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By treating both control parameters and dynamical variables as probabilistic variables, we develop a succinct
theory of perpetual extraction of work from a generic classical nonequilibrium system subject to a heat bath
via repeated measurements under a Markovian feedback control. It is demonstrated that a problem for perpetual
extraction of work in a nonequilibrium system is reduced to a problem of Markov chain in the higher-dimensional
phase space. We derive a version of the detailed fluctuation theorem, which was originally derived for classical
nonequilibrium systems by Horowitz and Vaikuntanathan [Phys. Rev. E 82, 061120 (2010)], in a form suitable for
the analyses of perpetual extraction of work. Since our theory is formulated for generic dynamics of probability
distribution function in phase space, its application to a physical system is straightforward. As simple applications
of the theory, two exactly solvable models are analyzed. The one is a nonequilibrium two-state system and the
other is a particle confined to a one-dimensional harmonic potential in thermal equilibrium. For the former
example, it is demonstrated that the observer on the transitory steps to the stationary state can lose energy and that
work larger than that achieved in the stationary state can be extracted. For the latter example, it is demonstrated
that the optimal protocol for the extraction of work via repeated measurements can differ from that via a single
measurement. The validity of our version of the detailed fluctuation theorem, which determines the upper bound
of the expected work in the stationary state, is also confirmed for both examples. These observations provide
useful insights into exploration for realistic modeling of a machine that extracts work from its environment.
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I. INTRODUCTION

The importance of extraction of work from a thermo-
dynamic system subject to a heat bath under a feedback
control has become more widely known in physics sdue to
recent experimental realizations [1–4]. In a simplified view
of physics, such a system is often modeled as a Brownian
particle confined to a potential. The control parameters that
characterize the system are tuned by the observer in his own
way according to the outcome of the measurement. If the
energy of the Brownian particle is lowered, the work has
been extracted successfully and the gained energy will be
consumed in mechanical or chemical or another form. The
feedback control dates back to the well-known Szilárd engine
[5] and it has been one of the central topics in nonequilibrium
thermodynamics, involving the concepts of information theory
[6–9]. There exist comprehensive reviews on the recent
progress in the nonequilibrium thermodynamics which focus
on the nanoscale feedback controls [10,11]. For a real system
having ways for extraction of work from its environment,
whether it is artificial or not, one of the most important question
is how to realize the maximum extracted work. When we
consider such a problem, we should not overlook that the
measurements and the controls are performed repeatedly.

Theoretical studies on extraction of work via measure-
ments under feedback controls for classical systems have
been done also in the recent literature [12–18]. Cao and
Feito [16] examined repeated measurements under feedback
control from the viewpoint of entropy reduction. They also
analyzed the maximum extracted work within the framework
of thermodynamics. Abreu and Seifert [14] examined in
detail the extraction of work from a particle in a harmonic
potential subject to a heat bath via an imprecise measurement.

They revealed the relationship between the extracted work
and the protocol of the feedback control, paying attention
to the information obtained in the measurement [9,19–22].
Esposito and Schaller [17] examined nonequilibrium systems
under feedback control which affects only the energy barriers
between system states by extending the traditional local
detailed balance.

Horowitz and Vaikuntanathan derived the detailed fluctu-
ation theorem [23] for nonequilibrium classical systems by
establishing the definition and interpretation of the reverse
process corresponding to a forward process under feedback
control. One of its consequence is the second law of thermo-
dynamics for discrete feedback, which imposes upper bound
on the extracted work through feedback loops. A version of the
detailed fluctuation theorem in a form suitable for the analyses
of perpetual extraction of work is derived in the present study,
since it provides important insights into the characteristics
unique to the perpetual extraction of work.

In the present study, we develop a succinct theory of perpet-
ual extraction of work from a generic classical nonequilibrium
system subject to a heat bath via repeated measurements under
a Markovian feedback control. We treat the control parameters
tuned by the observer as probabilistic variables, as well as
the dynamical variables fluctuating in the system. Mandala
and Jarzynski [18] has constructed a minimal model of an
autonomous Maxwell demon on a similar spirit. The new
control parameters are determined by the observer according
to the result of a measurement and the control parameters
just before the measurement. Thus, even if the distribution
of the dynamical variables is that achieved in the thermal
equilibrium for certain control parameters, the memory effect,
i.e., the influence of previous measurements, remains as the
present control parameters. This fact is nothing but the reason

032144-11539-3755/2013/88(3)/032144(15) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.82.061120
http://dx.doi.org/10.1103/PhysRevE.88.032144


TAICHI KOSUGI PHYSICAL REVIEW E 88, 032144 (2013)

for the requirement of the development of a new generic
theory for multiple measurements under feedback control.
We focus on the dynamics of the probability distribution
function (PDF) to derive the expression for extracted work
via a measurement under feedback control, together with the
condition for perpetual extraction of work. Since we work
in the phase space, application of our theory to physical
systems is straightforward. We analyze two exactly solvable
models as simple applications of our generic theory. The
one is a nonequilibrium two-state system and the other is an
equilibrium particle confined to a one-dimensional harmonic
potential.

II. FORMALISM

A. Generic expressions for nonequilibrium systems

1. Extraction of work and stationarity condition

Let us consider a system subject to a heat bath in which
a dynamical variable x changes as time evolves. The system
is characterized by the control parameters, which we denote
collectively by λ. An observer performs a measurement on the
system to obtain physical quantities, which we denote collec-
tively by f m. We assume that a Markovian feedback control is
implemented on this system, that is, the observer changes the
control parameter to the new one λ̃ in a deterministic manner
according to the control parameter before the measurement and
the measured quantity: λ̃ = λ̃( f m,λ). The measured value of
the physical quantity does not necessarily coincide with its real
value since the measurement is not completely precise. The
measured value is thus described by a conditional probability
as pm( f m|x,λ). Since the measured quantity is probabilistic,
the control parameter is also probabilistic, even when the
feedback control is completely precise. We therefore treat the
control parameter λ as a probabilistic variable as well as x.
The system is thus represented by the nonequilibrium PDF
P (x,λ) in the higher-dimensional phase space for x and λ

rather than that only for x. We omit the time variable for
simplicity unless otherwise stated in what follows.

While feedback control with a finite time lapse has been
studied theoretically [24–26], we assume instantaneous change
in the control parameter in the present study. In a real system,
feedback control can suffer from an error and the intended
control parameter is not necessarily realized [16]. We therefore
introduce a probability distribution pc(λ; λ′), which represents
the probability that the control parameter λ is actually realized
when the observer intends to realize λ′. When the feedback
control is completely precise, this probability distribution is
the δ function: pc(λ; λ′) = δ(λ − λ′). We can obtain the PDF
Pout just after the measurement as

Pout(x,λ) =
∫

dλ′G(λ,λ′; x)Pin(x,λ′), (1)

where

G(λ,λ′; x) ≡
∫

d f mpc(λ; λ̃( f m,λ′))pm( f m|x,λ′) (2)

is the propagator of the control parameter. Pin is the PDF just
before the measurement.

The energy of the system is a function of the dynamical
variable, E(x, λ). The expected work applied to the system

through the instantaneous change in the control parameter is
given by the expected difference between the energies after
and before the measurement as

〈W 〉 =
∫

dxdλ[Pout(x,λ) − Pin(x,λ)]E(x,λ)

=
∫

dxdλPin(x,λ)[Ẽ(x,λ) − E(x,λ)], (3)

where

Ẽ(x,λ) ≡
∫

dλ′E(x,λ′)G(λ′,λ; x) (4)

is the measurement-averaged energy with x and λ given
before the measurement. 〈·〉 represents the average over all the
possible dynamical variables and the control parameters. With
the vectorial representation, Eq. (3) is written as 〈W 〉[̃λ,P in] =
P in · (Ẽ [̃λ] − E), a functional of the initial PDF and the
protocol. If W is negative, the work has been successfully
extracted.

We assume the time translational symmetry of the system.
When the observer performs the second measurement after
an interval �t of time, the PDF just before the second
measurement has evolved to be

Pout(x,λ,t + �t) ≡
∫

dx′U (x,x′; λ,�t)Pout(x′,λ,t). (5)

U (x,x′; λ,�t) is the time development operator of the PDF
for a control parameter λ. If the system and the observer are
sound as a single machine for perpetual extraction of work
from the environment, the input PDF for a measurement and
that for the next measurement are expected to be identical. We
assume that such a PDF P∗(x,λ) is achieved when a sufficient
number of measurements have been performed. From Eqs. (1)
and (5), it satisfies the condition

P∗ = U (�t)GP∗, (6)

which mathematically means that P∗ is the eigenfunction
of the operator U (�t)G belonging to the eigenvalue 1.
The problem for the perpetual extraction of work in the
nonequilibrium system has been reduced to the problem of
Markov chain in the higher-dimensional phase space. P∗ is
the stationary distribution function in the higher-dimensional
phase space. In particular, if it does not depend on the initial
PDF, the expected work after the stationary distribution is
achieved is given by 〈W 〉∗ [̃λ,�t] = P∗ [̃λ,�t] · (Ẽ [̃λ] − E),
also independent of the initial PDF.

When the numbers of values taken by x and λ are finite, the
transition matrix U (�t)G is a finite-dimensional stochastic
matrix, whose elements are all non-negative and the sum of
the elements of each column vector in the matrix is unity.
If the matrix is irreducible in addition, the Perron-Frobenius
theorem [27] is straightforwardly applicable in this case. The
theorem states that U (�t)G has the eigenvalue 1 and only
one corresponding eigenvector, and the magnitudes of all
the other eigenvalues are smaller than 1. If the input PDF
contains any eigenvector belonging to the eigenvalue other
than 1, the component coming from that eigenvector decays
via the repeated operations of the transition matrix, which
indicates that the convergence of the PDF to the stationary
distribution is dominated by the eigenvalue ν having the second
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largest magnitude. The exponential decay to 1/e of the initial
component thus requires ndecay ≡ −1/ ln |ν| measurements.
ndecay is nothing but the mixing time of the Markov chain.
Since the several mathematical assumptions introduced above
are plausible in practical situations, we can expect in general
that the exponentially rapid convergence to the stationary state
is achieved in an ensemble of real machines for perpetual
extraction of work.

If we consider a more realistic situation, we should take the
generalized cost c of each measurement into account. While
the thermodynamic cost of measurement has been modeled
by focusing on the microscopic states of measurement devices
[20,28], we regard c simply as an energy cost needed at each
measurement. We assume c depends neither on x nor λ for
simplicity. The expected work per unit time,

〈w〉∗ [̃λ,�t] = 〈W 〉∗ [̃λ,�t] + c

�t
, (7)

should thus be optimized with respect to the protocol and the
interval of the measurements. Whether a real system having
ways for extraction of work from its environment is artificial
or not, it should be designed to attain the largest negative 〈w〉∗
for repeated measurements, not for a single measurement.

2. Reverse process and detailed fluctuation theorem

One of the important and useful tools for the analysis of
perpetual extraction of work is the detailed fluctuation theorem
under repeated feedback, which was originally derived for
nonequilibrium systems by Horowitz and Vaikuntanathan [23]
on the basis of Hamiltonian dynamics under discrete feedback
control. We rederive the detailed fluctuation theorem below in a
suitable form for the analyses of stationary states for perpetual
extraction of work.

Let us consider a situation in which an observer performs
N measurements, beginning with an initial control parameter
λ0 and the initial PDF P (x,λ,t0) = Pin(x|λ0)δ(λ − λ0). ti(i =
0, . . . ,N − 1) represents the time at which the (i + 1)th
measurement is performed. We denote the realized dynamical
variables up to the (i + 1)th measurement collectively by the
trajectory X i+1 = {x0, . . . ,xi}, where xj is the dynamical
variable realized at the (j + 1)th measurement. Let λi(i =
1, . . . ,N − 1) be the control parameter fixed in the interval
between ti−1 and ti , and λN be that for t > tN−1. For a given
trajectory XN of the dynamical variable and that of the control
parameter �N+1 ≡ {λ0, . . . ,λN }, the total work applied to the
system via the N measurements is given by

W [XN,�N+1] =
N−1∑
i=0

E(xi ,λi+1) − E(xi ,λi). (8)

As is known in statistical mechanics, the partition function
Z(λ) of the system with a control parameter λ is related to
the free energy of the system via the relation e−βF (λ) = Z(λ),
where β is the inverse temperature. The difference in the free
energy between after the last measurement and before the first
measurement �F (λ0,λN ) thus satisfies the relation e−β�F =
Z(λN )/Z(λ0).

The probability distribution of XN for a given trajectory
�N of the control parameter is calculated by acting the time

development operators on the initial PDF successively as

P [XN |�N ] =
[

N−2∏
i=0

U (xi+1,xi ; λi+1,�ti)

]
Pin(x0,t0|λ0), (9)

where �ti ≡ ti+1 − ti .
Remember that the reverse time development operator is

defined via the unitarity condition∫
d yU (x, y; λ,�t)U ( y,x′; λ, − �t) = δ(x − x′), (10)

where U (x,x′; λ, − �t) is the reverse time development
operator from x′ to x by a time interval �t under a control
parameter λ. Here we define the following quantity:

r(x′,x; λ,�t) ≡ ln
U (x′,x; λ,�t)Peq(x|λ)

U (x,x′; λ, − �t)Peq(x′|λ)
, (11)

where Peq(x|λ) ≡ exp[−βE(x,λ)]/Z(λ) is the canonical dis-
tribution function. The argument of the logarithm on the
right-hand side of Eq. (11) is the ratio of the two probabilities
in the thermal equilibrium. The one in the numerator is
the probability that the dynamical variable is x and after
an interval �t of forward time development it is x′, while
the other in the denominator is the probability that the
dynamical variable is x′ and after an interval �t of reverse time
development it is x. When these two probabilities are equal,
r(x′,x; λ,�t) vanishes. We thus can interpret it as a
microscopic-irreversibility indicator. Using Eq. (11), we in-
troduce the microscopic-irreversibility indicator of the whole
process as

R[XN ; �N ] ≡
N−2∑
i=0

r(xi+1,xi ; λi+1,�ti). (12)

We define the following probability distribution for the
given trajectory of the control parameter by acting the reverse
time development operators on the canonical distribution
function for λN successively as

P̃dyn[XN |�N+1] ≡ Peq(xN |λN )
N−2∏
i=0

U (xi ,xi+1; λi+1, − �ti),

(13)

which is determined only by the dynamics of the PDF in
the forward time development, regardless of the feedback
protocol.

The relative entropy [29] between two probability distri-
butions f and g is defined as

∫
dxf (x) ln[f (x)/g(x)]. Here

we define the trajectory-dependent relative-entropy density of
the initial PDF with respect to the corresponding canonical
distribution as

din(x0; λ0) ≡ ln
Pin(x0,t0|λ0)

Peq(x0|λ0)
. (14)

By using Eqs. (8), (9), (12), (13), and (14), we obtain the
relation

P [XN |�N ]

P̃dyn[XN |�N+1]
= exp[β{W [XN,�N+1] − �F (λ0,λN )}

+ R[XN ; �N ] + din(x0; λ0)] (15)
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for the fixed trajectory �N+1 of the control parameter, that is,
λi’s are the free parameters in this relation.

We denote the observed physical quantities collectively
by the trajectory Fi+1

m = { f 0
m, . . . , f i

m}. The joint probability
distribution of XN and FN

m is written as

P
[
XN,FN

m

] = Pm
[
FN

m

∣∣XN,�̃N

]
P [XN |�̃N ], (16)

where �̃i+1 ≡ {λ0 ,̃λ1, . . . ,̃λi} with λ̃j ≡ λ̃( f j−1
m ,̃λj−1) is the

trajectory of the control parameter implied by the trajectory
Fi

m of the measured quantities.

Pm
[
FN

m

∣∣XN,�N

] ≡
N−1∏
i=0

pm
(

f i
m

∣∣xi ,λi

)
(17)

is the probability distribution of the trajectory of measured
quantities via the N measurements with fixed trajectories of
the dynamical variable and the control parameter.

Following Horowitz and Vaikuntanathan [23], we define
the mutual information density for the fixed trajectories XN

and FN
m as

I
[
XN,FN

m

] ≡ ln
P
[
XN,FN

m

]
P [XN |�̃N ]P

[
FN

m

∣∣�̃N

]
= ln

Pm
[
FN

m

∣∣XN,�̃N

]
P
[
FN

m

∣∣�̃N

] , (18)

where Eq. (16) has been used. I [XN,FN
m] represents the

change in the uncertainty of the observer’s knowledge on
the microscopic state of the system upon making the N

measurements.
Remembering that Eq. (15) holds for an arbitrary �N+1,

we obtain, by using Eqs. (16) and (18), the detailed fluctuation
theorem [23],

P
[
XN,FN

m

]
P̃
[
XN,FN

m

]
= exp

[
β{W [XN,�̃N+1] − �F (λ0,̃λN )} + I

[
XN,FN

m

]
+ R[XN ; �̃N ] + din(x0; λ0)

]
, (19)

where we have defined the probability distribution of the xi’s
and the f i

m’s in the reverse process as

P̃
[
XN,FN

m

] ≡ P̃dyn[XN |�̃N+1]P
[
FN

m

∣∣�̃N

]
. (20)

For plausible definition and interpretation of the reverse
process, the factor P [FN

m |�̃N ] on the right-hand side of the
definition above should not be associated with a measurement
in the reverse time development, as will be explained later.

By multiplying the inverse of the both sides of Eq. (19) by
P[XN,FN

m] and integrating them with respect to XN and FN
m,

we obtain the generalized Jarzynski’s equality [23,30–32] for
the given λ0,

e−β(W−�F )−I−R−din = 1, (21)

where the overline indicates the average over all possible
trajectories for the given λ0. Similarly, by taking the average
of the logarithms of the both sides of Eq. (19) with respect
to XN and FN

m, we obtain another relation. We obtain the
relative-entropy work relation [19,23,33] for the given λ0 as

D[P|P̃] = β(W − �F ) + I + R + D[Pin|Peq], (22)

where the left-hand side is the relative entropy [29] of
P[XN,FN

m] with respect to P̃[XN,FN
m]. D[Pin|Peq] is the

relative entropy of the initial PDF with respect to the canonical
distribution function, that is, the average of din(x0; λ0) [see Eq.
(14)]. D[P|P̃] measures the distinguishability between the for-
ward and the reverse processes. It is interpreted to measure mi-
croscopically the intensity of the arrow of time [19,23,34,35].
For any non-negative probability distributions f and g, their
relative entropy is non-negative: D[f |g] � 0, whose equality
holds if and only if f is equal to g everywhere f is nonzero
[29]. It should be stressed here that P̃[XN,FN

m] is not necessar-
ily non-negative since it contains the reverse time development
operator [see Eqs. (13) and (20)]. Although U (x,x′; λ, − �t)
should represent physically the transition from x′ to x in the
reverse time development, it can be unphysically negative,
as demonstrated later for the example of a nonequilibrium
two-state system. Even in such a case, the condition Eq. (10)
ensures the conservation of probability mathematically and,
hence, the detailed fluctuation theorem, Eq. (19), holds.

For a case in which the measurement is performed only
once (N = 1), the reverse time development operator is
not involved in P̃[XN,FN

m] and R[XN ; �̃N ] vanishes, and,
hence, non-negative relative entropy is ensured in Eq. (22):
D[P|P̃] � 0, whose equality with the fixed λ0 holds if and
only if P[X1,F1

m] = P̃[X1,F1
m] for all X1’s and F1

m’s giving
nonzero P[X1,F1

m]. Since D[Pin|Peq] � 0, the deviation of
the initial PDF from the canonical distribution function raises
the upper bound of the extracted work.

The detailed fluctuation theorem in the form of Eq. (19)
can be rewritten to a more implicative form. Let us consider
the moment in which the dynamical variable xi is realized
at the (i + 1)th measurement and the control parameter
has been changed to λi+1. The PDF of x just after the
(i + 1)th measurement is thus P+(x,ti) ≡ δ(x − xi). The PDF
just before the next measurement is given by P+(x,ti+1) ≡
U (x,xi ; λi+1,�ti). The difference in the entropy between the
PDFs at ti+1 and ti in the forward process is calculated as

�S+(ti → ti+1) ≡ S[P+(x,ti+1)] − S[P+(x,ti)]

= −
∫

dxU (x,xi ; λi+1,�ti)

× [ln U (x,xi ; λi+1,�ti) + C], (23)

where we have defined the divergent integral

C ≡ −
∫

dxδ(x) ln δ(x). (24)

Similarly, the difference in the entropy between the PDFs at ti
and ti+1 in the reverse process is calculated as

�S−(ti ← ti+1) ≡ S[P−(x,ti)] − S[P−(x,ti+1)]

= −
∫

dxU (x,xi+1; λi+1, − �ti)

· [ln U (x,xi+1; λi+1, − �ti) + C]. (25)

Seeing Eqs. (23) and (25), it is reasonable to define the
trajectory-dependent entropy production densities in the for-
ward and reverse processes as

�s+(x′,x; λ,�t) ≡ − ln U (x′,x; λ,�t), (26)

�s−(x,x′; λ, − �t) ≡ − ln U (x,x′; λ, − �t), (27)
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respectively. We do not include C in these definitions since it
would vanish later if included. By using these quantities, the
microscopic-irreversibility indicator, Eq. (11), is written as

r(x′,x; λ,�t) = −�s+(x′,x; λ,�t) + �s−(x,x′; λ, − �t)

+ β[E(x′,λ) − E(x,λ)]. (28)

Substitution of this into the total microscopic-irreversibility
indicator, Eq. (12), leads to

R[XN ; �N ]

= −s+[XN ; �N ] + s−[XN ; �N ] + βQ[XN ; �N ], (29)

where

s+[XN ; �N ] ≡
N−2∑
i=0

�s+(xi+1,xi ; λi+1,�ti), (30)

s−[XN ; �N ] ≡
N−2∑
i=0

�s−(xi ,xi+1; λi+1, − �ti), (31)

Q[XN ; �N ] ≡
N−2∑
i=0

E(xi+1,λi+1) − E(xi ,λi+1). (32)

s+ is the net entropy production density in the forward time
development from t0 to tN−1, while s− is that in the reverse
time development from tN−1 to t0. Q is nothing but the net
heat that has flown into the system in the intervals between
the measurements. We should keep in mind that s− can be
imaginary unphysically since s− contains the reverse time
development operator [see Eq. (27)]. By substituting Eq. (29)
into Eq. (19), we obtain the detailed fluctuation theorem in
another form,

P
[
XN,FN

m

]
P̃
[
XN,FN

m

] = eβ(W+Q−�F )+I−s++s−+din . (33)

The relation in this form looks more fascinating than Eq. (19)
since the former involves explicitly the fundamental quantities
in thermodynamics, the heat and the produced entropy.
Although what the relation Eq. (33) in conjunction with in-
formation theory alludes for nonequilibrium thermodynamics
and microscopic reversibility might be interesting, further
examination is not done in the present study.

3. Interpretation of reverse process

Here we try to establish the interpretation of the reverse
process of the forward process represented by P[XN,FN

m],
Eq. (16). The interpretation should be consistent with the
definition of P̃[XN,FN

m], Eq. (20). Let us imagine that a
man who knows only the trajectory of the control parameters
λ0,λ1, . . . ,λN corresponding to FN

m is walking on the time
axis in the negative direction. We call him the reverse observer.
He comes from t = ∞ to reach tN−1 first, before the arrival at
which the control parameter is λN . As the first condition for the
reverse process, we require that a randomly selected trajectory
of f 0, . . . , f N−1 from the set of trajectories corresponding to
�̃N (FN

m) coincide with FN
m. Such coincidence is represented

by the probability P [FN
m |�̃N ]. As the second condition for

the reverse process, we require that the dynamical variable
realized at tN−1 be the one in the forward process in the thermal

FIG. 1. Schematic illustration of a forward process under feed-
back control and its corresponding reverse process based on the
interpretation proposed in the present study. (a) The trajectories of xi’s
and f i

m’s in the forward process. The forward observer is walking on
the time axis in the positive direction. Measurements are performed
at ti’s (i = 0, . . . ,N − 1) and the control parameters (shown as steps)
are changed according to the measured quantities f i

m’s (filled circles)
and the protocol. The realization of xi’s (open circles) depends
on the dynamics of the system subject to the thermal fluctuation.
(b) The trajectory of xi’s in the reverse process corresponding to the
forward process illustrated above. The reverse observer is walking
on the time axis in the negative direction. The control parameters are
fixed at those implied by the forward process. He does not perform
any measurement. The realization of xi’s depends on the reverse
dynamics of the system, defined via the relation Eq. (10).

equilibrium with λN and the series of dynamical variables
xN−2, . . . ,x0 be realized at tN−2, . . . ,t0 via the reverse time
development of the PDF. This condition is represented by
the probability P̃dyn[XN |�N+1], as defined in Eq. (13). The
product of these two probabilities is nothing but the right-hand
side of Eq. (20), which implies that it is reasonable to
interpret the reverse process as the situation characterized
by the two conditions introduced above. The schematic
illustration of the forward process and the corresponding
reverse process is shown in Fig. 1. It is noted here that
the reverse observer does not perform any measurement in
our interpretation. This is reasonable since the probability
P [FN

m |�̃N ] does not involve xi’s explicitly and hence it should
not be associated with measurements in the reverse process.
The disappearance of the measurements in the reverse process
might seem curious; however, it is necessary for the plausible
interpretation. Roughly speaking, this subtlety comes from the
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fact that the feedback control is causal, that is, the control
parameter is changed after a measurement is carried out.
If the measurements were involved in the reverse process,
each control parameter seen by the reverse observer would
precede its corresponding measurement [23,35]. Such an
acausal situation is undesirable for a plausible interpretation.
We do not go further in the present study for more satisfactory
establishment of the definition and the interpretation of a
reverse process.

4. Upper bound of extracted work in stationary state

Here we derive a relation for the expected work and the
mutual information when the nonequilibrium stationary state is
achieved. When the stationarity condition, Eq. (6), is achieved,
the distribution function of the control parameter is unchanged
via the feedback control. The average difference between the
free energies after and before a measurement thus vanishes:
〈�F 〉∗ = 0, where 〈·〉∗ represents the average with respect
to the stationary state, P∗(x,λ). Let us consider the work
fluctuation relation with a given λ0, Eq. (22), for a single
measurement (N = 1), in which R vanishes. By averaging
Eq. (22) over λ0 for the stationary state, we obtain

β〈W 〉∗ + 〈I 〉∗ + 〈D[P∗|Peq]〉∗ � 0. (34)

This relation means that the upper bound of the expected
applied work 〈W 〉∗ is determined only by the expected
mutual information 〈I 〉∗ and the expected relative entropy
〈D[P∗|Peq]〉∗, even when the expected difference �F between
the free energies for a fixed initial control parameter is nonzero.

We define the efficiency of the perpetual extraction of
work as

η∗ ≡ |β〈W 〉∗|
〈I 〉∗ + 〈D[P∗|Peq]〉∗ (35)

for a negative 〈W 〉∗. η∗ measures how efficiently the informa-
tion acquired by the observer is used for the extraction of work
in the stationary state. When it is smaller than unity, some of
the information acquired in each measurement is not used for
the perpetual extraction of work. η∗ is equal to unity if and
only if the equality of the relation Eq. (34) holds.

B. Expressions for systems in thermal equilibrium

For a case in which the time intervals between the
consecutive measurements on a nonequilibrium system is
much longer than the relaxation time of the system, we
can regard that the thermal equilibrium corresponding to the
control parameter being realized is achieved just before each
measurement. The expressions derived above can be simplified
for such a low measurement rate regime. Completely precise
feedback controls are assumed for simplicity in this subsection.
In this case, the initial PDF is written as

Pin(x,λ) = Peq(x|λ)Pin(λ), (36)

where Pin(λ) = ∫
dxPin(x,λ) is the initial distribution of λ.

Remember that the system does not undergo any change in
the control parameter between two consecutive measurements.
The expression of the distribution of λ after a measurement is
thus calculated by inserting Eq. (36) into Eq. (1) and integrating

both sides with respect to x as

P �t
out (λ) = Pout(λ) =

∫
dλ′G(λ,λ′)Pin(λ′), (37)

where

G(λ,λ′) ≡
∫

dxG(λ,λ′; x)Peq(x|λ′) (38)

is the reduced propagator. The expected work applied to
the system per measurement is calculated by substituting
Eq. (36) into Eq. (3). Equation (37) indicates that the stationary
distribution for a thermal equilibrium system is obtained by
considering only the phase space of the control parameter.
The stationarity condition for the repeated measurements on a
system in thermal equilibrium is thus written as

P∗ = GP∗. (39)

It is noted here that the condition for a nonequilibrium case,
Eq. (6), is for the PDF of x and λ, while that for an equilibrium
case, Eq. (39), is for the PDF only of λ. The PDF involving
x, Eq. (36), in the latter case thus is given by P∗(x,λ) =
Peq(x|λ)P∗(λ).

The detailed fluctuation theorem in this case can be derived
without introducing the microscopic-irreversibility indicator,
Eq. (11). The generalized Jarzynski’s equality with a given
initial control parameter λ0 for a nonequilibrium system,
Eq. (21), is written in this case as

e−β(W−�F )−I = 1. (40)

Due to the absence of the reverse time development operator
in this case, the relative-entropy work relation for the nonequi-
librium system, Eq. (22), is written in this case as

β(W − �F ) + I � 0. (41)

The relative-entropy work relation for the nonequilibrium
stationary state, Eq. (34), is written in this case as

β〈W 〉∗ + 〈I 〉∗ � 0. (42)

III. EXAMPLES

As simple applications of the theory formulated above, let
us analyze two exactly solvable models. Completely precise
feedback controls are assumed for simplicity in what follows.

A. Nonequilibrium two-state system

1. Setup and dynamics

As an example of the perpetual extraction of work from a
nonequilibrium system, here we consider a two-state system in
which the state variable x takes 0 or 1. The control parameter
λ takes 0 or 1 as well. The energy of the system is ε > 0 when
x = 1 and λ = 1 and otherwise zero: E(x,λ) = εδx1δλ1. We
assume the following situation. When the observer performs
a measurement of x on the system with λ = 0, he obtains
the accurate result at a probability 1/2, which means that
the outcome of the measurement and the realized x are
uncorrelated. For the system with λ = 1, on the other hand, an
accurate result at a probability p is obtained. This situation is
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FIG. 2. (Color online) Schematic illustration of a measurement
and the feedback control on the two-state system. The observer sets
the control parameter λ to 0 if the measured state xm is 1, while λ is
set to 1 if the measured state is 0.

described by the conditional probability

pm(xm|x,λ) = δλ0

2
+ δλ1[pδxmx + (1 − p)(1 − δxmx)], (43)

where p̄ ≡ 1 − p. For extracting work, λ is set to 0 if the
measured state is 1, while λ is set to 1 if the measured state is
0, as illustrated in Fig. 2. This feedback protocol is described
by λ̃(xm) = δxm0. The propagator of the control parameter,
Eq. (2), is calculated as

G(λ,λ′; x) = δλ1pm(0|x,λ′) + δλ0pm(1|x,λ′). (44)

The measurement-averaged energy, Eq. (4), is thus calculated
as Ẽ(x,λ) = εδx1[δλ0/2 + δλ1(1 − p)]. We assume that the
PDF for a fixed λ evolves with the relaxation time τ as time
develops to achieve the canonical distribution

Peq(x|λ) = αλx

1 + αλ
, (45)

where α ≡ e−βε is the Boltzmann factor. The time evolution
equation of the PDF between two consecutive measurements
is thus governed by the following differential equation:

∂P (x,λ,t)

∂t
= 1

τ
[Peq(x|λ)P (λ) − P (x,λ,t)], (46)

where P (λ) ≡ ∑
x P (x,λ,t) does not depend on t since no

measurement is performed in the interval concerned. The
time-dependent PDF for an interval without measurements
is obtained by integrating Eq. (46) as

Pout(x,λ,t) = Peq(x|λ)Pout(λ)

+ [Pout(x,λ,0) − Peq(x|λ)Pout(λ)]e−t/τ . (47)

The origin of time has been set to the last measurement.
Pout(λ) is the distribution of the control parameter after the
last measurement. The forward time development operator
U (x,x ′; λ,�t) in matrix representation thus is written as

U (x,x ′; 0,�t) =
(

(1 + γ )/2 (1 − γ )/2
(1 − γ )/2 (1 + γ )/2

)
, (48)

U (x,x ′; 1,�t) = 1

1 + α

(
1 + αγ 1 − γ

α(1 − γ ) α + γ

)
. (49)

Using Eqs. (44), (48), and (49), the PDF just before the
next measurement is calculated from that just before the last

measurement as⎛⎜⎜⎜⎝
P �t

out (0,0)

P �t
out (0,1)

P �t
out (1,0)

P �t
out (1,1)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1+γ

4
(1+γ )(1−p)

2
1−γ

4
(1−γ )p

2
1+αγ

2(1+α)
(1+αγ )p

1+α

1−γ

2(1+α)
(1−γ )(1−p)

1+α

1−γ

4
(1−γ )(1−p)

2
1+γ

4
(1+γ )p

2
α(1−γ )
2(1+α)

α(1−γ )p
1+α

α+γ

2(1+α)
(α+γ )(1−p)

1+α

⎞⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎝
Pin(0,0)

Pin(0,1)

Pin(1,0)

Pin(1,1)

⎞⎟⎟⎟⎠, (50)

where γ ≡ e−�t/τ .
The reverse time development operator is determined by

the unitarity condition, Eq. (10), as

U (x,x ′; 0, − �t) = 1

2γ

(
1 + γ −1 + γ

−1 + γ 1 + γ

)
, (51)

U (x,x ′; 1, − �t) = 1

γ (1 + α)

(
α + γ −1 + γ

α(−1 + γ ) 1 + αγ

)
.

(52)

The microscopic-irreversibility indicator r(x ′,x; λ,�t), de-
fined in Eq. (11), is calculated as

r(x ′,x; 0,�t) =
{

ln γ (x = x ′)
ln(−γ ) = ln γ + iπ (x 
= x ′)

, (53)

r(x ′,x; 1,�t) =

⎧⎪⎨⎪⎩
ln γ (1+αγ )

α+γ
(x = x ′ = 0)

ln γ (α+γ )
1+αγ

(x = x ′ = 1)

ln γ + iπ (x 
= x ′)

. (54)

r can be complex, which comes from the negative elements
in the reverse time development operator [see Eqs. (51)
and (52)]. This situation is physically bizarre; however, it is
mathematically correct for the generalized Jarzynski’s equality
to hold.

2. Confirmation of the generalized Jarzynski’s equality

Before proceeding to the analysis of perpetual extraction
of work, let us confirm the validity of the our version of
the generalized Jarzynski’s equality, Eq. (21), by performing
numerical simulations. For the nonequilibrium two-state sys-
tem with the parameters p = 0.8, α = 0.7, and γ = 0.5, we
generated 107 trajectories of x and xm for each of N = 2, 3, and
4 using random numbers. The typical distributions of −β(W −
�F ) − I − R − din on the complex plane and the histograms
of exp[−β(W − �F ) − I − R − din] occurring in the feed-
back processes each of which includes N measurements are
shown in Fig. 3. The initial control parameter λ0 = 0 is used
in all the cases. The initial PDF deviating from the canonical
distribution function is prepared as Pin(x = 0|λ0) = 0.8 and
Pin(x = 1|λ0) = 0.2 so nonzero din appears. The numbers of
different complex values of −β(W − �F ) − I − R − din for
N = 2, 3, and 4 were found to be 16, 60, and 221, respectively.
We found that the number of trajectories is large enough for all
the N ’s, so the averages of exp[−β(W − �F ) − I − R − din]
were confirmed to converge to unity regardless of N .
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FIG. 3. (Color online) For the nonequilibrium two-state system
with the parameters p = 0.8, α = 0.7, and γ = 0.5, the typical
distributions of −β(W − �F ) − I − R − din on the complex plane
(left panels) and the histograms of exp[−β(W − �F ) − I − R − din]
(right panels) occurring in the feedback processes each of which
includes N measurements are shown for N = 2, 3, and 4. The initial
control parameter λ0 = 0 is used in all the cases. The initial PDF
deviating from the canonical distribution function is prepared as
Pin(x = 0|λ0) = 0.8 and Pin(x = 1|λ0) = 0.2.

3. Confirmation of relative-entropy work relation

Let us consider a case for a single measurement (N =
1). Using Eqs. (43) and (45) and the relation p(x,xm|λ) =
pm(xm|x,λ)Pin(x|λ), we obtain the joint probability distribu-
tion at the time of the measurement as

p(x,xm|λ0) =
{ 1

2Pin(x|0) (λ0 = 0)

[pδxmx + p̄(1 − δxmx)]Pin(x|1) (λ0 = 1)
.

(55)

The marginalized distribution p(xm|λ0) = ∑
x p(x,xm|λ0) is

thus calculated as

p(xm|0) = 1
2 , p(0|1) = pq + p̄q̄, p(1|1) = p̄q + pq̄,

(56)

where q ≡ Pin(0|λ0),q̄ ≡ 1 − q = Pin(1|λ0). For fixed trajec-
tories of x and xm and the initial control parameter λ0, the
work applied to the system via the measurement is given by

W [x,xm|λ0] = E(x,̃λ(xm)) − E(x,λ0) = εδx1(δxm0 − δλ01).

(57)

The applied work with the fixed λ0 averaged over the
trajectories of x and xm is thus given by

W =
∑
x,xm

p(x,xm|λ0)W [x,xm|λ0] =
{

εq̄/2 (λ0 = 0)

−εpq̄ (λ0 = 1)
.

(58)

The free energy of the system with a control parameter λ is
given by

F (λ) =
{− 1

β
ln 2 (λ = 0)

− 1
β

ln(1 + α) (λ = 1)
. (59)

The difference between the free energies after and before the
measurement with the fixed λ0 averaged over the trajectories
of x and xm is thus given by

�F =
∑
x,xm

p(x,xm|λ0)[F (̃λ(xm)) − F (λ0)]

=
{ 1

2β
ln 2

1+α
(λ0 = 0)

−[p̄q + pq̄] 1
β

ln 2
1+α

(λ0 = 1)
. (60)

The mutual information density for the initial control
parameter λ0 is calculated from Eq. (18) for N = 1 as

I [x,xm|λ0]

= ln
p(x,xm|λ0)

Pin(x|λ0)p(xm|λ0)

=

⎧⎪⎨⎪⎩
0 (λ0 = 0)

ln[(pδx0 + p̄δx1)/(pq + p̄q̄)] (λ0 = 1,xm = 0)

ln[(pδx1 + p̄δx0)/(p̄q + pq̄)] (λ0 = 1,xm = 1)

.

(61)

The mutual information averaged over the trajectory of x

and xm with the fixed λ0 is given by

I =
∑
x,xm

p(x,xm|λ0)I [x,xm|λ0]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (λ0 = 0)

p ln p + p̄ ln p̄

−(pq + p̄q̄) ln(pq + p̄q̄)

−(p̄q + pq̄) ln(p̄q + pq̄) (λ0 = 1)

. (62)

When λ0 = 1, W and �F are nonpositive for arbitrary ε and
p and I vanishes for p = 1/2 regardless of ε.

The relative entropy of the initial PDF with respect to the
canonical distribution function is calculated as

D[Pin|Peq] =
∑

x

Pin(x|λ0) ln
Pin(x|λ0)

Peq(x|λ0)

= ln(1 + αλ0 ) + q ln q + q̄ ln
q̄

αλ0
. (63)

The quantities calculated above satisfy the relation
Eq. (22) of non-negative relative entropy, β(W − �F ) + I +
D[Pin|Peq] � 0 for an arbitrary λ0. In Fig. 4, βW , β�F , I ,
D[Pin|Peq], and β(W − �F ) + I + D[Pin|Peq] for λ0 = 1 are
plotted for α = 0.8, 0.4, and 0.1 as functions of p. For the
lowermost panel, q is set to 0.5 so D[Pin|Peq] is nonzero. For
the other three panels, q’s are set to 1/(1 + α), corresponding
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FIG. 4. (Color online) For the nonequilibrium two-state system
with λ0 = 1, the expected work βW applied to the system via a
single measurement, the expected change in the free energy β�F ,
the expected mutual information I , the relative entropy of the initial
PDF D[Pin|Peq], and β(W − �F ) + I + D[Pin|Peq] are plotted for
α = 0.8, 0.4, and 0.1 as functions of p. For the lowermost panel, q is
set to 0.5 so D[Pin|Peq] is nonzero. For the other three panels, q is set
to the values corresponding to the canonical distribution functions.

to the canonical distribution functions so D[Pin|Peq] vanishes.
It is seen that the inequality β(W − �F ) + I + D[Pin|Peq] � 0

correctly holds. It should be noticed that the relative entropy
of the initial PDF must be taken into account for the inequality
to hold.

4. Stationary state

From the stationarity condition, Eq. (6), and the normaliza-
tion condition, the stationary distribution P∗(x,λ) is uniquely
given by

P∗(0,0) = N (p)[−(1 + α)γp2 + (−1 + α + γ )p + 1], (64)

P∗(0,1) = N (p)
(1 + α)γp + 2 − γ

2
, (65)

P∗(1,0) = N (p)[−(1 + α)γp2

+ [−1 + α + (2 + α)γ ]p + 1 − γ ], (66)

P∗(1,1) = N (p)
−(1 + α)γp + 2α + γ

2
, (67)

where N (p) ≡ [−2(1 + α)γp2 + {−2 + 2α + (3 + α)γ }p +
3 + α − γ ]−1 is positive within the range 0 � p � 1. We
obtain the expected work for the stationary distribution, from
Eq. (3),

〈W 〉∗ = ε
N (p)

2
(1 − γ )[1 − (1 + α)p]. (68)

〈W 〉∗ is a monotonic decreasing function of p. To see the
typical behavior of the nonequilibrium PDF, we plotted the
time development of the PDF with p = 0.8 for α = 0.6 and
γ = 0.4 and that for α = 0.7 and γ = 0.5 in Figs. 5(a) and
5(b), respectively. The expected work 〈W 〉 via each measure-
ment is also plotted. The canonical distribution, Eq. (45), was
adopted as their initial PDFs. In each of the two cases, the
PDF approaches rapidly the stationary distribution via the
measurements. It has almost reached the stationary distribution
just after the sixth measurement (t/�t = 5) and thus 〈W 〉 is
almost equal to 〈W 〉∗ for both λ0 = 0 and 1. We can draw two
lessons from Figs. 5(a) and 5(b) as follows: (i) the observer,
on the way to the stationary distribution, can fail to extract
work, that is, he or she can lose energy, and (ii) the observer
can extract work larger than that in the stationary distribution.

〈W 〉∗ as functions of p for various combinations of α and γ

are plotted in Fig. 6(a). For the extraction of work, the condition
p > (1 + α)−1 must be satisfied. This result indicates that a
smaller probability of the realization of the higher-energy state
(a smaller α) requires a higher precision of the measurement
(a larger p) for the extraction of work. For completely precise
measurements (p = 1), the cost-incorporated expected work
per unit time, Eq. (7), is given by

〈w〉∗ = ε

[
1 − γ

2(γ − 3 − α−1)
+ c

ε

]
1

�t
, (69)

plotted in Fig. 6(b) as functions of �t for various combinations
of α and c. It is observed that a larger α attains a lower
〈w〉∗ when c is fixed, which is reasonable, since a larger
α means a more frequent transition to the higher-energy
state. It is also interesting to see that a too-large cost can
prevent the observer from extracting the work regardless of
�t , despite the completely precise measurement. Figure 6(c)
shows the numerically found optimal time interval �topt
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FIG. 5. (Color online) [(a) and (b)] Time development of the
nonequilibrium probability distribution functions with p = 0.8 (up-
per panels) and the expected work 〈W 〉 applied to the system at each
measurement (lower panels). (a) For α = 0.6 and γ = 0.4 starting
from Peq(x|0) and (b) for α = 0.7 and γ = 0.5, starting from Peq(x|1).
The origins of time are set to the respective first measurements. The
red (brighter) and the blue (darker) curves correspond to λ = 0 and 1,
respectively, in the upper panels. The dashed lines in the lower panels
represent the expected work in the respective stationary distributions.

between measurements and the corresponding largest negative
〈w〉∗ as functions of the cost for p = 1 and α = 0.2, 0.4, and
0.8. It is found that there exists for each α a critical cost above
which negative 〈w〉∗ is not attained for any �t . It is also found
that a smaller cost enables the observer to extract a larger work
for a fixed α, as expected.

Let us examine the relative-entropy work relation for
the stationary state. In Fig. 7, β〈W 〉∗, 〈I 〉∗, 〈D[P∗|Peq]〉∗,
and β〈W 〉∗ + 〈I 〉∗ + 〈D[P∗|Peq]〉∗ are plotted for various
combinations of α and γ as functions of p. It is seen that
the inequality Eq. (34) correctly holds. Figure 7 also shows
the efficiency η∗ of the perpetual extraction of work, defined
in Eq. (35). The plotted efficiency has its maximum at a p in the
allowed range for 〈W 〉∗ < 0, indicating that a larger amount of
extracted work does not necessarily mean more efficient use
of the information in the present cases. There are two criteria
for the optimal value of p, depending on whether |〈W 〉∗| or
η∗ should be maximized. If we want to maximize the former,
1 is the optimal value of p. If we want to maximize the latter,
however, the optimal value is smaller than 1.

B. Particle confined to harmonic potential
in thermal equilibrium

1. Setup

As an example for the extraction of work from a system for
which the time interval between measurements is much longer
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FIG. 6. (Color online) (a) Expected work 〈W 〉∗ applied to the sys-
tem in the stationary state as functions of p for various combinations
of α and γ . The red (brighter) curves correspond to α = 0.6, while
the blue (darker) ones to α = 0.2. (b) Cost-incorporated expected
work 〈w〉∗ per unit time applied to the system for p = 1 as functions
of �t for various combinations of α and c. The red (brighter) curves
correspond to α = 0.7, while the blue (darker) ones to α = 0.4.
(c) Optimal time interval �topt (solid curves) between measurements
and the corresponding largest negative 〈w〉∗ (dashed curves) as
functions of the cost for p = 1 and α = 0.2, 0.4, and 0.8.

than the relaxation time of the system, here we consider a
one-dimensional system in which a particle is confined to a
harmonic potential. We can regard in this case the thermal
equilibrium is achieved just before each measurement and
use the reduced expressions derived in Sec. II B. We neglect
its kinetic energy and thus the energy of the system with
the particle at x is given by E(x,λ) = k

2 (x − λ)2, where k

is the stiffness of the harmonic potential and λ is the center of
the potential as the control parameter. The observer measures
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plotted as functions of p. The efficiency η∗ of the extraction of work
is also plotted as dashed curves.
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FIG. 8. (Color online) (a) Schematic illustration of a measure-
ment of the particle’s position confined to a harmonic potential and
the feedback control. Given a measured position xm, the observer
changes instantaneously the center of the potential from λ to λ̃ = axm.
(b) Distribution function of λ (left panel) and the expected work
〈W 〉 applied to the system (right panel) via the nth measurement for
a = 0.7 and ν = 0.5. Left: n is indicated close to the solid curve,
while the distribution in the stationary distribution is represented by
the dashed curve. Panels of (c) are for a = 0.7 and ν = 1.5. For both
(b) and (c), the initial distributions were set to Pin(λ) = δ(λ).

the particle’s position xm and changes instantaneously the
center of the potential according to the protocol

λ̃(xm) = axm (70)

with a > 0, as illustrated in Fig. 8(a). We assume that the
conditional probability of the measured particle’s position
is represented by a Gaussian function of width σ [see
Eq. (A1)] pm(xm|x,λ) = N (xm; x,σ ) independent of λ. A
smaller Gaussian width σ corresponds to a more precise
measurement [14]. The canonical distribution for a given λ

is Peq(x|λ) = N (x; λ,1/
√

βk).

2. Confirmation of relative-entropy work relation

The joint probability of x and xm for a given λ0 is t calculated
by using the product formula Eq. (A2) as

p(x,xm|λ0) = pm(xm|x,λ0)Peq(x|λ)

= N (xm; λ0,1/
√

2ζ )N (x; B,C), (71)
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where ν ≡ βkσ 2,

ζ ≡ βk

2(1 + ν)
, (72)

B ≡ xm + λ0ν

1 + ν
, C ≡ σ√

1 + ν
. (73)

The probability distribution of xm for the λ0 is thus given by

p(xm|λ0) =
∫

dx p(x,xm|λ0) = N (xm; λ0,1/
√

2ζ ). (74)

For fixed trajectories of x and xm and the initial control
parameter λ0, the work applied to the system via the measure-
ment is given by W [x,xm|λ0] = k

2 [(x − axm)2 − (x − λ0)2].
The applied work with the fixed λ0 averaged over the trajectory
of x and xm is thus given by

βW =
∫

dxdxm p(x,xm|λ0)W [x,xm|λ0]

= 1

2
[(1 − a)2{ν(λ0/σ )2 + 1} + a2ν − 1], (75)

where we have used the integral formula Eq. (A6).
The mutual information density for the initial control

parameter λ0 is calculated from Eq. (18) for N = 1 as

I [x,xm|λ0] = ln
p(x,xm|λ0)

Peq(x|λ0)p(xm|λ0)
= ln

N (x; B,C)

N (x; λ0,1/
√

βk)

= 1

2
ln

(
1 + 1

ν

)
− (x − B)2

2C2
+ βk

2
(x − λ0)2.

(76)

The mutual information averaged over the trajectory of x and
xm with the fixed λ0 is obtained by using the integral formula
Eq. (A6) as

I =
∫

dxdxm p(x,xm|λ0)I [x,xm|λ0] = 1

2
ln

(
1 + 1

ν

)
, (77)

independent of λ0.
From Eqs. (75) and (77), we obtain

βW + I � − 1

2(1 + ν)
+ 1

2
ln

(
1 + 1

ν

)
> 0 (78)

for a finite ν and the fixed λ0. The first inequality is obtained
by considering the case with λ0/σ = 0 and a = 1/(1 + ν).
Since the stiffness of the harmonic potential is unchanged via
the feedback control, the difference between the free energies
�F before and after the measurement vanishes. Equation (78)
hence confirms the relative-entropy work relation, Eq. (41).
Abreu and Seifert [14] have already derived a relation similar
to Eq. (78). Their result corresponds to the special case of
Eq. (78) with λ0 = 0.

3. Stationary state

Let us proceed to the analysis of the stationary state. Since
the propagator of the control parameter, Eq. (2), is given
by G(λ,λ′; x) = pm(λ/a|x,λ′)/a, the reduced propagator,
Eq. (38), is calculated as

G(λ,λ′) = 1

a

√
ζ

π
exp

[
−ζ

(
λ

a
− λ′

)2
]
. (79)

We have used the formula Eq. (A2). The measurement-
averaged energy, Eq. (4), is calculated as Ẽ(x,λ) = (k/2)[(1 −
a)2x2 + a2σ 2]. From Eqs. (37) and (79), the stationary
distribution of the control parameter is obtained easily as

P∗(λ) = N (λ; 0,1/
√

2ζ (a−2 − 1)), (80)

whose normalization condition requires a < 1. We obtain the
expected work for the stationary distribution, from Eq. (3),

β〈W 〉∗ = a(νa − 1)

1 + a
. (81)

To see the typical behavior of the variation of the distribution
of λ and the expected work 〈W 〉 via each measurement, we
plotted those for a = 0.7 and ν = 0.5 in Fig. 8(b) and those
for a = 0.7 and ν = 1.5 in Fig. 8(c). For both cases, the initial
distributions were set to the δ function, Pin(λ) = δ(λ). As seen
in the figures, the perpetual extraction of work is achieved in
the former case, whereas not in the latter case.

Here we examine the optimal protocol of the feedback
control in detail. β〈W 〉∗ is plotted in Fig. 9(a) as a function of
a and ν. For 0 < ν < 1, 〈W 〉∗ < 0 regardless of a. For ν > 1,
a < ν−1 must be satisfied so 〈W 〉∗ < 0. The optimal protocol
for the repeated measurements, which gives the lowest 〈W 〉∗
for a given ν, is calculated from the derivative of Eq. (81),

∂β〈W 〉∗
∂a

= νa2 + 2νa − 1

(1 + a)2
. (82)

The optimal protocol and its corresponding work are thus
given by aopt = 1 and β〈W 〉∗opt = (ν − 1)/2 for ν < 1/3,
respectively, while aopt = −1 + √

1 + ν−1 and β〈W 〉∗opt =
2[

√
ν(ν + 1) − ν] − 1 for ν > 1/3, respectively. In the limit

of completely precise measurements (σ = 0), the optimal
expected work is given by β〈W 〉∗opt = −1/2, which means
that the extracted work is equal to the energy of the system for
the canonical distribution.

The efficiency of the perpetual extraction of work is
calculated as

η∗ = 2a(1 − νa)

ln(1 + 1/ν)(1 + a)
, (83)

where we have used Eq. (81) and the relation 〈I 〉∗ = I in the
present case [see Eq. (77)]. It is plotted in Fig. 9(b) as a function
of a and ν giving rise to negative 〈W 〉∗. It is easily confirmed
from Eq. (83) that the a giving rise to the highest η∗ for a given
ν coincides with aopt, which is for the largest negative 〈W 〉∗
discussed above. This result means that the optimal protocols
for the largest extracted work and the highest efficiency are
the same in the present case.

The optimal protocol aopt, the corresponding expected work
β〈W 〉∗opt, and the efficiency η∗opt in the stationary state as
functions of ν are plotted in Fig. 9(c). It is seen that aopt is a
monotonic decreasing function, while β〈W 〉∗opt and η∗opt are
monotonic increasing functions. The asymptotic behaviors of
these quantities in the limit of ν → ∞ can be obtained from
the explicit expressions derived above. They are aopt ≈ 1/(2ν),
β〈W 〉∗opt ≈ −1/(4ν), and η∗opt ≈ 1/2 − 1/(96ν2).
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(b) The efficiency η∗ of the perpetual extraction of work in the
stationary state as a function a and ν. Solid curve represents the
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with the optimal a for 〈W 〉∗ shown above. (c) The optimal protocol
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The stationary distribution of x is obtained by marginalizing
P∗(x,λ) as

P∗(x) =
∫ ∞

−∞
dλP∗(x,λ) =

∫ ∞

−∞
dλPeq(x|λ)P∗(λ)

= N (x; 0,
√

(1 + μ)/(βk)), (84)

where μ ≡ (1 + ν)/(a−2 − 1) and the formula Eq. (A2) has
been used. The width of this Gaussian function is larger than
that of Peq(x|λ = 0). This is clearly due to the influence of
the repeated feedback controls, which translate the center
of the potential away the origin. In particular, the ratio ropt(ν)
of the width of P∗(x) with a = aopt and ν > 1/3 to that of the
canonical distribution function is expressed as

ropt(ν) =
√

1 + 1 + ν

(−1 + √
1 + ν−1)−2 − 1

, (85)

1

2

3

0 1 2 3 4 51/3

ropt

FIG. 10. (Color online) Ratio of the width of the stationary
distribution P∗(x) of x with a = aopt to that of the canonical
distribution function for γ > 1/3.

where ropt is a monotonic decreasing function for ν > 1/3, as
plotted in Fig. 10. ropt diverges for ν < 1/3 due to aopt = 1
as analyzed above. Such a a is in fact not allowed for the
achievement of stationary state.

It is interesting to compare our results with those for a single
measurement. The optimal protocol for a single measurement
provided by Abreu and Seifert [14] is asingle = 1/(1 + ν) for
their Gaussian initial distribution function. Although asingle

gives a negative 〈W 〉∗ for an arbitrary ν when used in our
repeated measurements, it differs from aopt. This result is
reasonable since our protocol, Eq. (70), moves the center
of potential according to how distant the measured position
of the particle is from the origin, not from the present
center of potential. It means that the next center of potential
depends on the present one. To remove such an effect, we
could adopt the following protocol:

λ̃(xm,λ) = λ + a(xm − λ), (86)

which moves the potential according to the distance between
the measured position of the particle and the present center of
potential. The propagator of the control parameter, Eq. (2), for
this protocol is G(λ,λ′; x) = pm((λ − λ′)/a + λ′|x,λ′)/a, the
reduced propagator, Eq. (38), is calculated as

G(λ,λ′) = 1

a

√
ζ

π
exp

[
− ζ

a2
(λ − λ′)2

]
, (87)

to be compared with Eq. (79). It is clear from Eq. (A2) that
the successive operation of G’s on the PDF of λ forces it to
spread unlimitedly regardless of a finite a, which means
that the stationary solution does not exist for this protocol.
The measurement-averaged energy is calculated as Ẽ(x,λ) =
(k/2)[(1 − a)2(x − λ)2 + a2σ 2]. The expected work for a
given center λ0 of the potential is thus given by

βW ind = 1
2a[a(1 + ν) − 2], (88)

independent of λ0, as expected. This means that the mea-
surements under the protocol Eq. (86) are truly independent
of each other. The expected work βW ind for this protocol is
clearly lower than that for the protocol for the stationary state,
Eq. (75), with any λ0. W ind as a function of a takes the lowest
value at a = asingle. This result is consistent with those obtained
by Abreu and Seifert [14], as mentioned above.
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IV. CONCLUSIONS

We developed a succinct theory of the perpetual extraction
of work from a generic classical nonequilibrium system subject
to a heat bath via repeated measurements under a Markovian
feedback control. The condition for the realization of the per-
petual extraction of work was formulated by treating both the
control parameter and the dynamical variable as probabilistic
variables. It was demonstrated that a problem for perpetual
extraction of work in a nonequilibrium system is reduced to
a problem of Markov chain in the higher-dimensional phase
space. We derived a version of the detailed fluctuation theorem
in a form suitable for the analyses of perpetual extraction
of work. As simple applications of the theory, two exactly
solvable models were analyzed. The one is a nonequilibrium
two-state system and the other is a particle confined to a one-
dimensional harmonic potential in thermal equilibrium. For the
former example, it was demonstrated that the observer on the
way to the stationary distribution can lose energy and that he or
she can extract work larger than that achieved in the stationary
distribution. For the latter example, it was demonstrated that
the optimal protocol for the extraction of work via repeated
measurements can differ from that via a single measurement.
The validity of our version of the detailed fluctuation theorem,
which determines the upper bound of the expected work in the
stationary state, was also confirmed for both examples. The
results obtained in the present work provide valuable insights
into the implication of thermodynamics and information
theory for perpetual extraction of work. Our framework will
be useful for exploration of realistic modeling of a machine
that extracts work from its environment. The examination of
the dependence of the stationary distribution on the initial PDF
and the incorporation of memory effects into the theory will
be interesting in the future.
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APPENDIX: PRODUCT OF TWO GAUSSIAN FUNCTIONS

Let N (x; b,c) be a normalized one-dimensional Gaussian
function centered at b of width c:

N (x; b,c) ≡ 1√
2πc2

exp

[
− (x − b)2

2c2

]
. (A1)

It is easily confirmed that the product of two Gaussian
functions is another Gaussian function expressed as

N (x; b1,c1)N (x; b2,c2)

= C√
2πc1c2

exp

(
B2 − D

2C2

)
N (x; B,C), (A2)

where

B ≡ b1c
2
2 + b2c

2
1

c2
1 + c2

2

, (A3)

C ≡ c1c2√
c2

1 + c2
2

, (A4)

D ≡ b2
1c

2
2 + b2

2c
2
1

c2
1 + c2

2

. (A5)

An integral formula∫
dx (x − a)2N (x; b,c) = (a − b)2 + c2 (A6)

for an arbitrary a is used in the present study.
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