
PHYSICAL REVIEW E 88, 032145 (2013)

Temperature-driven irreversible generalized Langevin equation can capture the nonequilibrium
dynamics of two dissipated coupled oscillators
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Kawai and Komatsuzaki [J. Chem. Phys. 134, 114523 (2011)] recently derived the nonequilibrium generalized
Langevin equation (GLE) for a nonstationary system using the projection operator technique. In the limit when
the environment is slowly changing (that is, a quasi-equilibrium bath), it should reduce to the irreversible GLE
approach (iGLE) [J. Chem. Phys. 111, 7701 (1999)]. Kawai and Komatsuzaki, however, found that the driven
harmonic oscillator, an example of a nonequilibrium system does not obey the iGLE presumably because it did
not quite satisfy the limiting conditions of the latter. Notwithstanding the lack of a massive quasi-equilibrium
bath (one of the conditions under which the iGLE had been derived earlier), we found that the temperature-driven
iGLE (T-iGLE) [J. Chem. Phys. 126, 244506 (2007)] can reproduce the nonequilibrium dynamics of a driven
dissipated pair of harmonic oscillators. It requires a choice of the function representing the coupling between
the oscillator coordinate and the bath and shows that the T-iGLE representation is consistent with the projection
operator formalism if only dominant bath modes are taken into account. Moreover, we also show that the more
readily applicable phenomenological iGLE model is recoverable from the Kawai and Komatsuzaki model beyond
the adiabatic limit used in the original T-iGLE theory.
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I. INTRODUCTION

To investigate the behavior of a system within a com-
plex environment, such as a bimolecular reaction within a
solution or molecular rearrangement in liquid crystals, the
dynamics of the system are often simplified by identifying
a specific coordinate (reaction path, configuration parameter,
etc.) characterizing the process. If the thermal equilibrium
between the system and environment (bath) is established,
then well-developed methods can be applied to describe
this process. Such methods include diffusion models for
investigating spatial and/or reactional fluxes [1–4], approaches
based on the Langevin equation (LE) for calculating molecular
flows and relaxation mechanisms [5–7], and transition state
theory and its consequent improvements for obtaining rate
constants and reactive trajectories [8–14].

In nonequilibrium cases, the interrelations between the
system and bath coordinates do not obey the fluctuation-
dissipation theorems critical to the balance of forces expressed
in the LE. Moreover, nonvanishing heat flows between the
system and the bath do not allow a strict definition of
the temperature [15]. Consequently, to our knowledge, the
contraction of a nonequilibrium bath so as to describe the
system dynamics within a small reduced coordinate space has
not yet been specified generally. The current work further
develops and clarifies the applicability of the nonequilibrium
LE-based theory.

When the bath can be represented as a set of harmonic
oscillators (often referred to as Zwanzig’s approach) [16–18],
then in many cases the analytical solution to the problem can
be obtained. The effective substitution of the bath variables by
harmonic modes has recently been used to build an LE-based
approach for deriving the reduced equations of motion (EoMs)
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in the nonequilibrium regime [15,19–21]. In this algorithm,
the nonstationarity of the environment has been modeled
by introducing a temporal dependence in the parameters of
the bath modes. The resulting EoM describes the dissipative
dynamics of the nonequilibrium subsystem with the help of a
limited set of functions defining the system-bath interaction.
In many practical applications these functions can be obtained
either experimentally or numerically and are no more abstract
than the friction coefficient in the LE. Presumably, the
phenomenological character of this EoM allows one to use
it in a wide range of practical applications.

In the equilibrium regime, the motion of a chosen particle in
a dense medium at a constant temperature, T , can be described
by use of the generalized Langevin equation (GLE),

mv̇(t) = F [x(t)] −
∫ t

0
γ (t,t ′)v(t ′) dt ′ + ξ (t), (1)

where γ (t,t ′) = γth(t − t ′) is the stationary and nonlocal
friction kernel representing the delayed response of the solvent.
The mean force, F [x(t)], results from the averaging over
all the solvent degrees of freedom and will be ignored in
the remainder of this work for simplicity without loss of
generality. The stationarity reveals itself as a dependence on
the time difference, that is, a one-time argument rather than
two. The fluctuation-dissipation relation (FDR) for the random
stationary force ξ (t) = ξth(t) reads

〈ξth(t)ξth(t ′)〉 = kBT γth(t − t ′). (2)

This equation naturally appears when the particles coordinates
are bilinearly coupled to the bath modes [22,23]. Even when
they are not rigorously bilinear, the GLE approximately
captures much of the dynamics of the chosen particle because
the nonlinear terms typically correspond to small contributions
at higher order. Interestingly, such nonlinearities have been ad-
dressed recently, though challenges remain [24]. Meanwhile,
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the nonlocal or colored friction is represented through the fact
that the friction kernel γth(·) is not a Dirac δ function. This
nonlocality establishes the time scale of the relaxation of the
solvent in response to the motion of the chosen particle. It
cannot be ignored if the time scales of interest with respect to
the chosen particle are on the order of those of the solvent
dynamics. This limit can be approached when the solvent
is effectively representable through only a few collective
coordinate modes such as has been seen in limiting cases of
dense media [25,26].

Although no longer a surprise to the chemistry community,
it is remarkable that the GLE is also applicable to the treatment
of chemical reactions in liquids. Indeed, the local limit, that is,
the Langevin equation, has given rise to the much celebrated
treatment of one-dimensional chemical reactions that gave rise
to the Grote-Hynes rate formula [27,28]. It forms the basis
for the description of a large number of chemical reactions
using a chosen reaction coordinate coupled to a statistical bath
[29–37]. Moreover, the bath can be colored [38–41], space-
dependent [42], or even nonstationary [19,43,44]. This begs
the question as to whether this framework could also be of
use in describing the dynamics of chemical reactions (and
more general systems) when the environments are far from
equilibrium.

In regimes where the temperature of the environment
is time-dependent [15,45], T = T (t), the amplitude of the
stochastic force changes in accordance with the transformation

ξ (t) =
√

T (t)

T (0)
ξth(t). (3)

This modification of the stochastic force amplitude has been
verified in the bilinear coupling model by direct consideration
of the influence of the harmonic bath modes with changing
energy on the projected coordinate of motion [45].

In nonequilibrium systems, the friction kernel can also be
influenced by irreversible internal processes that may be or
may not be connected to the temperature change. Its effect
can be taken into account by a corresponding modification
of the GLE. In the case of a nonstationary environment at
constant temperature, for the irreversible version of GLE
(iGLE), as proposed in Refs. [19] and [20], the friction kernel
and stochastic force read, respectively,

γiGLE(t,t ′) = g(t)g(t ′)γth(t − t ′) and (4)

ξiGLE(t) = g(t)ξth(t), (5)

where the function g(t) defines the coupling strength between
the particle and the bath. The coupling function g(t) is sensitive
to changes in the interactions between the system and the bath
as well as the bath itself. It is a dimensionless function with
the condition g(t0) = 1 chosen so that the friction is captured
by γth(t0) for some arbitrary t0. In preceding work [15,19–21],
this time was chosen to be t0 = 0, although it may acquire
any value, including the infinite past or future, at which a
thermodynamic equilibrium is established. Equation (1) with
γ (t,t ′) and ξ (t) from Eqs. (4) and (5) was called the irreversible
GLE (iGLE) [21] so as to emphasize the fact that the system
undergoes a nonequilibrium irreversible process.

Though more general than the GLE, the iGLE does not
capture all possible forms of nonstationarity in the solvent
response. This had led to further generalizations that are
capable of correctly surmising more general nonstationary
responses [15,46–52]. Nevertheless, the iGLE retained the
advantage that it could be recovered [20] through the use of
a projection operator technique ignoring small higher-order
corrections in the force expansion akin to how the GLE is
recovered from the Zwanzig Hamiltonian with the only cost
being that the system be initiated at thermal equilibrium at
time 0. Recently Kawai and Komatsuzaki [51] showed that
the projection operator technique can give rise to a nonmulti-
plicative nonstationary kernel at the expense of allowing the
potential of mean force to be time-dependent. This introduces
additional complexity in both the construction of the equations
of motion, which may be difficult to do in arbitrary systems,
and in their propagation. As such, it is important to understand
the degree to which their theory actually extends the iGLE
in theory and in practice. In this article we recapitulate the
derivation of the nonstationary GLEs, both the iGLE and the
Kawai and Komatsuzaki GLE, so as to clarify these theoretical
differences. In order to explore the practical differences of
the two approaches, we revisit the model system, that is, a
driven harmonic oscillator, that Kawai and Komatsuzaki [51]
recently reported as demonstrating the insufficiency of the
iGLE. We find that most of the reduced dynamics of this system
can nevertheless be captured by the simple framework of the
temperature-dependent iGLE (T-iGLE), thereby revealing the
practical advantages of the original iGLE framework.

II. THEORY: GENERALIZED IGLE VERSUS T-IGLE

In Ref. [15], a new Zwanzig-type Hamiltonian has been
proposed to allow for an arbitrary (although moderately slow)
change of the environmental temperature. In this Hamiltonian,
the oscillatory bath modes are subject to a parametric variation
(“squeezing” oscillators): The effective masses and frequen-
cies of the bath modes are prescribed to vary with time through
a specified protocol. It results in the change of the energy (and
temperature) of the bath and the corresponding corrections to
the GLE, leading to the temperature-driven iGLE, T-iGLE,
with the friction and random force equal to

γTiGLE(t,t ′) = T (t)

T (t0)
g(t)g(t ′)γth[τ (t) − τ (t ′)], (6)

ξTiGLE(t) = T (t)

T (t0)
g(t)ξth[τ (t)]. (7)

The effective time in the T-iGLE,

τ (t) =
∫ t

t0

T (s)

T (t0)
ds, (8)

is a functional of the temperature and goes “faster” when
the temperature increases. Such a correction in the time
dependence alters the intensity of the stochastic force. In so
doing, it introduces a nonlinear correlation in the stochastic
force not apparent in the multiplicative form of the iGLE.

The iGLE and T-iGLE formalisms have the advantage that
they can be readily used to model large systems interacting
with complex environments. For example, if the environment
can be distinctly subdivided into several uncorrelated parts
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(baths with different properties such as temperature, response
time, etc.), then the friction and the random force are expressed
as sums over bath reservoirs,

γTiGLE(t,t ′) =
∑

k

Tk(t)

Tk(t0)
gk(t)gk(t ′)γ(th)k[τk(t) − τk(t ′)], (9)

ξTiGLE(t) =
∑

k

Tk(t)

Tk(t0)
gk(t)ξ(th)k[τk(t)]. (10)

Note that Eqs. (4), (6), and (9) imply the nonequilib-
rium kernels can be simply retrieved from equilibrium
ones. This property is directly connected to the adiabaticity
of the nonequilibrium process and a sufficient separation
between the particle motion and any possible resonances to
and between the bath reservoirs. Therefore, the applicability
of the (T-)iGLE theory implies the existence of a hierarchy of
characteristic times bracketing that of the motion of the tagged
particle, τpart,

τbath < τpart < τnoneq. (11)

The fastest time scale, τbath, corresponds to the fluctuations of
the bath modes. The slowest processes are quantified through
τnoneq and are characteristic of the nonequilibrium changes in
the collective bath (that is, the environment). These slow time
scales can therefore be seen in the nonequilibrium relaxation
of macroscopic parameters such as temperature, density, etc.

The extended form of the FDR now reads

〈ξTiGLE(t)ξTiGLE(t ′)〉 = kBTeff(t,t
′)γTiGLE(t,t ′), (12)

where

Teff(t,t
′) =

∑
k

Tk (t)Tk(t ′)
Tk (t0) gk(t)gk(t ′)γ(th)k[τk(t) − τk(t ′)]

γTiGLE(t,t ′)
(13)

is the “effective temperature,” a parameter responsible for the
relation between the friction kernel and the random force
correlation function. Within the framework of the T-iGLE
approach, this parameter depends on both initial and final
times. The form of these equations becomes compatible with
that of Komatsuzaki-Kawai if Teff(t,t ′) = T (t ′) [15]. This latter
condition can arise if any of the following conditions are met:
the temperature changes uniformly for all the bath modes [i.e.,
Tk(t) = T (t)], there is effectively only one bath mode, or the
system is in the near-equilibrium limit.

III. A MODEL SYSTEM

Although the T-iGLE approach has been derived in those
cases in which the system and bath time scales are nonresonant,
we show here that it is also applicable to the special case of the
driven harmonic oscillator investigated in Ref. [51]. Therein, a
chosen harmonic oscillator, described by the coordinate q1, is
bilinearly coupled to a special-bath oscillator, q2. In turn, the
latter is influenced by a Langevin bath directly. This system
can be viewed as a simplified version of the model analyzed
in Ref. [53]. In the latter, a four-atom chain, rather than a
single atom, is dissipated at both ends. In the larger system,
the temperature associated with the vibrational mode of the
central dimer was found not to be uniquely defined. As derived
from the correlations of the bond momentum, it is somewhat
larger than if it is calculated via the relative velocity of the

central dimer. This nontrivial situation results from nonzero
interactions of the dimer with the end atoms; such interactions
lead to the coupling of the bond momenta of the neighbors.
While this issue is absent in the smaller system, it does indicate
that these types of simple models can give rise to unusual
dynamics capable of testing the nonequilibrium theories we
are developing.

The EoMs of the dissipated two-dimensional model system
are

dq1

dt
= p1,

dp1

dt
= −ω2

1q1 + aω2
2(q2 − aq1),

dq2

dt
= p2, (14)

dp2

dt
= −ζp2 − ω2

2(q2 − aq1) + η(t),

〈η(t)η(t ′)〉 = 2kBT0ζ δ(t − t ′).

The Langevin bath for the special-bath oscillator is rep-
resented by the friction constant ζ and the random force
η(t). The special-bath oscillator q2 acts as the conduit of
interaction between the chosen oscillator q1 and the local
bath η(t). The projection of q2 results in a driven one-
dimensional GLE describing the motion of q1. As in Ref.
[51], the system is prepared in a highly nonequilibrium state:
the initial temperatures of the first (chosen) particle and
the Langevin bath are kBT0 = kBT initial

1 = 1/2, whereas the
initial temperature of the special-bath particle is three times
larger: kBT initial

2 = 3/2. The values of other parameters are
a = 0.5, ω1 = 1, ω2 = 2, and ζ = 0.2.

The limitations of the iGLE for the first particle as
emphasized in Ref. [51] are based on the fact that it does
not adequately describe the dynamical behavior of the two-
oscillator system: (1) The friction kernel of this system does
not fall into the form encoded in Eqs. (4) and (5), because
the factors g(t) and g(t ′) cannot shift the locations of the
zeros of the equilibrium friction kernel. (2) The iGLE neglects
the nonequilibrium nature of the free energy of the first
oscillator. Their conclusions stem from observation of the
correlation functions obtained through numerical simulations
of the system specified by Eq. (14). The difficulties in applying
the iGLE to the current problem are directly connected to the
violation of the time scales used in deriving the (T-)iGLE.
Indeed, in Ref. [51], there is no pronounced time separation:
the vibration frequency of the special-bath oscillator is only
two times larger than that of the chosen particle. Moreover,
τnoneq is about a period of the bath oscillator q2, so that
inequality (11) is not fulfilled. The lack of a large time-
scale separation between the chosen oscillator mode and the
special-bath mode therefore creates a challenge to any reduced
dimensional description aimed at contracting the special-bath
mode.

Within the framework of the (T-)iGLE approach, the free
energy (and the mean forces associated with it) adiabatically
changes together with the bath properties, so that at any
moment of time the free energy depends on the tagged particle
coordinates only. On the contrary, in Ref. [51] the mean force
has evident dependence on the velocity of the first particle,
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q̇1. It is caused by a strong correlation between the first and
second particles and resembles the “momentum coupling” in
the molecular chain investigated in Ref. [53]. Note that the
contribution of the velocity-dependent part quickly disappears
(at t ∼ 15 of the time scale seen in Fig. 2 of Ref. [51]). Since
the nonequilibrium effects on the friction properties last longer,
up to t + t ′ ∼ (30 + 40) = 70, the rest of this article is devoted
to the analysis of the friction kernel and its connection to the
T-iGLE. (Note that we found that the scale of t ′ should be 100
times less than that reported in Kawai and Komatsuzaki [51]
in order to reproduce the results shown in their Fig. 3. Our
analysis below therefore reports time in our present units and
ignores differences related to this factor.)

IV. NONEQUILIBRIUM FRICTION KERNEL
IN A MODEL SYSTEM

Investigating the expression for the nonequilibrium friction
kernel in the iGLE model, Eq. (4), Kawai and Komatsuzaki
[51] reasonably claim that the zeros of this kernel must coin-
cide with zeros of the equilibrium friction kernel. However,
the time squeezing effect (8), being the origin of the shift in
the zeros, as implemented in the temperature-driven approach,
Eqs. (6)–(10), was not considered.

We analyze the structure of the friction kernel as it is given
in the supplementary material of Ref. [51]. We recapitulate
this result noting that it is based on the accurate solution for
the pair correlation functions of the dynamic variables. If the
latter are united in a vector

	 = (q1 p1 q2 p2), (15)

then the 4 × 4 correlation matrix is

G = 〈	T	〉 ≡
(

G11 G12

G21 G22

)
, (16)

where Gij are 2 × 2 matrices and 〈·〉 denotes the averaging
over the distribution. The matrix G represents the full solution
for the problem (14) and obeys the differential equation [Eq.
(S6) in the supplementary material of Ref. [51]]

d

dt
G(t) = LTG + GL + 2kBT0ζE (17)

with

L =

⎛
⎜⎜⎝

0 −ω2
1 − a2ω2

2 0 aω2
2

1 0 0 0
0 aω2

2 0 −ω2
2

0 0 1 −ζ

⎞
⎟⎟⎠ (18)

incorporating the coefficients from system (14) and E being
the matrix with only one nonzero element, E44 = 1.

The projection operator [Eq. (S10) in Ref. [51]] is defined
by

P =
(

1̂ G−1
11 G12

0̂ 0̂

)
, (19)

where 0̂ and 1̂ are 2 × 2 zero and identity matrices, corre-
spondingly, and Gij are taken from Eq. (16).

In the most general case, the friction kernel found by Kawaii
and Komatsuzaki [51] reads as follows:

γ (t,t ′) = a2ω4
2〈

p2
1(t ′)

〉 [(1 − PT(t))W(t,t ′)(1 − P(t ′))]33, (20)

which recasts Eq. (S35) found in the supplementary material
of Ref. [51] slightly within our notation. The matrix W is
found by integrating two equations [Eqs. (S34) and (S33) in
Ref. [51]]:

d

dt ′
W(t ′,t ′) = YT(t ′)W(t ′,t ′) + W(t ′,t ′)Y(t ′) + 2kBT0ζE,

(21)

when t = t ′ and
d

dt
W(t,t ′) = YT(t)W(t,t ′) (22)

for t > t ′ with the initial condition W(0,0) = G(0) and

Y(t) = [1 − P(t)] L + dP
dt

(23)

as also seen in Eq. (S21) in Ref. [51].
With these preliminaries, we can now obtain a formal

expression for the friction kernel (which is the only new result
in this section),

γ (t,t ′) = a2ω4
2

〈p2
1(t ′)〉 [P13(t)P13(t ′)W11(t,t ′) − P13(t)W13(t,t ′) − P13(t ′)W31(t,t ′) + W33(t,t ′) + P13(t)P23(t ′)W12(t,t ′)

+P23(t)P13(t ′)W21(t,t ′) + P23(t)P23(t ′)W22(t,t ′) − P23(t)W23(t,t ′) − P23(t ′)W32(t,t ′)], (24)

which allows us to make comparisons between the T-iGLE and
the Komatsuzaki-Kawai theory below. The elements, Pij and
Wij , of the projection operator P and matrix W included in this
equation can be found numerically according to the scheme
described in Ref. [51].

The form of Eq. (24) resembles that of Eq. (9), in which
the cross-correlated bath terms are also included. While the
functions Wij (t,t ′) originate from the correlation functions of
the form 〈ξi(t)ξj (t ′)〉, [51] the factors Pij can be associated
with the coupling functions, gk(t).

V. FRICTION KERNEL AT LARGE TIMES

One can solve Eq. (17) at t → ∞ to obtain

G(t → ∞)

=

⎛
⎜⎜⎝

kBT0/ω
2
1 0 akBT0/ω

2
1 0

0 kBT0 0 0
akBT0/ω

2
1 0

(
a2ω−2

1 + ω−2
2

)
kBT0 0

0 0 0 kBT0

⎞
⎟⎟⎠ .

(25)
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FIG. 1. (Color online) The coefficients P13 and P23 as functions
of time.

Note that not all off-diagonal elements are zero because the
interaction between the oscillator and the bath in Eq. (14)
stems from the Hamiltonian contribution

ω2
2(q2 − aq1)2/2 = ω2

2

(
a2q2

1 − 2aq1q2 + q2
2

)/
2, (26)

which necessarily includes a nontrivial cross-correlation term.
Consequently, the correlation between the bath mode q2 and
the tagged coordinate q1 never disappears completely.

At large times, Eqs. (19) and (25) reduce to P13(t → ∞) =
a and P23(t → ∞) = 0 (see Fig. 1). Thus, only four terms in
Eq. (24) survive at large times, resulting in

γ (t,t ′) → a2ω4
2

kBT0
[a2W11(t,t ′) − aW13(t,t ′) − aW31(t,t ′)

+W33(t,t ′)]. (27)

The formal structure of this equation is the same as that of the
interaction potential (26) (indexes 1 and 3 correspond to the
phase space variables q1 and q2, accordingly). Moreover, all
four elements of the matrix W in the above equation do not
vanish at t,t ′ → ∞, giving

W11 = kBT1/ω
2
1 (∀ t and t ′), (28)

W13 = W31 → akBT1/ω
2
1, (29)

W33 → a2kBT1/ω
2
1 + kBT0

/(
a2ω4

2

) · γth(t − t ′) (30)

in accordance with the fact that the correlations between
coordinates q1 and q2 in the matrix G do not completely fade
away. Note that γth in Eq. (30) is the equilibrium (thermal)
friction kernel,

γth(t) = a2ω2
2 exp (−ζ t/2)

[
cos(νt) + ζ

2ν
sin(νt)

]
, (31)

where ν ≡
√

ω2
2 − ζ 2/4. This equation differs slightly from

that of Eq. (88) in Ref. [51] by a sign change in the second
term in brackets.

In the next section we demonstrate that the T-iGLE theory
gives satisfactory results upon suitable choice of the indepen-
dent bath modes and corresponding coupling functions, gk(t).

FIG. 2. (Color online) The behavior of each of the nine terms in-
side of the brackets of Eq. (24) shown as a function of time difference
(t − t ′) for different t ′, as indicated. The terms are shown according
to the following order: (1) P13(t)P13(t ′)W11(t,t ′) as black solid curve,
(2) −P13(t)W13(t,t ′) as cyan circles, (3) −P13(t ′)W31(t,t ′) as blue
solid curve, (4) W33(t,t ′) as red solid curve, (5) P13(t)P23(t ′)W12(t,t ′)
as black dashed curve, (6) P23(t)P13(t ′)W21(t,t ′) as blue crosses, (7)
P23(t)P23(t ′)W22(t,t ′) as yellow solid curve, (8) −P23(t)W23(t,t ′) as
green dotted curve, and (9) −P23(t ′)W32(t,t ′) as cyan dashed curve.

VI. RESULTS AND DISCUSSION

All nine terms in the square brackets of Eq. (24) de-
noted as γk(t,t ′)〈p2

1(t ′)〉/(a2ω4
2) are depicted in Fig. 2. Four

dominant terms, P13(t)P13(t ′)W11(t,t ′), −P13(t)W13(t,t ′),
−P13(t ′)W31(t,t ′), and W33(t,t ′), corresponding to those in
Eq. (27), are shown as a black solid curve, cyan circles, blue
and red solid lines, accordingly. Retaining only these nontrivial
terms in Eq. (24) results in the approximate fiction kernel,

γappr(t,t
′) = a2ω4

2〈
p2

1(t ′)
〉 [P13(t)P13(t ′)W11(t,t ′) − P13(t)W13(t,t ′)

−P13(t ′)W31(t,t ′) + W33(t,t ′)], (32)

which deviates only slightly from the true one (see Fig. 3).
Other terms in Eq. (24) represent the bath modes, which do not
contribute significantly to the dynamics. Below we show that
the terms in the above equation originate from the single bath
reservoir associated with the coupling coordinate, q2 − aq1.
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FIG. 3. (Color online) The friction kernel γ (t,t ′) in Eq. (24) (solid
red curves), and its approximation γappr(t,t ′) in Eq. (32) (dashed blue
curves) as a function of the time difference at various initial times t ′.

The starting point in the multibath T-iGLE approach,
Eqs. (9) and (10), is the assumption that different bath
reservoirs do not correlate with each other when acting on the
tagged particle [15]. It presumes the random force correlation
functions between different reservoirs are negligibly small,
reflecting the independence (orthogonality) of the random
forces. Evidently, this is not the case for the system under
investigation [see Eqs. (28)–(30)]. However, the nonvanishing
terms appear to cancel each other at large times, allowing
the resulting function to approach zero. Since at large
times this resulting friction kernel corresponds to the only
thermodynamically equilibrated bath mode, it is reasonable to
assume that the combination of the four dominant terms in
Eq. (32) represents a single independent set of environmental
coordinates. That is the environment can be represented by a
single-bath reservoir.

By combining the terms in Eq. (32), we regroup the system
coordinates in a way that leads to an effective separation of the
bath modes to prevent their dependencies on each other. [An
analogous procedure was performed in Ref. [47] to restore the
coupling function g(t) for a particle diffusing in a two-reservoir
bath: a binary mixture of hard spheres.] On the one hand, this
procedure implies some arbitrariness in the choice as allowed
by the phenomenological character of the iGLE approach.
On the other hand, there is no more arbitrariness than in the

intuitive notion that the sole connection between the bath and
the tagged particle is realized via the combined coordinate
q2 − aq1. Evidence for the fact that the T-iGLE includes
only one bath can be found in the one-parameter dependence
of the temperature 〈p2

1(t ′)〉 in Eq. (32). Such one-parameter
dependence is found also in the effective temperature in
Eq. (13) in the case when the temperature is the same for
the whole bath reservoir.

The system approaches thermodynamic equilibrium at
infinitely large times, hence, the reference time must be chosen
equal to t0 = ∞. As mentioned above, the form of Eq. (24)
suggests that gk(t) can be associated with Pij (t). In the nominal
one-reservoir case, it is reasonable to set

g(t) = P13(t)/P13(∞) = P13(t)/a. (33)

Comparing Eq. (6) with Eq. (32), one should expect that

γth[τ (t) − τ (t ′)]
≈ γ

appr
th [τ (t) − τ (t ′)]

= T (t0)

T (t)

a4ω4
2

〈p2
1(t ′)〉

[
W11(t,t ′) − P −1

13 (t ′)W13(t,t ′)

−P −1
13 (t)W31(t,t ′) + P −1

13 (t)P −1
13 (t ′)W33(t,t ′)

]
, (34)

where the equality (33) is used and T (t) is the temperature
of the bath mode. According to the T-iGLE theory, this
temperature is defined through the total energy of the bath
oscillators,

∑ 1
2 (ω2

kq
2
k + p2

k ) under the condition of weak
coupling between the tagged and bath coordinates. Since in
the present case, the coupling constant a is not small and does
not allow a full separation of the bath mode, the contributions
from the combined coordinate q2 − aq1 is included in the
definition

T (t) = 1
2

(
ω2

2〈q2 − aq1〉2 + 〈
p2

2

〉)
(35)

of the bath temperature instead.
The bath temperature is also included into the effective time

τ from Eq. (8). It results in a shift of the zeros of the friction

FIG. 4. The ratio T (t)/T (∞) of the bath mode temperature at
time t to that at t = ∞ is shown as a function of time (solid curve).
The ratio θ (t)/T (∞) of the auxiliary factor θ (t) to T (∞), is also
shown as a function of time (dashed curve). The logarithms of the cor-
responding relaxation functions |Ratio − 1| are shown in the insert.
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kernel. However, using a modified T (t) from Eq. (8) does
not lead to the desired result: the ratio T (t)/T (∞) (Fig. 4,
solid curve) is much higher than the actual shift of zeros.
To overcome this problem, the auxiliary parameter θ (t) was
introduced in Eq. (8) with the help of a simple fit

θ (t)

T (∞)
= 1 − 0.211 exp(−0.153 t) (36)

(Fig. 4, dashed curve). Although it has the same dimension as
temperature [which is required by the formal use of Eq. (8)],
its role is to redefine the time scale for the bath mode.
Interestingly, the fitted relaxation rate in the exponent of
Eq. (36) is close to the relaxation rate of T (t) (that is, both
curves in the inset in Fig. 4 have the same slope up to a sign).

To better understand why the factor θ (t) does not coincide
with the bath temperature, one need only refer to the fundamen-
tal construction of the T-iGLE theory. According to Ref. [15],
the temperature of an oscillating bath mode is associated with
its energy. The latter is expressed via the angle-action variables
as

Ti(t) ∼ Ei(t) = ωi(t)Ii . (37)

Here Ii is the action which remains nearly constant in the
adiabatic T-iGLE theory. The time scale of the relaxing
environment is thereby dictated by a slowly changing bath

FIG. 5. (Color online) The equilibrium friction kernel γth(t − t ′),
Eq. (31) (solid red curves), and its approximation, Eq. (34) (dashed
blue curves), as functions of time difference at various initial times, t ′.

frequency, which is directly connected to the bath temperature.
However, in the present case, in which the bath is represented
by a single bath mode q2 and the frequency ω2 is constant,
the nonstationarity of the bath manifests itself through a
change in the action variable I2. As a consequence, the
system temperature takes the special case of Eq. (37), T (t) ∼
ω2I2(t), and is evidently not equal, or proportional, to the
auxiliary parameter θ (t) associated with the bath response.
The necessity for the correction embodied through θ (t) is
thus a manifestation of the fact that this model includes a
single dominant bath mode, whose dynamics is far away
from the assumed adiabaticity conditions. Specifically, the
recurrences in the dynamics of this bath mode are not available
within the assumed structure of the T-iGLE wherein the bath
is nonresonant, adiabatic, and massive. [Note that including
nonadiabatic effects in the T-iGLE requires the inclusion of
higher order terms in the near-adiabatic expansion of the bath
mode response to the perturbation (see Ref. [15]). Such an
expansion can be performed readily and will be published
elsewhere.]

Thus, with all the assumptions made above, the functions
g(t) and T (t) can be optimized to reproduce the equilibrium
friction kernel of the two-oscillator model as shown in Fig. 5.
The T-iGLE theory fails only at small times, t ′ < 0.6, when
the system is very far from equilibrium (the case with t ′ = 0

FIG. 6. (Color online) The original friction kernel γ (t,t ′), Eq.
(24) (solid curves), and its approximation (dashed curves) as functions
of time difference at various initial times, t ′.
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is not presented). At intermediate times (t ′ = 2,4) the results
become satisfactory. At larger times (only t ′ = 8 is shown)
the approximate friction kernels are practically identical to the
equilibrium one.

To restore the original friction kernel from the equilibrium
one, expression (6) is used with the equilibrium friction
kernel (31), bath temperature (35), coupling function (33),
and the effective time (8) with θ (t) instead of the actual
temperature T (t). The results are illustrated in Fig. 6. As
observed in the previous figure, the larger the time, the better
the agreement between the Komatsuzaki-Kawai and T-iGLE
approximations. Note that the nonequilibrium behavior lasts
up to t = 70, as observed in the simulations. Thus, the T-iGLE
approach, initially prepared for large-dimensional systems,
is able to reproduce the major part of the dynamics of the
low-dimensional model.

VII. CONCLUSIONS

The present article adds to our increasing understanding
of nonequilibrium responses. The recent work of Kawai
and Komatsuzaki [51] extended the framework for reduced
dimensional models to describe nonequilibrium response. The
model they used to illustrate this extension, however, can
be captured as shown in this work within the less-general
T-iGLE formalism. The fact that the nonequilibrium nature of

these systems can be encoded in larger-dimensional projected
models does not diminish the need for nontrivial memory in the
most reduced dimensional systems. However, it does illustrate
the fact that the complexity of these systems can be captured
with an appropriate mixture of treatments. It is thus notable
that the T-iGLE, as well as iGLE and GLE, can under some
assumptions be reproduced within the framework of Kawai
and Komatsuzaki’s [52] projection operator formulation in
those cases when the nonequilibrium behavior arises from
external time-dependent perturbations to the system. However,
the T-iGLE and iGLE approaches accommodate a wider class
of baths and the self-consistent coupling between a given
subsystem and the collective dynamics of an ensemble of such
systems [46]. It remains a challenge to construct a rigorous
representation of such multiscale dynamics.
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