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We present fluctuation theorems and moment generating function equalities for generalized thermodynamic
observables and quantum dynamics described by completely positive trace preserving maps, with and without
feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify
the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We
show that for a specific class of generalized measurements, which include projective measurements, unitality
replaces microreversibility as the condition for the physicality of the reverse process in our fluctuation theorems.
We present an experimental application of our theory to the problem of extracting the system-bath coupling
magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum
annealing.
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I. INTRODUCTION

Fluctuation theorems provide powerful analytical tools
for nonequilibrium physics. Some 15 years ago, Jarzynski
discovered an equality for classical processes that shows how
to determine free energy changes by measuring only the work
performed on the system, without the need to determine the
accompanying entropy changes, and in particular without
the requirement that the processes be quasistatic. Consider,
for example, two thermal equilibrium states A and B of a
system, each state with different macroscopic thermodynamic
observables such as pressure and volume, but both at a fixed
inverse temperature β. The system is initially in state A, and
work is performed on the system according to some protocol
to drive it to the macroscopic conditions of state B. If the
system is not allowed to equilibrate, the system may not reach
the thermal equilibrium state B. Nevertheless, for this forward
process, the classical Jarzynski equality (CJE) [1]

〈e−β(w−�F )〉 = γ, (1)

where γ = 1, relates the statistical average 〈. . .〉 of the work
w done on the driven system to the free energy difference �F

of the final equilibrium state B (whether this state is reached
or not) and the initial thermal equilibrium (Gibbs) state A. In
particular, this result is independent of which protocol is used,
which is one of its remarkable features. In the presence of
feedback control (“Maxwell’s demon”), the efficacy parameter
γ differs from unity, and characterizes the efficacy of feedback
and the amount of information extracted [2].

The CJE follows directly from the Tasaki-Crooks fluc-
tuation theorem [3,4], which relates the probability density
function (PDF) of work done in the forward process PF (w) to
the PDF of a reverse process PR(w):

PF (w)e−β(w−�F ) = PR(−w). (2)

The reverse process describes the evolution of the system
starting from the thermal equilibrium state B and applying
an appropriately time-reversed work protocol on the system,

although this may not correspond to the time-reversed evolu-
tion of the forward process. A key element of the fluctuation
theorem is the requirement of a microreversibility condition,
which relates the forward and reverse dynamics at any given
instant in time. For example, for driven classical systems,
microreversiblity relates the flow of phase space points under
the forward driving protocol to the flow under the reversed
driving protocol, via the heat absorbed by the system [5,6].
For a specific pertinent statement of microreversiblity see, e.g.,
Eq. (5) in Ref. [3]. Many generalizations have been developed
(for reviews see, e.g., [6–8]), with appropriate generalizations
of the imposed microreversiblity condition. In particular, the
classical results (see also [9]) have been quantized, first
for thermal states undergoing unitary evolution [4,10], and
subsequently for thermal states undergoing nonunitary, open
system dynamics [11–19], including continuous monitoring
[20] and quantum feedback [2,21,22].

Here, we aim to show that there exists a single unified
framework from which all the quantum results can be derived
as well as generalized, using only basic tools of the theory of
open quantum systems [23] and quantum information theory
[24]. To this end, we derive a general fluctuation theorem
for quantum processes described by completely positive trace
preserving (CPTP) maps E , with or without feedback. CPTP
maps arguably represent the most general form of open
quantum system dynamics, under the assumption of an initially
uncorrelated system-bath state [23]. Our strategy leads to a
general and simple recipe for writing fluctuation theorems, not
all of which must correspond to a measurable thermodynamic
observable (note that work is not a quantum observable [14]),
or involve a physical reverse process. We show that in order
for a PDF for the reverse process to exist, the map E must be
unital, and we show that the map describing the reverse process
is simply the dual map E∗ of the forward process, which leaves
no ambiguity in defining the reverse process. In this sense,
unital channels emerge as playing a crucial role in fluctuation
theory for any CPTP map, replacing the role typically played
by the standard thermodynamic notion of microreversibility.
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Our work illuminates the special role played by the Gibbs state
and work measurements, both of which feature prominently in
the literature on fluctuation theorems.

We empirically determine the first moment of our integral
fluctuation theorem in our theory via an experiment involving
pairs of superconducting flux qubits on a programmable
chip. The first moment turns out to be a measure of the
information-geometric distance of the evolved state and the
virtual final equilibrium state, where virtual here signifies
that the equilibrium state is never actually reached by our
evolution. We show that these experimental results can be well
explained using a time-dependent Markovian master equation
with a free adjustable parameter determining the system-bath
coupling strength. As an application, our theory provides a
meaningful optimization target that allows us to determine
this parameter by fitting to the experimental data. We thus
establish quantum fluctuation theorems as important tools for
studying open quantum systems.

II. GENERAL FLUCTUATION THEOREM

A. Review of quantum Jarzynski equality for closed systems
with projective measurements

We briefly review the generalization of the CJE to the
quantum case of thermal states undergoing unitary evolu-
tion [4], as it will help set the stage for our work (see
also Appendix A). We consider a Hamiltonian H (t) that
interpolates between two system states described by H (0)
and H (tf ), with an associated unitary time evolution operator
U (tf ,0) = T+ exp (−i

∫ tf
0 H (t)dt). The system, described by

a density matrix ρ(t), is initially in the Gibbs state associated
with H (0):

ρ(0) = 1

Z(0)
e−βH (0), (3)

where Z(t) is the partition function associated with H (t).
A (projective) measurement P := {Pα = |εα(0)〉〈εα(0)|} of
the eigenenergy [associated with H (0)] is performed, which
selects the energy state |εα(0)〉 with probability pα =
e−βεα (0)/Z(0). The system is then evolved according to
U (tf ,0), and another projective measurement Q := {Qβ =
|εβ(tf )〉〈εβ(tf )|} of the eigenenergy [associated with H (tf )]
is performed. The conditional probability of measuring the
energy εβ(tf ) is given by

pβ|α = Tr[QβU (tf ,0)PαU †(tf ,0)]. (4)

Let us define the work performed during this evolution by
Wαβ = εβ(tf ) − εα(0) (this definition applies since the system
is closed). The PDF associated with W is

PF (w) =
∑
α,β

δ(w − Wαβ)pβ|αpα. (5)

Using that β�F = ln[Z(0)/Z(tf )] and the Dirac delta proper-
ties δ(x − x0)f (x) = δ(x − x0)f (x0), and δ(x) = δ(−x), we
note that upon multiplying both sides of the equation by

e−β(w−�F ), we have

PF (w)e−β(w−�F ) =
∑
αβ

δ(−w − W̃βα)

× Tr[PαU †(tf ,0)QβU (tf ,0)]
e−βεβ (tf )

Z(tf )

(6a)

= PR(−w), (6b)

where we have identified the right-hand side with the PDF
of the reverse process with work W̃βα = −Wαβ , for which
the following temporally ordered sequence applies: (i) the
system is initially in the Gibbs state associated with H (tf ),
(ii) a projective measurement Q is performed with outcome
probability qβ = e−βεβ (tf )/Z(tf ), (iii) the system evolves
unitarily via U †(tf ,0), and (iv) a projective measurement P
is performed. Equation (6b) is the closed system fluctuation
theorem, the integration of which gives a closed system
quantum Jarzynski equality exactly of the form of Eq. (1). Note
that in this case the reverse process is simply the time-reversed
process, a situation that will change in our more general
analysis below.

B. Quantum Jarzynski equality for generalized measurements

We now generalize the previous section result beyond ther-
mal states, unitary evolutions, and projective measurements.
Consider a fiducial initial state ρ, two sets of generalized
measurements P := {Pα} and Q := {Qβ} (see also [22]), a
CPTP map E (see also [25,26]), and a fixed, yet arbitrary dis-
tribution q := {qβ}, whose role we clarify later. The quintuple
(ρ,P,E,Q,q) is the basic input data describing the problem.
The measurement operators Pα satisfy

∑
α P †

αPα = 1 (the
identity operator), and similarly for Q. Generalized measure-
ments are the most general kind of measurements in quantum
theory, and they include projective measurements, positive
operator valued measures (POVM), and weak measurements
as special cases [24,27]. The CPTP map E has Kraus operators
{Ai}, i.e.,

E(X) =
∑

i

AiXA
†
i , (7)

where
∑

i A
†
i Ai = 1.

We first consider the forward process depicted in Fig. 1.
A mixed state ensemble ρp = ∑

α pαρα is prepared by
measuring P , so that the normalized state

ρα = PαρP †
α/pα (8)

EP Q

ρα E (ρα)

ρfρ

FIG. 1. The forward process protocol. A quantum state ρ is
prepared, measured (P), evolved via a CPTP map E , and measured
again (Q).
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has probability pα = Tr[P †
αPαρ].1 Next, ρα evolves under E ,

and finally the measurement Q is performed. The conditional
probability of observing outcome β given outcome α is then

pβ|α = Tr[Q†
βQβE(ρα)]. (9)

The marginal probability distribution of outcomes is f :=
{fβ}, where

fβ =
∑

α

pβ|αpα =
∑

α

p(α,β), (10)

and where p(α,β) is the joint probability distribution. In the last
equality, we used Bayes’ rule for the joint probability p(α,β).
We therefore have

fβ = Tr[Q†
βQβE(ρp)]. (11)

Note that the transition matrix M := {pβ|α}α,β of the forward
process is column stochastic:

∑
β

pβ|α = Tr

[∑
β

Q
†
βQβE(ρα)

]
= Tr[E(ρα)] = Tr[ρα] = 1,

(12)

where we used the normalization condition of the generalized
measurement Q and the fact that E is a trace preserving map.

Let the random variable V be a real-valued function
parametrized by the measurement outcomes {α,β}. V will play
the role of a generalized thermodynamic observable, where we
use the term “observable” in a loose sense since it is typically
an abstract quantity and only is a thermodynamic observable
in special cases. The PDF associated with V is

PE (v) :=
∑
α,β

δ(v − Vαβ)p(α,β) (13a)

=
∑
α,β

δ(v − Vαβ)Tr[Q†
βQβE(ρα)]pα. (13b)

Let us now choose

Vαβ = ln(pα/qβ ) (14)

[note that such a form will give us the expression found in
Eq. (6b)] and also define the generalized reverse thermody-
namic observable Ṽβα := −Vαβ = ln(qβ/pα). This choice of
Vαβ requires that pα �= 0 ∀ α, qβ �= 0 ∀ β. Then, using the
Dirac delta properties δ(x − x0)f (x) = δ(x − x0)f (x0), and
δ(x) = δ(−x), we find

PE (v)e−v =
∑
α,β

δ(v − Vαβ)Tr[ρ̃βE(ρα)]qβ (15a)

=
∑
α,β

δ(−v − Ṽβα)Tr[ραE∗(ρ̃β)]qβ =: FE∗ (−v),

(15b)

where ρ̃β := Q
†
βQβ and where we used the dual map E∗ with

Kraus operators {A†
i }, i.e., E∗(X) = ∑

i A
†
i XAi , for which

Tr[AE(B)] = Tr[BE∗(A)] for any pair of operators A and B.

1For a given generalized measurement P , the set of possible values
of the probabilities pα is in general constrained, even if the initial
state ρ is arbitrary (see Appendix B for an example of this).

Comparing Eqs. (13b) and (15b), it is tempting to identify
the latter with a PDF P̃E∗ (−v) associated with the dual map
E∗, however, there are important differences. First, while the
map E acts on a normalized state ρα , the “state” ρ̃β acted
upon by dual map is not necessarily normalized. Second, while∑

β ρ̃β = ∑
β Q

†
βQβ = 1, so that the set {ρ̃β} forms a POVM,∑

α ρα is not necessarily equal to the identity operator, so the
set {ρα} can not always be identified with a POVM. For this
reason, we have for the time being used the notation FE∗ (−v)
in Eq. (15b). We revisit this issue in Sec. II C, where we show
under which conditions FE∗ (−v) can be interpreted as the PDF
of a reverse process.

We define the efficacy2 γ [2,25] as

γ :=
∫ ∞

−∞
dvFE∗ (v) =

∑
α,β

qβTr[ρ̃βE(ρα)]

=
∑
α,β

Tr[ραE∗(qβρ̃β)]. (16)

Upon integration of Eq. (15a), we arrive at what we call the
quantum Jarzynski equality (QJE), as it generalizes the CJE
[Eq. (1)]:

〈e−v〉 =
∫ ∞

−∞
dv PE (v)e−v = γ. (17)

If instead of the choice made in Eq. (14) we choose Vαβ =
ln(pβ|α/qβ) [26], we find

PE (v)e−v =
∑
α,β

δ(v − Vαβ)pαqβ, (18)

which upon integration gives the QJE with γ = 1.
Using Jensen’s inequality we have 〈ef 〉 � e〈f 〉 and thus find

a generalized second law of thermodynamics (we clarify this
claim below):

〈v〉 � − ln γ. (19)

We can substantially generalize the QJE equation (17) in terms
of the moment generating functions for the map E and its dual

χE (λ) :=
∫ ∞

−∞
dv PE (v)eλv , χ̃E∗ (λ) :=

∫ ∞

−∞
dvFE∗ (v)eλv.

(20)

Multiplying Eq. (15a) by eλv and integrating, we find

χE (λ − 1) = χ̃E∗ (−λ). (21)

This extends the integral fluctuation relation (17) to all
moments of the PDF PE (v). For example, setting λ = 0, we
recover the QJE equation (17):

χE (−1) = 〈e−v〉 = χ̃E∗ (0) = γ. (22)

Moreover, using 〈v〉 = d
dλ

χE (λ)|λ=0 we find (details can be
found in Appendix C)

〈v〉 = H (f ‖ q) + H (f ) − H (p), (23)

2We use the term efficacy loosely here. In the case of the classical
Jarzynski equality with feedback [2], the right-hand side of the
equality is indeed a measure of the efficacy of the feedback protocol.
Here, we make no such claims.
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where H (f ‖ q) = −∑
β fβ ln(qβ) − H (f ) is the rela-

tive entropy (Kullback-Leibler divergence), and H (f ) =
−∑

β fβ ln(fβ) is the Shannon entropy.

C. Fluctuation theorem for “microreversible” generalized
measurements and unital maps

Recall that in the discussion immediately following Eq. (15)
we stressed that FE∗ (−v) can not always be interpreted as the
PDF associated with the dual map E∗. Let us now restrict
ourselves to a class of generalized measurements P and Q
that satisfy additional constraints so that such an interpretation
becomes possible:∑

α

ρα = 1 ∀ ρ, Tr[Q†
βQβ] = 1. (24)

We call generalized measurements P and Q that satisfy
Eq. (24) “microreversible” for reasons that will shortly become
apparent. Rank-1 projective measurements trivially satisfy
these constraints, but are not necessary.3

Let d = Tr[1] denote the Hilbert space dimension; we prove
in Appendix D that if the constraints (24) are satisfied, then
α,β ∈ {1, . . . ,d}, i.e., that none of the probabilities pα or qβ

can vanish. With these additional constraints, ρ̃β = Q
†
βQβ can

be identified as a normalized state, and we can define a new
measurement Q̃ := {Q̃β} such that

ρ̃β = Q̃βρ̃Q̃
†
β

qβ

, Qβ = Ũβ

√
ρ̃Q̃

†
β√

qβ

, (25)

where Ũβ is an arbitrary unitary operator, ρ̃ is a virtual
final state, and the probability qβ now takes the value
qβ = Tr[Q̃βρ̃Q̃

†
β] such that the mixed state ensemble ρq =∑

β qβρ̃β is generated by measuring Q̃.4 Similarly, we can
write the state ρα in terms of a new generalized measurement
P̃ := {P̃α}:

ρα = P̃ †
α P̃α, P̃α = Uα

√
ρP †

α√
pα

. (26)

where Uα is an arbitrary unitary operator. Thus,

Tr[ρ̃β] = 1 and
∑

α

ρα = 1. (27)

Comparing with Eq. (13b), we see that now FE∗ (−v)
[Eq. (15b)] can be identified with P̃E∗ (−v):

P̃E∗ (v) =
∑
αβ

δ(v − Ṽβα)Tr[P̃ †
α P̃αE∗(ρ̃β)]qβ, (28)

associated with the dual map acting on the state ρ̃β , followed
by the generalized measurement P̃ . We have therefore arrived

3An example of generalized measurements, which are not rank-1
projective measurements, satisfying Eq. (24) are P1 = σ+ = 1

2 (σx +
iσy) and P2 = σ− = 1

2 (σx − iσy) and Q1 = σx/
√

2,Q2 = σy/
√

2.
4Since the input data specify Q rather than Q̃, it is more natural

to think of each measurement operator Qβ as specifying the
corresponding Q̃β , i.e., Q̃β = √

qβQ
†
βŨβ (ρ̃)−1/2. The virtual final

state ρ̃ should then be full rank in order for its inverse to exist.

P Q ρ̃ρ̃f E ∗

ρ̃βE∗ (ρ̃β)

FIG. 2. The reverse process protocol. A quantum state ρ̃ is
prepared, measured (Q̃), evolved via the dual CPTP map E∗, and
measured again (P̃). The final state ρ̃f thus obtained is in general
different from the state ρp .

at our fluctuation theorem for CPTP maps:

PE (v)e−v = P̃E∗ (−v), (29)

now bearing an obvious similarity to the Tasaki-Crooks
fluctuation theorem [Eq. (2)]. Integrating this expression, we
obtain (see also [25])

〈e−v〉 = γ = Tr[ρqE(1)] = Tr[E∗(ρq)]. (30)

A bound on the value of γ is presented in Appendix E.
One more condition must be imposed in order for P̃E∗ to

become a PDF, i.e., for γ [Eq. (16)] to equal 1, namely, E∗
should itself be a CP map. This is the case if E is unital
[E(1) = 1]. If it is unital, then Eq. (29) is a fluctuation theorem
relating a physical forward and reverse process, where we
can interpret P̃E∗ (v) as the probability density associated with
the following reverse process (depicted in Fig. 2): (i) prepare
the state ρq := ∑

β qβρ̃β by measuring Q̃, (ii) evolve via E∗,
(iii) measure P̃ . We emphasize that, here, the forward and
reverse processes are described by different measurements,
namely, P,Q and P̃,Q̃, respectively, related via Eqs. (25)
and (26).

Therefore, Eq. (29) represents a physical fluctuation theo-
rem for unital CPTP maps, where unitality replaces the role
typically occupied by microreversibility. Consequently, upon
integration of the fluctuation theorem, we obtain γ = 1 (the
observation that unital channels yield γ = 1 was first stated in
Ref. [28]).

Why are unital channels singled out? Recall that the
transition matrix M := {pβ|α}α,β of the forward process is
in general column stochastic [Eq. (12)]. Under the additional
assumptions of microreversible generalized measurements and
unitality, it becomes bistochastic:

∑
α

pβ|α = Tr

[
Q

†
βQβE

( ∑
α

ρα

)]
= Tr[Q†

βQβE(1)]

= Tr[Q†
βQβ] = 1. (31)

Thus, whereas classical microreversibility imposes a specific
relation between forward and time-reversed phase space paths
[3], unitality gives rise to a form of microreversibility relating
the forward and reverse probabilities:

pβ|α = Tr[Q†
βQβE(ρα)] = Tr[P̃ †

α P̃αE∗(ρ̃β)] = p̃α|β, (32)

where Eq. (31) shows that p̃α|β is a proper conditional
probability.5

5Another unique and suggestive feature of unital channels is that
they can always be written as an affine combination of reversible
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We remark that once we fix the operators {Pα,Qβ} in the
forward process, then the operators {P̃α,Q̃β} are uniquely
defined only for the case of rank-1 projective measurements;
otherwise, they are defined up to a unitary operator and
the full-rank virtual final state ρ̃ [see Eqs. (25) and (26)].
Therefore, beyond rank-1 projective measurements, there is
no unique reverse process, but all allowed choices give a
fluctuation theorem relating the forward and reverse processes.

To summarize, the derivation essentially involved only
the Kraus representation of CPTP maps, the standard form
of generalized measurements, Bayes’ rule, and a judicious
choice of forward and reverse generalized thermodynamics
variables. The Kraus representation formalism allows for an
unambiguous definition of the reverse process in terms of the
dual map of the forward process. However, the choice (14)
is by no means unique. For example, if we choose Vαβ =
ln(pβ|α/fβ ) (a type of mutual information, as in [26]), then
Eq. (13a) yields

PE (v)e−v =
∑
α,β

δ(v − Vαβ)pαfβ. (33)

D. Case of projective measurements

When the measurements P and Q are projective, our
results for the QJE and fluctuation theorem simplify. We
prepare ρp = ∑

α pαPα and let ρq = ∑
β qβQβ , with {Pα}

and {Qβ} rank-1 projectors (pure states), and we have P = P̃
and Q = Q̃, i.e., the forward and reverse processes are
described by the same measurements, and Eq. (32) provides
a standard microreversibility condition. Furthermore, in this
case, pα and qβ can be made arbitrary. We refer to ρq as
the “virtual final state” since the final state reached at the
conclusion of the forward protocol (see Fig. 1) is in general
different from the state ρq .

Using Eq. (20), we obtain (more details can be found in
Appendix F)

χE (λ) = Tr
[
ρ−λ

q E
(
ρλ+1

p

)]
(34)

and, consequently,

〈v〉 = S[E(ρp)] − S(ρp) + S[E(ρp) ‖ ρq] (35a)

= S(ρq) − S(ρp) + Tr{[ρq − E(ρp)] ln(ρq)}, (35b)

where the quantum relative entropy S(ρ ‖ σ ) = −Tr[ρ ln σ ] −
S(ρ), and S(ρ) = −Tr[ρ ln ρ] is the von Neumann entropy.
This generalizes the result for the mean irreversible entropy
production of Refs. [30,31]. If S[E(ρp)] = S(ρp) (e.g., when
E is unitary), then 〈v〉 = S[E(ρp) ‖ ρq]. If ρq is E invariant
[E(ρq) = ρq] and E is unitary (as in a quantum quench), then
〈v〉 = S(ρp ‖ ρq). If E(ρp) = ρq , then 〈v〉 = S(ρq) − S(ρp).
If the evolution is adiabatic with initial Hamiltonian Hi =

channels [29], i.e., E(ρ) = ∑
j ujUjρU

†
j , where Uj is unitary,

uj ∈ R, and
∑

j uj = 1. In the special case when {uj } is a probability
distribution, the affine combination becomes a convex one, and
the unital channel can be interpreted as representing the unitary
evolution Uj occurring with probability uj , while its dual becomes
the time-reversed unitary U

†
j occurring with the same probability.

(1) (3)

(2)

Von N
eum

ann entropy change

physical process

information-geometric distance

Vo
n 

N
eu

m
an

n 
en

tr
op

y 
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ge

vir
tu

al 
pr
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es

s

ρp

E (ρp) ρq

FIG. 3. Distance-entropy diagram illustrating the generalized
second law of thermodynamics (see text for details).∑

α εα(0)Pα and final Hamiltonian Hf = ∑
β εβ(tf )Qβ such

that E(Pα) = Qα , then pβ|α = δβα and fβ = pβ . Therefore,
for the mixed state ensembles ρp = ∑

α pαPα and ρq =∑
β qβQβ , we have

〈v〉 = S[E(ρp) ‖ ρq] = −
∑

α

pα ln qα +
∑

α

pα ln pα

= H (p ‖ q), (36)

where (p,q) are the probability distributions associated with
{pα} and {qβ}, respectively.

Equation (35) has an interesting interpretation, illustrated
in Fig. 3. Referring first to Eq. (35a), side (1) of the
triangle represents the von Neumann entropy change (1) :=
S[E(ρp)] − S(ρp) occurring in the physical process enacted
by E , while side (2) is an information-geometric measure of
the distance (2) := S[E(ρp) ‖ ρq] between the evolved state
E(ρp) and the “virtual” one ρq . On the other hand, referring
to Eq. (35b), side (2) can also represent (2′) := Tr{[ρq −
E(ρp)] ln(ρq)} �‖ E(ρp) − ρq‖1| ln(minβ qβ )|, which is again
related to the information-theoretic distance6 between the
evolved and virtual states. Side (3) represents the von Neumann
entropy change, i.e., (3) := S(ρq) − S(ρp).

Known quantum fluctuation theorems follow from our
formalism. For example, we show in Appendix A how
Eq. (35a) reduces to the standard statement of the second law
for isothermal processes, β(〈w〉 − �F ) = 〈�Sirr〉 � 0, where
〈�Sirr〉 is the mean irreversible entropy production [19,30],
after we choose p and q as Gibbs distributions and E as a
unitary evolution. We also note that a calculation of 〈v2〉 =
d2

dλ2 χE (λ)|λ=0 would yield a generalized fluctuation-dissipation
theorem.

In the thermal case ρp = e−βHi /Zi and ρq = e−βHf /Zf

[where Hi(f ) is the initial (final) Hamiltonian and Zi(f )

is the initial (final) partition function], we find (2′) =
β{Tr[Hf E(ρp)] − Tr[Hf ρq]} =: −βQ. Here, Q represents
the heat exchange in the (virtual) undriven relaxation between
the evolved and virtual states E(ρp) �→ ρq (for a proof

6Note that the relative entropy is not strictly a distance (since it
is not symmetric and does not satisfy the triangle inequality) but a
divergence.
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P

Qj

Ej

Pα

...Q

Qβ|j

...
...

Qj

Ē

Ēj

Ēj (Qj)

Ē (Pα)

ρ

FIG. 4. The feedback protocol associated with the forward
process with an intermediate measurement whose result introduces
the conditional CP map Ej .

see Appendix C). In the thermal case (3) amounts to a
thermodynamical entropy change �Sqp. Thus, in this case,
using Eq. (19) and assuming unitality (γ = 1), we have the
second law in the Clausius form �Sqp � βQ. This clarifies
why Eq. (19) can be interpreted as a generalized second law
of thermodynamics.

E. Including feedback

Suppose we repeat the forward protocol of Fig. 1 in the
projective measurement case, but denote the CPTP map by Ē
and the final measurement by Q = {Qj }. Depending on the
measurement outcome j , we apply an additional CP map Ēj

to the resulting state Qj . This constitutes a feedback step,
and generalizes earlier work which considered only unitary
feedback maps [2,21,22]. Next, we apply another projective
measurement Q′

j = {Qβ|j }, labeled by the outcomes β. Thus,
E from Fig. 1 is replaced by Ej := Ēj ◦ Q ◦ Ē , and Q by
Q′

j . Our generalized feedback control protocol is illustrated
in Fig. 4. Given an initial state Pα , the probability of observing
outcomes j and β is p(j,β)|α = Tr[Qβ|jEj (Pα)], and the joint
distribution is p(α,j,β) = p(j,β)|αpα . As in the feedback-free
case, we can construct the PDF associated with the generalized
thermodynamic observable V as

PE :=
∑
α,j,β

δ(v − Vαjβ )p(α,j,β) (37a)

=
∑
α,j,β

δ(v − Vαjβ )Tr[Qβ|jEj (Pα)]pα, (37b)

where the notation PE (P̃E� ) is shorthand for P{Ej } (P̃{E�
j }). We

now choose Vαjβ = ln(pα/qβ|j ) = −Ṽβjα , where qj := {qβ|j }
is an arbitrary, fixed distribution, associated with the (virtual)
state ρq|j := ∑

β qβ|jQβ|j . Then,

PE (v)e−v =
∑
α,j,β

δ(−v − Ṽβjα)Tr[PαE∗
j (Qβ|j )]qβ|j (38a)

=: P̃E∗ (−v). (38b)

Integrating, we find a generalized integral fluctuation theorem
in the presence of feedback:

〈e−v〉 =
∑

j

Tr[ρq|jEj (1)] =
∑

j

Tr[E∗
j (ρq|j )] =: γ. (39)

Generalizing Eqs. (21) and (34), we find (details can be
found in Appendix G) the moment generating function for

the feedback case

χE (λ − 1) =
∑

j

Tr
[
ρ1−λ

q|j Ej

(
ρλ

p

)] = χ̃E∗ (−λ). (40)

We show in Appendix H how these results allow us to recover
known quantum fluctuation theorems with feedback. Although
we have identified PE (v)e−v ≡ P{Ej }(v)e−v with P̃E∗ (−v) ≡
P̃{E∗

j }(−v), it is important to note that E∗ does not coincide
with the reverse process because (unlike in the feedback-free
case) there is now no unique association between the initial
α and final β measurement outcome indices: the same (α,β)
pair is connected via different j values of the intermediate
measurement outcomes.

III. EXPERIMENTAL APPLICATION OF THE
OPEN-SYSTEM QJE

Compared to the classical case (e.g., [32–40]), there has
been relatively little work on experimental tests or applications
of the quantum version of the Jarzysnki-Crooks relations.
Existing data on x-ray spectra of simple metals [41], and
experiments on a driven single qubit (defect center in diamond)
[42] have been used to verify the previously derived quantum
fluctuation relations. There have also been recent proposals
that showed that viability of single-qubit interferometry to
verify quantum fluctuation theorems [43,44]. Although we are
not able to test the generalized QJE or the generalized fluc-
tuation theorem, we present an application of our generalized
QJE [specifically, the first moment given by Eq. (35)] to the
problem of extracting the system-bath coupling magnitude,
using both numerical simulations and an experiment using
a commercially available quantum annealing processor com-
prising superconducting flux qubits (see Appendix I for further
details about the experimental system). Since the system
Hamiltonian is time dependent, the formalism of the QJE
provides meaningful observables in this setting.

The processor performs a quantum annealing protocol to
find the ground state of a classical Ising Hamiltonian. The
protocol is described by the transverse field Ising Hamiltonian

HS(t) = −A(t)
∑

i

σ x
i + B(t)HIsing, (41)

where

HIsing = −
N∑

i=1

hiσ
z
i −

N∑
i<j

Jij σ
z
i σ z

j (42)

and σ
x,z
i are standard Pauli operators acting on the ith

qubit. The magnetic fields hi and couplings (superconducting
inductances) Jij are programmable. The annealing functions
A(t) and B(t) satisfy A(0),B(tf ) �= 0, A(tf ),B(0) = 0, where
tf is the total annealing time. The annealing protocol amounts
to starting with the transverse field turned on and the Ising
Hamiltonian turned off, and then slowly reversing their role
until only the Ising Hamiltonian remains. The processor is
performed at T = 17 mK, with the qubits in contact with a
thermal environment. It is ideally suited to measuring 〈v〉 in
Eq. (35) since it performs the process described in Fig. 1 (but
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without the measurement P) with the initial state being the
Gibbs state.

The experiment can be described by an adiabatic Markovian
master equation derived in Ref. [45] (see Appendix J for
essential details). The CPTP map E generated by the master
equation is not unital. We consider projective measurements
that prepare pα = e−βεα (0)/Z(0), qβ = e−βεβ (tf )/Z(tf ), where
εα,β (t) are the instantaneous eigenenergies of HS(t), so that our
generalized thermodynamic observable [Eq. (14)] is given by
Vαβ = β[εβ(tf ) − εα(0)] − β[F (tf ) − F (0)], where the free
energy F = − ln(Z)/β. Note that for an open quantum system,
εβ(tf ) − εα(0) does not correspond to the work done on the
system. Equations (16) and (17) yield

〈e−β(�E−�F )〉 = γ = Tr{E∗[ρG(tf )]}, (43)

where ρG(t) = exp[−βHS(t)]/Z(t) denotes the Gibbs state
associated with HS(t), with ρp ≡ ρG(0) and ρq ≡ ρG(tf ), �E

is a random variable taking values in the set {εβ(tf ) − εα(0)},
and �F := F (tf ) − F (0). Equation (35a) gives

β(〈�E〉 − �F ) = S[ρ(tf ) ‖ ρG(tf )]

+ S[ρ(tf )] − S[ρG(0)], (44)

where we have denoted ρ(tf ) = E[ρG(0)].
For concreteness, we consider a two-qubit system with

HIsing = − 1
3

∑2
i=1 σ z

i − Jσ z
1 σ z

2 . We checked the equality ex-
pressed in Eq. (43) by independently numerically simulating
its two sides for this model using our master equation, and find
essentially perfect agreement. The same holds for Eq. (35a)
(see Appendix K for details). We tested the same two-qubit
system experimentally using the quantum annealing processor.
For each experimental run, the system is initialized in the Gibbs
state of HS(0), and after performing the annealing protocol
HS(t), a projection onto the computational basis (eigenstates
of the σ z

i operators, i.e., the final energy eigenstate basis
of HIsing) is performed. Therefore, for each run, a single
energy eigenstate of HIsing is measured. We then repeat the
quantum annealing process thousands of times to build up
the statistics necessary to determine the relative occupancy of
each final energy eigenstate. The empirical relative occupancy
corresponds directly to the probability fβ of measuring energy
εβ(tf ). Therefore, this allows us to experimentally determine
〈ε(tf )〉 = ∑

β εβ(tf )fβ . We also know 〈ε(0)〉 from the initial
Gibbs state and the value of A(0). We thus determine

〈v〉 = β
∑
α,β

[εβ(tf ) − εα(0) − �F ]p(α,β)

= β[〈ε(tf )〉 − 〈ε(0)〉 − �F ], (45a)

where we compute �F using exact diagonalization (see
Appendix K for details). We show these results in Fig. 5 as
a function of tf and ferromagnetic coupling strength J . Our
master equation has two free parameters: the high-frequency
cutoff ωc, which we set to 8π [45], and the system-bath
coupling magnitude κ = g2η/h̄2, where g is the system-bath
coupling constant and η characterizes the Ohmic bath (see
Appendix J for details). 〈v〉 is a quantity that combines both
the statistics and the energy spectrum of the system, making
it more system specific. Remarkably, by simultaneously min-
imizing the deviation between the numerical solution of our
master equation and the experimental data for 〈v〉 as a function

0.0 0.2 0.4 0.6 0.8 1.0
J

0.5

1.0

1.5

v

0 200 400 600 800 1000
t f µs

0.1

0.2

0.3

0.4

0.5

FIG. 5. (Color online) Experimental results (blue dots with error
bars) for 〈v〉 [from Eq. (45a)] and the best fit using the adiabatic
Markovian master equation (red ×) with the extracted value κ =
2.34 × 10−3. Main panel: as a function of J , with tf = 5 μs in both
the numerical simulations and the experiment. Inset: as a function of
tf , with J = 1

2 in both the numerical simulations and the experiment.

of J and tf allowed us to extract the system-bath coupling
magnitude κ from Eq. (45a) (see Appendix I for details).
Therefore, we find that 〈v〉 provides a valuable optimization
target in addition to its information-theoretic content, which
the statistics of the experiment alone may not provide.

Why does 〈v〉 display a minimum as a function of J (main
panel of Fig. 5)? In our experiment, βA(0) ∼ βB(tf ) ≈ 15,
so that the Gibbs state is almost pure, i.e., both S[ρG(0)] and
S[ρG(tf )] � 1. Therefore, we are effectively measuring the
information-theoretic distance S[ρ(tf ) ‖ ρG(tf )]. Increasing
J at fixed temperature kT = 1/β is like decreasing T while
fixing J . Thus, the system requires more time to equilibrate
as J grows, but we keep tf fixed. On the other hand, as J

becomes very small, the ground and first excited states become
degenerate, so the excitation probability increases, and the
system is again farther from equilibrium. Also, as we increase
the annealing time, ρ(tf ) becomes closer to the Gibbs state,
causing S[ρ(tf ) ‖ ρG(tf )] to decrease as observed in the inset.

IV. CONCLUSIONS

To conclude, we presented fluctuation theorems and mo-
ment generating functions for CPTP maps, thus generalizing
previous work on the Jarzynski-Crooks relations and the sec-
ond law for open quantum systems, including processes with
feedback. We performed an experiment using superconducting
flux qubits that matches the fluctuation theorem protocols, and
used this experiment to extract the system-bath coupling for
an adiabatic Markovian master equation that nicely matches
the experimental results. Our work ties together key ideas
from statistical mechanics, quantum information theory, and
the theory of open quantum systems, and paves the way to
experimental tests and applications of fluctuation theorems in
the most general setting of open quantum system dynamics.

Note added. Recently, two papers arrived at similar results
[46,47].
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APPENDIX A: RECOVERING KNOWN FLUCTUATION
THEOREMS

In order to recover the well-established closed system
results [4], we consider the CPTP map E to be simply the
unitary evolution, as in Sec. II A:

E(X) = U (tf ,0)XU †(tf ,0). (A1)

Since this map is unital, its dual is also a CPTP map (the actual
time-reversed process) given by

E∗(X) = U †(tf ,0)XU (tf ,0), (A2)

where U (tf ,0) = T+ exp (−i
∫ tf

0 H (t)dt), and the Hamilto-
nian H (t) has instantaneous eigenenergies ε(t). Using Eq. (16),
this yields γ = 1.

Recall that in our formalism we need to also specify the
fiducial initial state ρ, the measurements P and Q, and the
distribution q. We pick these so that they generate the Gibbs
distributions

pα = e−βεα (0)

Z(0)
, qβ = e−βεβ (tf )

Z(tf )
(A3)

at inverse temperature β, where Z(t) = Tr{exp[−βH (t)]} is
the partition function corresponding to H (t), and ρG(t) =
exp[−βH (t)]/Z(t) is the corresponding Gibbs state. For
example, we can assume that ρ = ρG(0),P = {|εα(0)〉〈εα(0)|},
and Q = {|εβ(tf )〉〈εβ(tf )|}.

If we let V{α,β} = ln(pα/qβ), this then corresponds to the
choice

V{α,β} = β[εβ(tf ) − εα(0)] − β[F (tf ) − F (0)], (A4)

where F is the free energy given by F (t) = − ln Z(t)/β. This
corresponds to identifying v with the (dimensionless) work.

We thus find from Eq. (17) the QJE for a closed quantum
system:

〈e−β(�E−�F )〉 = 1, (A5)

where �E is a random variable taking values in the set
{εβ(tf ) − εα(0)}, and �F := F (tf ) − F (0). For these choices,
Eq. (35) becomes

β(〈�E〉 − �F ) = S{E[ρG(0)] ‖ρG(tf )}, (A6)

where we have used S{E[ρG(0)]} = S[ρG(0)]. For a closed
quantum system, the heat transfer in and out of the system is
zero, so �E is equal to the work w. Furthermore, for a closed
quantum system, the relative entropy S{E[ρG(0)] ‖ ρG(tf )} is
equal to the mean irreversible entropy production 〈�Sirr〉 [19,
30], so we can rewrite Eq. (A6) as

β(〈w〉 − �F ) = 〈�Sirr〉, (A7)

which is the second law of thermodynamics, since 〈�Sirr〉 � 0.

As this example illustrates, our formalism clarifies the
subtle relationship between the choice of the thermodynamic
observable V{α,β}, the initial state probability pα , and the
dual reverse state probability qβ , which together comprise the
Jarzynski equality and lead to the second law.

APPENDIX B: GENERALIZED MEASUREMENTS THAT
RESTRICT THE PROBABILITY pα

Let us consider the generalized measurements:

P1 =
( 1√

3
0

0
√

2
3

)
, P2 =

(√
2
3 0

0 1√
3

)
. (B1)

Let us consider applying the measurements on the arbitrary
state:

ρ =
(

a b

b∗ 1 − a

)
, (B2)

where 0 � a � 1 and b is a complex number. The possible
resulting states are

ρ1 = 3

2 − a

( a
3 b

b∗ 2
3 (1 − a)

)
,

(B3)

ρ2 = 3

1 + a

( 2
3a b

b∗ 1
3 (1 − a)

)

with probabilities p1 = (2 − a)/3 and p2 = (1 + a)/3, re-
spectively. Therefore, we find that 1

3 � p1 � 2
3 and 1

3 � p2 �
2
3 , so we can not make them take arbitrary values by an
appropriate choice of ρ.

APPENDIX C: DERIVATION OF THE ENTROPY
FORMULAS FOR 〈v〉

1. Generalized measurements: Eq. (23)

We prove Eq. (23) from the first moment expression 〈v〉 =
d
dλ

χE (λ)|λ=0. Then, using Eq. (F1d),

〈v〉 = d

dλ
Tr

[
E
( ∑

α

pλ+1
α ρα

)∑
β

q−λ
β ρ̃β

]∣∣∣∣∣
λ=0

(C1a)

= Tr

[
E
( ∑

α

pλ+1
α ln(pα)ρα

)∑
β

q−λ
β ρ̃β

]∣∣∣∣∣
λ=0

(C1b)

− Tr

[
E
( ∑

α

pλ+1
α ρα

) ∑
β

q−λ
β ln(qβ)ρ̃β

]∣∣∣∣∣
λ=0

(C1c)

= Tr

[
E
( ∑

α

pα ln(pα)ρα

)]

− Tr

[
E(ρp)

∑
β

ln(qβ)ρ̃β

]
(C1d)

=
∑

α

pα ln(pα) −
∑

β

fβ ln(qβ), (C1e)

where to arrive at Eq. (C1d) we used the fact that∑
β ρ̃β = ∑

β Q
†
βQβ = 1, to arrive at Eq. (C1e)

that E is trace preserving and Tr[ρα] = 1, and
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observed that Tr[ρ̃βE(ρp)] = Tr[Q†
βQβE(

∑
α pαρα)] =∑

α Tr[Q†
βQβE(ρα)]pα = ∑

α pβ|αpα = fβ . Adding and
subtracting H (f ) = −∑

β fβ ln(fβ), we thus arrive at
Eq. (23).

2. Projective measurements: Eq. (35)

Next we prove Eq. (35a) using a similar technique. Starting
from Eq. (34) we have

〈v〉 = d

dλ
Tr

[
ρ−λ

q E
(
ρλ+1

p

)]∣∣
λ=0 (C2a)

= Tr
{
ρ−λ

q E
[
ρλ+1

p ln(ρp)
] − ρ−λ

q ln(ρq)E
(
ρλ+1

p

)}∣∣
λ=0

(C2b)

= Tr{E[ρp ln(ρp)]} − Tr[ln(ρq)E(ρp)] (C2c)

= S[E(ρp) ‖ ρq] + S[E(ρp)] − S(ρp), (C2d)

where to arrive at Eq. (C2d) we used the fact that E is trace
preserving, and added and subtracted S[E(ρp)].

Finally, Eq. (35b) amounts to the following calculation,
starting from Eq. (C2c):

Tr{E[ρp ln(ρp)]} − Tr[ln(ρq)E(ρp)] (C3a)

= S(ρq) + Tr[ρp ln(ρp)] − Tr[ln(ρq)E(ρp)] − S(ρq)

(C3b)

= S(ρq) − S(ρp) + Tr{[ρq − E(ρp)] ln ρq}. (C3c)

3. Heat term

In the main text, we claimed that in the thermal case, when
ρq = e−βHf /Zf (where Hf is the final Hamiltonian), we find
(2′) := Tr{[ρq − E(ρp)] ln(ρq)} = −βQ. Here is the proof:

Tr{[ρq − E(ρp)] ln(ρq)} = −Tr{[ρq − E(ρp)](βHf + ln Zf )}
(C4a)

= β{Tr[Hf E(ρp)] − Tr[Hf ρq]}
(C4b)

= β
(〈Hf 〉E(ρp) − 〈Hf 〉ρq

)
, (C4c)

where to arrive at the second equality of Eq. (C4a) we
used Tr[E(ρp) ln Zf ] = ln Zf since E is trace preserving, and
Tr[ρq ln Zf ] = ln Zf . Since the (virtual) relaxation process
from the state E(ρp) to the state ρq is undriven (i.e., there is
no work involved), the internal energy change expressed in
Eq. (C4c) is a pure heat exchange.

APPENDIX D: DERIVATION OF THE NUMBER
OF ELEMENTS IN EQ. (24)

We prove that the constraints in Eq. (24) require that the
number of measurement operators in P and Q (denoted Np

and Nq , respectively) must equal the dimension of the Hilbert
space d. First, consider the constraint on P and consider ρ to
be the maximally mixed state:

Np∑
α=1

ρα =
Np∑
α=1

Pα1P †
α

Tr(P †
αPα)

= 1. (D1)

Taking the trace on both sides yields Np = d. Similarly,
consider the constraint

∑
β Q

†
βQβ = 1 on Q and again take

the trace

Nq∑
β=1

Tr(Q†
βQβ) =

Nq∑
β=1

1 = d. (D2)

Thus, Nq = d.

APPENDIX E: BOUNDING THE VALUE OF γ FOR
MICROREVERSIBLE GENERALIZED MEASUREMENTS

Let us denote the trace-norm by || . . . ||1. It is defined by

||A||1 ≡ Tr|A| =
∑

i

si(A), (E1)

where |A| =
√

A†A and si(A) are the singular values of A. Let
us also define the sup operator norm || . . . ||∞ defined by

||A||∞ = sup
|ψ〉:〈ψ |ψ〉=1

√
〈ψ |A†A|ψ〉 = max

i
si(A). (E2)

Consider two Hermitian operators A = A† and B = B†

with ||A||1 = ||B||1 = 1. Let us consider the quantity c :=
||AB||1 = Tr|AB|. It satisfies

c � ||A||1||B||∞ = ||B||∞, c � ||B||1||A||∞ = ||A||∞.

(E3)

(For more details about norms and inequalities between them
see, e.g., Refs. [48–50].) Then, c must satisfy

c � min{||A||∞,||B||∞}. (E4)

Therefore, for A = ρq and B = E(1/d), where d is the
dimension of the Hilbert space, we have an upper bound for γ

given by

0 � γ = Tr[ρqE(1)] � d min{||ρq ||∞,||E(1/d)||∞} � d.

(E5)

If either ρq or E(1/d) is maximally mixed, then the bound
becomes γ � 1, which is as tight as possible. An example
that shows, depending on the choice of ρq, that γ can take all
possible values in [0, d] is provided by the amplitude damping
channel where

E(ρ) = |1〉〈1| (E6)

for all states ρ, which gives γ = d〈1|ρq |1〉.

APPENDIX F: DERIVATION OF EQ. (34)

Using Eqs. (13b) and (20), we have

χE (λ) :=
∫ ∞

−∞
dv PE (v)eλv (F1a)

=
∫ ∞

−∞
dv eλv

∑
α,β

δ(v − V{α,β})Tr[ρ̃βE(ρα)]pα

(F1b)
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=
∑
α,β

(pα/qβ)λTr[ρ̃βE(ρα)]pα (F1c)

= Tr

[
E
( ∑

α

pλ+1
α ρα

) ∑
β

q−λ
β ρ̃β

]
, (F1d)

so that

χE (λ − 1) = Tr

[
E
( ∑

α

pλ
αρα

)∑
β

q1−λ
β ρ̃β

]
(F2a)

= Tr

[ ∑
α

pλ
αρα E∗

( ∑
β

q1−λ
β ρ̃β

)]
. (F2b)

On the other hand, using Eqs. (15b) and (20) we have

χ̃E∗ (−λ) =
∫ ∞

−∞
dv P̃E∗ (v)e−λv (F3a)

=
∫ ∞

−∞
dv e−λv

∑
α,β

δ(v − Ṽ{β,α})Tr[ραE∗(ρ̃β)]qβ

(F3b)

=
∑
α,β

(pα/qβ)λTr[ραE∗(ρ̃β)]qβ (F3c)

= Tr

[ ∑
α

pλ
αρα E∗

( ∑
β

q1−λ
β ρ̃β

)]
= χE (λ − 1).

(F3d)

In the case of projective measurements and and when
ρp = ∑

α pαPα , ρq = ∑
β qβQβ , with {Pα} and {Qβ} rank-1

projectors, Eq. (F1d) directly becomes Eq. (34).

APPENDIX G: DERIVATION OF EQ. (40)

Using Eqs. (20) and (37b), we have

χE (λ) :=
∫ ∞

−∞
dv PE (v)eλv (G1a)

=
∫ ∞

−∞
dv eλv

∑
α,j,β

δ(v − Vαjβ)Tr[Qβ|jEj (Pα)]pα

(G1b)

=
∑
α,j,β

(pα/qβ|j )λTr[Qβ|jEj (Pα)]pα (G1c)

=
∑

j

Tr

[
Ej

( ∑
α

pλ+1
α Pα

) ∑
β

q−λ
β|jQβ|j

]
(G1d)

=
∑

j

Tr
[
Ej

(
ρλ+1

p

)
ρ−λ

q|j
]
, (G1e)

so that

χE (λ − 1) =
∑

j

Tr
[
Ej

(
ρλ

p

)
ρ1−λ

q|j
] =

∑
j

Tr
[
ρλ

pE∗
j

(
ρ1−λ

q|j
)]

.

(G2)

On the other hand, using Eqs. (20) and (38b), we have

χ̃E∗ (−λ) =
∫ ∞

−∞
dv P̃E∗ (v)e−λv (G3a)

=
∫ ∞

−∞
dv

∑
α,j,β

δ(v − Ṽβjα)Tr[PαE∗
j (Qβ|j )]qβ|j

(G3b)

=
∑
α,j,β

(pα/qβ|j )λTr[PαE∗
j (Qβ|j )]qβ|j (G3c)

=
∑

j

Tr

[ ∑
α

pλ
αPαE∗

j

( ∑
β

q1−λ
β|j Qβ|j

)]
(G3d)

=
∑

j

Tr
[
ρλ

pE∗
j

(
ρ1−λ

q|j
)] = χE (λ − 1), (G3e)

which is the result in Eq. (40).

APPENDIX H: RECOVERING KNOWN FEEDBACK
CONTROL RESULTS

We can recover known feedback control cases [2,22]
as follows. Assume that the evolution is unitary and the
intermediate measurement is error free. In this case, the j th
CP map is given by

Ej (X) = UjQjUXU †QjU
†
j . (H1)

This leads via Eq. (39) to

γ =
∑

j

Tr[ρq|jEj (1)] =
∑

j

Tr[ρq|jUjQjU
†
j ] (H2a)

=
∑

j

Tr[QjU
†
j ρq|jUjQj ]. (H2b)

If we now pick the fiducial initial state ρ, the measurements P
and Q′

j , and the distribution qj so that they generate the Gibbs
distributions

pα = e−βεα

Z(0)
, qβ|j = e−βε

j

β

Zj (tf )
, (H3)

where ρq|j = exp[−βHj (tf )]/Zj (tf ) is the Gibbs state asso-
ciated with Hj (tf ), then we recover the result for γ derived in
Ref. [22].

We next consider the case of a classical measurement error.
In this scenario when a projection on j is made, there is a
measurement error that gives j ′ with probability pj ′|j , so that
the feedback operation applies Uj ′ instead of Uj . The CP map
is then given by

Ej ′ (X) =
∑

j

pj ′|jUj ′QjUXU †QjU
†
j ′ . (H4)

Choosing the same p and q distributions as in Eq. (H3) with
j replaced by j ′ results in

γ =
∑
j ′

Tr[ρq|j ′Ej ′(1)] =
∑
j,j ′

pj ′|j Tr[ρq|j ′Uj ′QjU
†
j ′] (H5a)

=
∑
j,j ′

pj ′|j Tr[QjU
†
j ′ρq|j ′Uj ′Qj ], (H5b)

which is again exactly the result for γ derived in Ref. [22].
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FIG. 6. (Color online) A schematic of the architecture of the D-Wave One Rainier chip. The qubits (the labeled circles) are arranged in
4 × 4 unit cells, with 8 qubits per unit cell. The allowed couplings, shown by lines connecting qubits, are programmable inductive couplers.
Only green qubits corresponding to calibrated qubits are used in the experiments.
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We are free to choose a different generalized thermody-
namic observable:

Vαjj ′β = ln(pα/qβ|j ′ ) + Ijj ′ =: −Ṽβj ′jα, (H6)

where

Ijj ′ := ln(pj ′|j /pj ′ ), (H7)

the mean of which is the classical mutual information. Note
that ∑

β,j ′
pj ′qβ|j ′ = 1. (H8)

The joint distribution can be decomposed using Bayes’ rule as
p(α,j,j ′,β) = pαp(j,j ′,β)|α , where the conditional probability is
p(j,j ′,β)|α = pj ′|j Tr[Qβ|j ′Uj ′QjUPαU †QjU

†
j ′].

We then have

P{Ej ′ }(v) =
∑

α,j,j ′β

δ(v − Vαjj ′β)p(α,j,j ′,β) (H9a)

=
∑

α,j,j ′β

δ(v − Vαjj ′β)pαpj ′|j

× Tr[U †QjU
†
j ′Qβ|j ′Uj ′QjUPα], (H9b)

so that

P{Ej ′ }(v)e−v =
∑

α,j,j ′β

δ(−v − Ṽβj ′jα)qβ|j ′pj ′

× Tr[U †QjU
†
j ′Qβ|j ′Uj ′QjUPα]. (H10)

Note that the quantity∑
β,j ′

pj ′qβ|j ′U
†
j ′Qβ|j ′Uj ′ =: ρ̂ (H11)

is a density matrix. We can define a CPTP map:

Ê(ρ̂) = U †

[ ∑
j

Qj ρ̂Qj

]
U. (H12)

We thus recover the integrated fluctuation theorem∫
dv PE (v)e−v =

∑
α

Tr[PαÊ(ρ̂)] = Tr[Ê(ρ̂)] = 1, (H13)

which is again the result in Ref. [22].

APPENDIX I: EXPERIMENTAL SYSTEM

Our experiments were performed using the D-Wave One
Rainier chip at the USC Information Sciences Institute,
comprising 16 unit cells of 8 superconducting flux qubits
each, with a total of 108 functional qubits. The couplings
are programmable superconducting inductances. Figure 6 is
a schematic of the device, showing the allowed couplings
between the qubits which form a “Chimera” graph [51,52].
The qubits and unit cell, readout, and control have been
described in detail elsewhere [53–55]. The processor performs
a quantum annealing protocol to find the ground state of a
classical Ising Hamiltonian, as described by the transverse
Ising Hamiltonian in Eq. (41). The initial energy scale for the
transverse field is 33.7 GHz (the A function in Fig. 7), the
final energy scale for the Ising Hamiltonian (the B function)

A (t) B(t)

0.2 0.4 0.6 0.8 1.0

t

t f

5

10

15

20

25

30

(GHz)

FIG. 7. (Color online) The annealing schedules A(t) and B(t)
used in the system Hamiltonian in the experiment and in our numerical
simulations.

is 33.6 GHz, about 15 times the experimental temperature
of 17 mK ≈ 2.3 GHz. The processor is programmed by
specifying the qubits and the coupling strengths between qubits
via a user interface. For a given Ising Hamiltonian, the quantum
annealing process was repeated 50 000 times per qubit pair.
We used five different qubit pairs to rule out systematic local
magnetic field bias. As a further precaution against systematic
bias we applied three spin-inversion transformations to our
Ising Hamiltonian: HIsing �→ σx

j HIsingσ
x
j for j = 1,2, and

HIsing �→ σx
1 σx

2 HIsingσ
x
2 σx

1 , all of which commute with the
transverse field component

∑
i σ

x
i of our system Hamiltonian.

These transformations simply relabel the energy spectrum,
i.e., if a certain spin configuration has energy E, then under
the transformation σx

j HIsingσ
x
j , the configuration with the j th

spin flipped will also have energy E. Averaging the results
over the four different isospectral Ising Hamiltonians and over
the five different qubit pairs for a given Ising problem, we have
a total of 106 data points per given values of J and tf .

At J = 0, we would expect to find the (excited) states |↑↓〉
and |↓↑〉 with equal probability. For completeness, we note
that this symmetry is broken in our experimental data. This
should not be interpreted as being solely due to a local magnetic
field bias since averaging over spin-inversion transformations
should have canceled any such bias. This suggests a more
systematic (unaccounted) source of noise in the experiment.
Nevertheless, this effect does not effect our results significantly
since the excited states appear very infrequently (only ∼7 ×
103 out of 5 × 105 data points for a given pair of qubits) and we
find a good fit with our master equation (where this symmetry
is preserved), as shown in Fig. 5.

The theoretical best fit (in Fig. 5) was found by determining
the value of κ = g2η/h̄2 that minimizes the mean square
deviation (MSD) between the n experimental {〈v〉Ex,i} and
theoretical {〈v〉Th,i} results:

MSD(κ) = 1

n

n∑
i=1

[〈v〉Ex,i − 〈v(κ)〉Th,i]
2. (I1)

In principle, the high-frequency cutoff ωc is also a free
parameter in our theoretical model, and it can also be used
as part of the fitting parameters. We found that choosing a
different ωc requires a different optimal κ value to fit the
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data, but we restricted ourselves to ωc = 8π GHz since it
nicely satisfies the approximations made in the derivation of
the master equation [45].

APPENDIX J: DETAILS ABOUT THE MASTER EQUATION

The underlying model assumes a total Hamiltonian of the
form H (t) = HS(t) + HB + HI , where HB is the bath Hamil-
tonian and HI is the system-bath interaction. We consider a
simple harmonic oscillator bath HB = ∑

i

∑
k ωk(bi

k)†bi
k , with

the interaction given by the standard independent dephasing
model [56] HI = g

∑
i σ

z
i ⊗ ∑

k (bi
k + (bi

k)†).
The master equation used in our simulations is derived in

Ref. [45] and is given by (in units of h̄ = 1)

ρ̇S(t) = −i[HS(t) + HLS(t),ρS(t)]

+
∑
α,β

∑
ω

γαβ(ω)

(
Lω,β(t)ρS(t)L†

ω,α(t)

− 1

2
{L†

ω,α(t)Lω,β(t),ρS(t)}
)

, (J1)

where HLS is the Lamb shift, the γ ’s are dephasing and
relaxation and excitation rates. The Lindblad operators are
given by

Lω,α(t) =
∑

ω=εb(t)−εa (t)

|εa(t)〉〈εa(t)|σ z
α |εb(t)〉〈εb(t)|, (J2)

where the instantaneous Bohr frequency ω is expressed
in terms of the instantaneous energy eigenstates, i.e.,
HS(t)|εa(t)〉 = εa(t)|εa(t)〉 For an Ohmic bath with high-
frequency cutoff ωc, we have

γαβ(ω) = δα,β

g2ηωe−ω/ωc

1 − e−βω
,

HLS =
∑
αβ

∑
ω

Sαβ (ω)L†
ω,α(t)Lω,β(t), (J3)

Sαβ(ω) =
∫ ∞

−∞

dω′

2π
γαβ(ω′)P

(
1

ω − ω′

)
,

0.2 0.4 0.6 0.8 1.0 1.2
g2

2 103

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2
2.88
2.89
2.90
2.91
2.92
2.93
2.94

h

η
×     

FIG. 8. (Color online) Independent calculation of 〈e−β(�E−�F )〉
(blue solid line) and γ (red dashed line) as a function of the
system-bath coupling strength using the adiabatic Markovian master
equation with tf = 5 μs, J = 1

2 , T = 17 mK, and ωc = 8π . Inset:
magnification of the behavior near the top of the curves. The two
curves overlap to within numerical accuracy.

where η is a parameter (with dimension time squared)
characterizing the Ohmic bath, and P denotes the Cauchy
principal value. To see that this CP map is not unital, we plug
1 into the right-hand side of Eq. (J1) and find that the nonzero
component arises from the dissipative part associated with
relaxation and excitation processes

∑
α,β

∑
ω

γαβ(ω)[Lω,β(t),L†
ω,α(t)]. (J4)

Since γαβ(ω) �= γβα(−ω), meaning that the relaxation and
excitation transition rates are unequal, the term (J4) is nonzero,
making the CPTP map generated by the master equation
nonunital.

APPENDIX K: NUMERICAL CONFIRMATION OF THE
QJE AND FIRST MOMENT EXPRESSION FOR THE

ADIABATIC MARKOVIAN MASTER EQUATION

In order to test Eqs. (43) and (35a), we performed the
following simulations for the two-qubit model described in the
main text. We initialized the system in one of the four energy
eigenstates ρS(0) = |εa(0)〉〈εa(0)|, then we evolved the density
matrix using our adiabatic master equation. The diagonal
elements of the density matrix at t = tf are then associated
with the probability pβ|α of measuring the state |εβ(tf )〉. Using
this, we calculated the expectation value 〈e−β(�E−�F )〉. We
then used our adiabatic master equation to evolve the identity
operator. This allowed us to numerically find E(1), which
in turn allowed us to calculate γ . The equality expressed in
Eq. (43) is obtained with high accuracy, as shown in Fig. 8. We
can also calculate the left-hand and right-hand sides of the first
moment of our fluctuation theorem [Eq. (35)] independently.
We again find excellent agreement between the two results:
see Fig. 9.

To compute �F , as needed for Eq. (45a), the eigenvalues εi

of the initial (i = α) and final (i = β) Hamiltonian are numer-
ically computed by diagonalizing the respective Hamiltonians.
In turn, the respective partition functions are calculated using
the energy eigenvalues found, Z = ∑

i e
−βεi . The free energy

is then F = − ln(Z)/β.

0.2 0.4 0.6 0.8 1.0 1.2
g2

2 103

0.1
0.2
0.3
0.4
0.5
0.6
0.7

h ×     
η

FIG. 9. (Color online) Simulation results for 〈β(�E − �F )〉
(solid blue line) and the right-hand side of Eq. (13a) (red dashed line)
using the Markovian master equation and tf = 5 μs, J = 1

2 , T = 17
mK, and ωc = 8π . The two curves overlap to within numerical
accuracy.
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