m+(r) 0.358 0.677 1.427
B−(r) 0.0282 0.1405 0.4913
m−(r) 12600 6.13 3.50

behavior of E(J1,J2; m1,m2; T ) in the three regions: above,
below, and in-between T1c and T2c.

It seems natural to propose, first, a logarithmic form in t1
and t2, say,

(m1 + m2)E(T ) ≈ A+(r) ln |t1| + C+(r), if t1 > 0,
(24)

≈ A−(r) ln |t2| + C−(r), if t2 < 0,

as valid above and below T1c and T2c. Since the limit r → 1
corresponds to a uniform Ising square lattice with a symmetric
logarithmic singularity, as in Eq. (1), it might be tempting
to guess that the amplitudes A+(1) and A−(1), and the
backgrounds, C+(1) and C−(1), are equal; but that would surely
go beyond what our numerical evidence might support.

As regards the intermediate regions, however, a very dif-
ferent behavior seems implied. Thus, ignoring the logarithmic
spikes, for T between T1c and T2c and for r not too large, the
enhancement (m1 + m2)E(r; T ), appears to increase smoothly
and monotonically. Indeed the large s−1 plots are almost linear.
On extrapolating this linearity up to T1c and down to T2c in
a nonsingular fashion, one finds clear numerical limits for
t1 → 0− and t2 → 0+. Specifically, the numerical evidence
suggests the increasing values

(m1 + m2)E+
c (r) � 0.27,0.56,1.3,

(25)
(m1 + m2)E−

c (r) � −0.20,0.15,0.75,

for r = 0.3, 0.5, and 0.7, respectively. While further numerical
studies might reduce the uncertainties of these approximate
estimates, a firm theoretical base unfortunately seems beyond
current reach.

V. SUMMARY: 2D-1D ISING VS 3D-0D
SUPERFLUID HELIUM

In this section we will summarize our study of connectivity
and proximity in two-dimensional alternating layered Ising
models and examine the relationships to the extensive studies
of Gasparini and co-workers [1,4–6,8,9] on coupling and
proximity effects in small “boxes” of liquid helium-4 in the
vicinity of the bulk, three-dimensional superfluid transition.

To start, we considered a set of strong square-lattice Ising
model strips, with spin-spin interaction J1 and finite width
m1, that in the limit m1 → ∞ have a bulk two-dimensional
Ising transition with a logarithmically divergent specific heat
at a temperature T1c. For finite m1, however, an isolated one-
dimensional strip will display only a rounded maximum at
a lower temperature, say T1max, which, for m1 large enough,
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will be well described by finite-size scaling theory [2,3]. Our
numerical studies explored values of m1 up to 64.

This situation may be compared with three-dimensional
but finite-sized, and hence zero-dimensional, boxes of liquid
helium of linear dimension, say L1, which in the limit L1 → ∞
will exhibit a sharp specific heat singularity at the bulk λ point,
Tλ. In the experiments of Gasparini and co-workers [5,6,8,9],
box sizes L1 = 1 and 2 μm were examined, as described
further below. But it might be noted that, on accepting a
microscopic scale [9] ξ+

0 = 0.143 nm, these magnitudes of L1

might more realistically be viewed as corresponding to m1 �
7000–14 000, values far beyond our computing capabilities.

Second, in the Ising context (as illustrated in Fig. 1) the
infinite number of strong strips were connected by weak or
coupling strips with interactions J2 = rJ1 (with r < 1) and
width m2 = sm1 [as introduced in Eq. (2)], where our exact
calculations yielded explicit results for interaction ratios and
relative spacings in the ranges, say, r = 0.2–0.9 and s = 0.3–
2.0 (although in some cases up to s = 8). For large enough
m1 and m2 and small enough r , four new distinct temperatures
(beyond T1c) were identified in plots of the specific heats (per
lattice site) of the coupled system (see Figs. 1–4). In decreasing
magnitude these were

T1c > T1max > Tc(r,s) > T2max > T2c, (26)

where T1max and T2max locate rounded but (for m1,m2 � 8)
increasingly sharp maxima, while Tc(r,s) locates an overall
or bulk critical point where the specific heat must diverge
logarithmically. However, the amplitude of this logarithmic
singularity vanishes exponentially fast [10] with increasing
(1 − r)m1m2/(m1 + m2), as indicated in the text following
(2). As a consequence, the divergence soon becomes invisible
on graphical plots (see Figs. 2 and 3). Finally, T2c represents the
bulk Ising critical point for interactions J2; consequently, when
m2 → ∞, the lower-T (or weaker) maxima obey T2max →
T2c, which simply corresponds to the weaker, coupling strips
become infinitely wide.

In the experiments [6,8,9] a large two-dimensional lattice of
the liquid helium boxes, at edge-to-edge separation L2 (say, =
sL1) with L2 = 1–4 μm, was connected and, thereby, coupled
to a greater or lesser degree, via—in the later experiments—
a “two-dimensional helium film of thickness 33 nm.” This
film corresponds, in the alternating-strip Ising model, with
the weak strips that connect and couple the strong strips; in
this way one might hope to identify an effective J2 from the
superfluid transition of the film, at say, Ts < Tλ (see below).
In the earlier experiments [6,8], the connection of the boxes
was achieved via channels of width [6] 1 μm and depth 19 nm
(for L1 = 1 μm boxes) and of width [6,8] 2 μm and depth 10
nm (for L1 = 2 μm boxes); in the Ising context, this set of
channels then constitutes the weak system.

Now proximity effects appear dramatically in the Ising
context via the fact—clear in Figs. 2–4, and especially in
Fig. 6—that although an isolated and finite 1D strip must
always have its specific heat peak below the corresponding
bulk critical temperature [10], the lower-T peaks (associated
with the weak strips and bulk temperature T2c) are always
located above T2c. For the parameters we have used, these
positive shifts amount to a few percent; more precisely, the
fractional shift is close to 0.89/m2. Evidently, the shifts must

be attributed entirely to the fact that the weak strips “feel,”
very directly, the ordering effects of the already well ordered
strong strips.

In the experiments on liquid helium, since all observed
features are close to Tλ, we follow Gasparini and co-workers
and use the temperature deviation variable

ṫ = (T/Tλ) − 1 < 0 for T < Tλ. (27)

Then Fig. 7 of Ref. [9] exhibits essentially the same proximity
effect. Specifically, while the specific heat maximum of
an isolated helium film occurs at ṫ∞2max � −2.4 × 10−3, the
presence of already superfluid boxes of size L1 = 2 μm spaced
edge to edge at L2 = 4 μm apart raises the maximum in the
film’s specific heat to ṫ2max � −1.4 × 10−3. That amounts to
a positive proximity shift of 0.1% of Tλ. While this is quite
small, the precision of the experiments is so great that the
effect is beyond question.

Another aspect of the proximity (not investigated directly
in the Ising strip system) is evident in Fig. 8 of Ref. [9].
This shows observations of the superfluid density ρs(T ), for
an isolated helium film; this vanishes (discontinuously) above
the corresponding λ point at ṫc = −3.0 × 10−3. On the other
hand, in the presence of the 2 μm boxes separated by 4 μm
the superfluid density of the connecting film is significantly
enhanced. Furthermore, the transition point itself rises, by
0.12% of Tλ, to ṫc = −1.8 × 10−3. Even more dramatic are the
observations of ρs(T ) shown in Fig. 16 of Ref. [9] (or Fig. 4 of
Ref. [8]): In the presence of L1 = 2 μm boxes spaced closer at
L2 = 2 μm edge to edge, the transition point of the film rises
to ṫc = −18 × 10−3, “a full decade closer to Tλ” as Perron
et al. [9] comment.

Beyond the proximity effects discussed, we have studied
within the model of alternating Ising strips, the enhancements
of the maxima caused by the coupling between the strips.
These effects can be made evident by first noting that merely
on the basis of finite-size scaling the specific heats should
display rounded maxima near to but, for the upper or strong
maxima, displaced below T1c—the bulk critical point of the
2D Ising model with interactions J1. To detect the effects of
the coupling, therefore, we have defined in Eq. (22) the net
enhancement E(T ) by subtracting the expected (and known
[10,17]) rounded maximum of an isolated strip (for given m1).
The definition (22) also includes deductions related to the
lower maxima associated with the weaker strips; but these are
of negligible magnitude in the vicinity of T1c.

Then, as seen clearly in Figs. 7–11, there are significant
residual contributions, due to the coupling, that increase or
enhance the upper rounded maxima well above the pure scaling
contributions. Further numerical explorations (see Figs. 9–12)
then demonstrate that the overall net enhancement can, at least
approximately, be decomposed into a finite background piece
of order 1/(m1 + m2) plus quite narrow although rounded
peaks near T1c and T2c of magnitude of order ln(mi)/(m1 + m2)
for i = 1,2, respectively. The location of the upper peaks is,
in all cases, given roughly by

t1max ≈ −0.893/m1. (28)

At this point these various conclusions, while in our view
fully convincing, lack support from exact asymptotic theory.
Nevertheless, it is certainly clear theoretically [18] that the
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regularly spaced seams or grain boundaries along which the
strong and weak strips meet, must give rise to corrections
asymptotically of order at least 1/(m1 + m2).

For the experiments on liquid helium the analogous en-
hancement effects arising from the coupling are evident in
Figs. 13 and 18 of Ref. [9] (and Fig. 3 of Ref. [8]). Specifically,
Fig. 13 for L1 = 1 μm boxes coupled via channels (of width
1 μm, depth 19 nm, with L2 = 1 μm) shows a relatively
narrow but well determined specific heat peak needed to
correct for the lack of scaling which is, otherwise, expected
for well isolated boxes of this size. Then, Fig. 18 shows
an enhancement form of quite similar shape and magnitude
when L1 = 2 μm boxes at separation L2 = 2 μm are coupled
via a 33 nm film. The enhancement here, in fact, increases
the peak height by about 9% (relative to uncoupled boxes),
while the peak location is again below Tλ at approximately
ṫmax = −20 × 10−6. If this displacement is compared with
the Ising result (28) one might conclude that an appropriate
match would require m1 of order 40 000; this is several times
larger than the previous estimate of an appropriate value of
m1 (in the third paragraph of this section). This difference
might, however, be related mainly to the distinctly different
dimensionalities entailed in the helium and Ising systems,
that, in turn, along with the different dimensionality of the
order parameter, is an effect hard to guess.

Finally, however, it is clear that while the behavior of the
alternating layered Ising model reflects quite directly many of
the novel proximity and coupling features uncovered in the

striking experiments of Gasparini and co-workers for liquid
helium [6,8,9] the quantitative features differ considerably.
More specifically, while the range of relative separations s =
m2/m1 explored numerically compares well with that relevant
in the experiments (where, essentially, L2/L1 = 1 or 2), the
strength ratio r , which in our study has been confined to r <

0.9, should be much closer to unity to match the experimental
data. One might, for example, use the observed values of the
superfluidity onset temperatures relative to Tλ and derive an
estimate for r from the ratios of Tc(r,s)/T1c, etc. Similarly,
one might regard the observed maximum of the specific heat
of an isolated 33 nm helium film as providing an estimate
of T2c in the model and hence of the ratio r = T2c/T1c =
J2/J1. Implementing these suggestions leads to values of (1 −
r) of order 3 × 10−3. In this regime of very small (1 − r),
the separate rounded peaks associated with T1c and T2c may,
indeed, not be realized, as already clear for (1 − r) = 0.1 in
Fig. 2. Clearly, the experiments represent a rather different
region of the underlying parameter space than that which we
have explored.
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