
PHYSICAL REVIEW E 88, 032139 (2013)

Increasing thermal rectification: Effects of long-range interactions
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In this paper, we study the effects of the interparticle interaction range on heat flow. We show that, by increasing
the interaction range, we may amplify the thermal conductivity and even change the regime of heat transport.
More importantly, considering a crucial problem of phononics, namely, the search of a suitable thermal diode, we
investigate the range effects in some graded systems in which thermal rectification is a ubiquitous phenomenon.
In such graded models, we show that long-range interactions may significatively increase the rectification power
and may avoid its decay with the system size, thus solving relevant problems of the usual proposals of rectifiers.
Our results indicate that graded materials are genuine candidates for the actual fabrication of thermal diodes.
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The invention of transistor used to control the electric
charge flow has led to the incredible development of modern
electronics. Now we observe the progress of phononics [1], the
counterpart of electronics dedicated to the manipulation and
control of heat current. However, a very promising advance
is still dependent on the development of one of its basic
components: a realizable thermal diode with a significative
rectification. A thermal diode, or rectifier, is a device in which
heat flows preferably in one direction; i.e., the magnitude of
the heat current changes if we invert the device between two
thermal baths.

A model of thermal rectifier has been proposed some time
ago [2], and since then, thermal rectification has been inten-
sively investigated [3–10], including experimental realizations
[6]. Unfortunately, the most recurrent proposals of thermal
diode, which are based on the sequential coupling of two or
three segments with different anharmonic potentials, are diffi-
cult to be experimentally implemented and their rectification
power typically decays to zero when we increase the system
size [4]. For these reasons, more and more efforts have been
devoted to the investigation of rectification in different models
[5–8]: for example, in graded systems (in which rectification is
a ubiquitous phenomenon [9,10]), in carbon nano-structures,
in systems composed of crystal and amorphous polymer,
etc. Graded materials are inhomogeneous systems whose
composition and/or structure change gradually in space. It is
worth to stress that such materials are abundant in nature, can
also be manufactured, and have attracted great interest in many
areas [11], with works devoted to the study of their electric,
optical, mechanical, and heat conduction properties.

In the search for mechanisms that may increase the rectifi-
cation power, and/or avoid its rapid decay with the system size,
the present work is devoted to a basic, but somehow neglected
problem: the effects of the interparticle interaction range on
the heat flow properties. Given the enormous mathematical
difficulty of the usual models considered in the study of heat
conduction in solids, models which are described by systems
with anharmonic on-site potentials and harmonic nearest-
neighbor interparticle interactions, the investigation of systems
with long-range interactions seems to be an exceedingly
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difficult task, but we will show that such an investigation
is feasible and provides useful results. We still recall that
the study of the role played by the range of the interaction
is a fundamental and ubiquitous problem in physics: it
is responsible for different effects in classic and quantum
systems, in microscopic and macroscopic phenomena, in
electronic transport, in equilibrium and nonequilibrium phase
transitions, etc. [12].

We start the investigation by analyzing homogeneous
systems. We show that, by increasing the interaction range,
we can increase the thermal conductivity of a system with
normal heat transport, and we can even change the regime to
anomalous transport. For the case of asymmetric models—
precisely, graded materials—we show that the introduction
of interparticle interaction beyond nearest-neighbor sites may
increase the rectification factor and still avoid its decay
with the system size. That is, in a system with long-range
interactions, the rectification power becomes larger (thousand
times larger) than that observed in a similar system with
nearest-neighbor interactions only. By long-range we mean
interactions with polynomial decay; and short-range denotes
those with exponential decay or compact support. In other
words, we show that the interaction range, due to these
interesting effects, may be a key issue in the search of materials
with considerable thermal rectification, materials which are, as
said, the basic ingredient for the building of thermal devices
of phononics, such as thermal diodes and transistors.

We analyze recurrent microscopic models for heat con-
duction in solids, used since the pioneering work of Debye,
namely, chains of oscillators. And so, we believe that our
results will be valid for real materials. Our formalism includes
harmonic and anharmonic chains with self-consistent stochas-
tic reservoirs at each site, as well as anharmonic chains with
baths at the boundaries only. These models, for the specific
case of nearest-neighbor interparticle interactions, obey the
Fourier’s law of heat conduction (see, e.g., Refs. [5,13,14]).

Let us introduce the models. For simplicity, we consider
one-dimensional chains. We take N oscillators with
Hamiltonian

H =
N∑

j=1

⎛
⎝ p2

j

2mj

+ Mjq
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∑
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where Mj � 0, J�j = Jj�, P is the anharmonic on-site
potential (and so, λ = 0 for the specific harmonic case). The
dynamics is given by

dqj = (pj/mj )dt,dpj = −∂H

∂qj

dt − ζjpjdt + γ
1/2
j dBj ,

(2)

where Bj are independent Wiener processes; ζj is the coupling
between site j and its reservoir (for the models with baths
only at the boundaries, ζj = 0 if j is an inner site); and
γj = 2ζjmjTj , where Tj is the temperature of the j th bath.

To study the energy current inside the system, we define, as
usual, the energy of the j th oscillator as

Hj (q,p) = 1

2

p2
j

mj

+ U (1)(qj ) + 1

2

∑
�>j

U (2)(qj − q�), (3)

where the expressions for U (1) and U (2), the local and
the interparticle potentials, follow from Eq. (1) and from∑N

j=1 Hj = H . From the stochastic dynamics, we get〈
dHj

dt
(t)

〉
= 〈Rj (t)〉 + 〈F→j − Fj→〉, (4)

Fj→ =
∑
�>j

∇U (2)(qj − q�)

(
pj

2mj

+ p�

2m�

)

=
∑
�>j

Jj�(qj − q�)

(
pj

2mj

+ p�

2m�

)

=
∑
�>j

Fj,�, (5)

and a similar formula follows for F→j (with the change
between j and �, and with the condition � < j ). In the
equations above, 〈·〉 denotes the expectation with respect to
the noise distribution, and 〈Rj 〉 = ζj (Tj − 〈p2

j 〉/mj ) gives the
energy flow between the j th reservoir and the j th site. In the
steady state (as t → ∞), 〈Rj 〉 always vanishes for the inner
sites. Precisely, for an inner site j , we have ζj = 0 for the
case of a model with baths only at the ends; otherwise, the
self-consistent condition is given by the choice of Tj such that
〈Rj 〉 = 0. Such a condition, i.e., the absence of mean heat flow
between an inner site and its reservoir in the steady state, means
that inner reservoirs do not describe real thermal baths such as
those reservoirs at the boundaries; they represent only some
residual interaction, some mechanism of phonon scattering
not present in the deterministic potential. These systems with
self-consistent inner stochastic reservoirs are old models [15],
recurrently studied [13,16].

In the steady state we have 〈dHi(t)/dt〉 = 0, and so, the
mean heat flow from site j to site �, with � > j , is given by
Fj→ ≡ 〈Fj→〉 = ∑

�>j 〈Fj,�〉 ≡ ∑
�>j Fj,�.

From Eq. (5), it follows that the heat flow in the system
is given in terms of two-point functions 〈qjp�〉. However, as
is well known, the analysis of such two-point functions may
require very hard work. For the particular case of a chain
with nearest-neighbor interparticle interaction, several works
have been devoted to the problem. For systems with harmonic
potentials and self-consistent reservoirs, it is proved [13,17]
that

Fj,j+1 = κj,j+1(Tj − Tj+1), (6)

where Fj,j+1 is the flow from site j to j + 1; κj,j+1 does not
depend on T : it is a function of Jj,j+1, of the particle mass, of
the on-site harmonic potential strength Mj , and of the coupling
constant with the reservoirs. The approach and the integral
formalism used to derive such results [17,18] allow us to write
a similar expression for Fj,� in the case of an interparticle
potential with interaction beyond next-neighbor sites, and so,
we also have

Fj,� = κj,�(Tj − T�). (7)

In the case of a system with nearest-neighbor interparticle
interactions, anharmonic on-site potential, and self-consistent
reservoirs, the approach involving an integral representation
for the heat flow [5,19] allows us to write Fj,j+1 as Eq. (6), but
with κj,j+1 depending on temperature. The same follows for
the anharmonic, self-consistent chain with interactions beyond
nearest neighbors; i.e., the heat flow is given by terms such as
Eq. (7); see Ref. [5]. For the anharmonic chain with baths
only at the boundaries, the studies presented, e.g., in Ref. [14],
lead to similar expressions for Fj,j+1. To infer the behavior of
Fj,�, we turn to Ref. [19], where a huge similarity between the
anharmonic self-consistent chain and the anharmonic chain
with baths only at the ends is pointed out, at least for large
anharmonicity.

We remark that expressions for κ have been already
precisely derived for some models. For example, for the
homogeneous harmonic chain with self-consistent reservoirs
and weak nearest-neighbor interaction (|Jj,j+1| small), it is
proved in Refs. [17,18] that

κj,j+1 	 J 2
j,j+1

2ζM
.

For the self-consistent chain, with nearest-neighbor interaction
and anharmonic on-site potential given by λq4, we also
have κj,j+1 proportional to J 2

j,j+1 (see Ref. [5] for details).
The relation κj,� ∝ J 2

j,� also follows for the anharmonic
self-consistent chain with interaction beyond nearest-neighbor
sites; to see it, note that Eq. (30) in the second work of
Ref. [5] shows that the two-point function is proportional to the
interparticle interaction, and recall that the heat flow is given
by the product of the two-point function and the interparticle
interaction Jj,� as described above in Eq. (5). We remark that
the decay of the two-point function given by the decay of the
interparticle interaction is also observed in other stochastic
dynamics [20]. And, again, recalling Ref. [19], at least for
highly anharmonic systems (large λ), we expect a behavior
for the heat flow in the chain with reservoirs at the boundaries
similar to that observed in the self-consistent chain. In short,
for many harmonic and anharmonic chains (including those
treated here), we have κj,� ∝ J 2

j,�.
Thus, the models to be treated here, given by chains of N

oscillators, are such that, in the steady state, the energy current
obeys the following equations:

F = κ1,2(T1 − T2) + κ1,3(T1 − T3) + · · · + κ1,N (T1 − TN ),

κ1,j (T1 − Tj ) + κ2,j (T2 − Tj ) + · · · + κj−1,j (Tj−1 − Tj )

= κj,j+1(Tj − Tj+1) + · · · + κj,N (Tj − TN ). (8)

The first equation means that all the energy that flows into
the system comes from the first reservoir to the first site,
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and it is equal to the energy that flows from the first site
to the other ones. The second equation, which holds for
j = 2,3, . . . ,N − 1, means that all the energy that comes from

the previous sites to site j is equal to the energy that leaves site
j to the following sites. For clearness, we rewrite the system
of equations above as

−F −κ1,2T2 −κ1,3T3 . . . −κ1,N−2TN−2 −κ1,N−1TN−1 = −α1T1 + κ1,NTN,

0 +α2T2 −κ2,3T3 . . . −κ2,N−2TN−2 −κ2,N−1TN−1 = κ2,1T1 + κ2,NTN,

...
...

... = ...

0 −κj,2T2 . . . +αjTj . . . −κj,N−1TN−1 = κj,1T1 + κj,NTN,

...
...

... = ...

0 −κN−1,2T2 −κN−1,3T3 . . . −κN−1,N−2TN−2 +αN−1TN−1 = κN−1,1T1 + κN−1,NTN,

(9)

where α1 = κ12 + κ13 + · · · + κ1N , αj = κj1 + κj2 + . . . +
κjN (recall that κjj = 0 and κ�j = κj�). For the simpler case of
a thermal conductivity that does not depend on temperature,
given T1 and TN we have N − 1 linear equations with
N − 1 variables: F ,T2,T3, . . . ,TN−1. It is also valid, in a first
approximation, for a system submitted to a very small gradient
of temperature (where we may write the thermal conductivity
as a function of the average temperature instead of function
of Tj , T�). For the case of κ given by a function of the inner
temperatures Tj , we do not have a simple linear system, and
the solution is much more intricate.

A first scenario for the effects of the interaction range
may be depicted by considering two extreme (opposite)
cases in homogeneous models: first, a chain with nearest-
neighbor interaction; and, second, a chain with a nondecaying
κj�, i.e., with κ12 = · · · = κ1N = κj� = κ . Some comment is
appropriate for the constant κ: it is certainly unphysical and
shall be considered only as an “upper bound” for the acceptable
κ’s.

We describe below the mathematical solutions of Eqs. (9)
for the two extreme cases, but it is worth noting that such
solutions, and the underlying physics, can also be derived by
noting the connection between Eqs. (9) and circuits. Thus, we
may also derive the solutions by using the Kirchhoff’s theorem
for circuits [21].

For nearest-neighbor interactions and constant κ (or κ

depending on the average temperature), our linear system
becomes

F X2 X3 X4 . . . XN−1

−1 −1 0 0 . . . 0 −X1

0 2 −1 0 . . . 0 X1

0 −1 2 −1 . . . 0 0
. . .

. . .
. . .

...
0 0 . . . −1 2 −1 0
0 0 . . . 0 −1 2 XN ,

where Xj = κTj , j = 1,2, . . . ,N . The last column, of the
independent terms, involves X1 and XN . By using Cramer’s
rule, we have F = 	F/	, where 	 is the determinant of the
coefficient matrix, and 	F is the determinant of the matrix
obtained from the coefficient matrix with the replacement of
the first column by the column of the independent terms. We

have 	F = −X1Dn−2 + X1Dn−3 + XN , where Dn−j is the
determinant of the Laplacian matrix with n − j lines and
columns (the Laplacian matrix is given by the coefficient
matrix above without the first line and the first column). It
is easy to prove (e.g., by induction) that Dn = n + 1. Then,
we have

F = 	F
	

= XN − X1

−(N − 1)
= κ(T1 − TN )

N − 1
. (10)

That is a very well known result: for the anharmonic chain or
harmonic chain with self-consistent reservoirs, Fourier’s law
holds, i.e., the heat flow decreases with N . The underlying
physics is clear: the chain with nearest couplings may be
understood as segments in series, in which each segment obeys
a local Fourier’s law [Eq. (6)]. Hence, Fourier’s law also holds
in the whole chain, and so, the heat flow decays with the system
size.

Let us turn to the other extreme case: κj� = κ , with κ

constant or depending on the average temperature. The linear
system for the heat flow and inner temperatures becomes

F X2 X3 X4 . . . XN−1

−1 −1 −1 −1 . . . −1 XN − (N − 1)X1

0 (N − 1) −1 −1 . . . −1 XN + X1

0 −1 (N − 1) −1 . . . −1 XN + X1

...
...

...
...

0 −1 −1 −1 . . . (N − 1) XN + X1,

where Xj = κTj , j = 1, . . . ,N . First, let us compute the
determinant D of the matrix, where the elements are 1 outside
the main diagonal and are α in the diagonal. For a matrix with
two lines and two columns, we have D2 = α2 − 1 = (α − 1)
(α + 1), and D3 = (α − 1)(α − 1)(α + 2). By induction we
prove that Dn = (α − 1)n−1(α + n − 1).

Turning to the heat flow, as before, we have F = 	F/	c,
where the determinant of the coefficient matrix is 	c =
−1(−1)N−2DN−2, with DN−2 computed with α = −(N − 1).
With some algebra, we get 	c = −2NN−3. 	F is the
determinant of the coefficient matrix with the first column
replaced by the column of independent terms. By developing
the determinant in terms of the new first column, we obtain
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for 	F

	F = [XN − (N − 1)X1](−1)N−2DN−2

−(XN + X1)(N − 2)(−1)N
[
αDN−2 − DN−1

N − 2

]
. (11)

With some algebraic manipulation, we get 	F = NN−2(XN −
X1), and so

F = Nκ

2
(T1 − TN ). (12)

That is, now the heat flow increases with N . To understand the
physics behind such a result, note that, for the fully coupled
system, the number of sites gives the possible channels (ways)
for the heat current; hence, the flow is expected to enlarge as
we increase the number of channels, i.e., the system size.

From the study of these previous limiting cases, the effects
of changes in the interparticle interaction range on heat flow
are already quite clear: by increasing the interaction range we
expect to increase the thermal conductivity and, for long range,
we even expect to change the regime to anomalous transport.

The detailed analytical investigation of the system of
Eqs. (9) for the case of κj� decaying as a function of |j − �|
and/or κj� as a function of the temperatures Tj and T� requires
a very difficult work. Hence, to analyze such cases we make
use of numerical techniques [22].

First, we study systems submitted to a very small gradient
of temperature, i.e., cases in which κ may be considered as a
function of the average temperature. For an exponential decay
κj� = 1/2|j−�|, numerical computations show that the system
still obeys Fourier’s law and the thermal conductivity increases
as compared to system with nearest-neighbor interaction. See
Fig. 1(a). Considering a nonintegrable polynomial decay, such
as 1/|j − �|γ with γ � 1, the computation gives a behavior
that is similar to the extreme case with equal κ’s, that is, the
heat flow grows up as we increase N : as checked out for
several γ , it seems that it grows like

∫ N

1 (1/xγ )dx, i.e., as ln N

for kj� ∼ 1/|j − �|, etc.; see Fig. 1(b).
Now, we turn to the main problem: we consider asymmetric

chains and investigate the effects of long-range interactions on
thermal rectification.

As is well known [5,9,10,23], the dependence of thermal
conductivity on local temperatures plays a crucial role in
thermal rectification. Hence, we investigate systems in which
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FIG. 1. Heat flow F versus number of sites for a homogeneous
chain, where T1 = 2, TN = 1, and (a) κj� decays as 1/2|j−�|; note
that Fourier’s law still holds with thermal conductivity κ 	 6, which
is bigger than the thermal conductivity κ = 1/2 of the chain with
nearest-neighbor interaction. (b) κj� decays as 1/|j − �|; here, the
heat flow grows with ln N .

κ involves functions of temperature. Mimicking the behavior
observed in graded chains of oscillators with anharmonic
on-site potentials [5], now we take κj� as g(|j − �|)/(cjT

β

j +
c�T

β

� ), where the exponent β gives the intricate nonlinear
dependence of κ on T ; g gives the distance decay, e.g.,
g(|j − �|) ∼ 1/|j − �|γ ; and cj is a term that depends on local
graded parameters, e.g., on the particle mass (the asymmetry
in the chain will be given by different terms cj ).

For such κ , even a numerical study becomes intricate. Thus,
to follow with the computations on the heat flow, we restrict the
analysis to a system submitted to a small temperature gradient:
we take a chain in which T1 = T + a1ε and TN = T + aNε,
for some small ε. Consequently, the inner temperatures will
be given in terms of T and ε: up to second order in ε, we will
have Tj = T + ajε + bjε

2 [aj and bj to be determined by
solving Eqs. (9)]. Then, by expanding κj� up to second order
in ε, and solving the system of Eqs. (9), we can determine
all inner temperatures Tj and F = F1ε + F2ε

2 in terms of the
temperatures at the boundaries. Note that such procedure gives
us two systems of equations: one for ε and another for ε2. To
search for rectification, besides F , we still have to study the
heat flow in the system as we invert the temperatures at the
boundaries. That is, we also need to obtain the heat flow F ′
in the system with temperatures T ′

j = T + a′
j ε + b′

j ε
2, where

T ′
1 = TN and T ′

N = T1.
To start the investigation, we take a graded chain in which

cj (related, e.g., to the particle mass) grows linearly with j ,
and kj� decays as 1/|j − �|1.1. We take this exaggerated slow
decay in order to make the effects more transparent. Then,
we compute the rectification factor for the systems, which
is defined as the difference between the magnitude of the
direct and reverse heat flow divided by the smaller one (the
reverse flow is that obtained by inverting the temperatures
at the boundaries). The rectification factor for a chain with
linear graded mass distribution and κ with polynomial decay
is depicted in Fig. 2(a). The ratio between the rectification
factor of the case in which κ has a polynomial decay and the
case in which κ is nearest neighbor is depicted in Fig. 2(b).
These results make transparent the considerable effect of the
range interaction on the rectification power.

Trying to fix the other recurrent problem of diodes, namely,
the decay of rectification with the system size, we turn now to
more asymmetric systems. We take chains with exponential
mass distribution and compare the cases with long-range
polynomial decay and nearest-neighbor interactions. Again,
the effect is clear: the system with long-range interaction has
a much bigger rectification power; see Fig. 2(d). Moreover, in
contrast to the nearest-neighbor interaction, the rectification
power does not decay with the system size; see Fig. 2(c).

We remark that the rectification factors computed above are
multiplies of ε, i.e., of the temperature difference |T1 − TN |,
which is here, due to technical difficulties, a small amount.
However, as shown by theoretical analysis [23] and simulations
[10] in previous works with nearest-neighbor interactions,
the dependence of the rectification factor on |T1 − TN | as
described here is certainly valid beyond the regime of small
differences. In other words, for larger differences of tempera-
ture we certainly obtain bigger (and significative) rectification
factors.
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FIG. 2. Rectification factor f i
r , in multiples of ε 	 |T1 − TN |,

versus number of sites. Here, T = 1, a1 = 2, aN = 1, β = 1.5. In
(a), index i = L denotes a linear graded mass distribution, cj = j .
In (c), i = E denotes an exponential graded mass distribution,
cj = exp(−δj ), with δ = 0.05. For both cases, κj,� = c/|j − �|1.1,
c = 100. The ratio R between the rectification factors for long-range
and nearest-neighbor cases versus number of sites is depicted, in
(b) and (d), for linear and exponential graded mass distribution,
respectively.

In all the cases considered in the study of rectification above,
the heat flow is given by, up to O(ε2), F = F1ε + F2ε

2. For
small gradients of temperature, the rectification appears only
in F2, leading to a O(ε) rectification factor, which is defined,
as already said, as the difference between the direct and the
reversed flows divided by the smaller one. In Fig. 3, the heat
flow termF2 and the reversed oneF ′

2 are depicted for the cases
treated in Fig. 2. The total direct and reversed heat flows F
and F ′, not plotted in the graphics, increase with the system
size N for the exponential mass distribution, and decay for the
linear case.

Further investigation with more detailed results by means
of computer simulations are highly desirable, but we leave
such a task for the experts.

We still need to make some comments regarding the
connection between our results and real materials. First of all,
we recall, as repeatedly said throughout the paper, that graded
systems are found in nature and can also be manufactured.
Moreover, nowadays several materials, such as nanomagnets,
can be fabricated and even manipulated with the lithographical
insertion of different types of pointlike magnetic impurities
in order to present certain properties. A good example is
given by magnets of nanodisks of Permalloy [24], material
in which the interparticle interaction presents a polynomial
decay: 1/r3

ij . In short, graded chains and systems with
interactions polynomially decaying are not only theoretical
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FIG. 3. (Color online) Modulus of direct heat flow |F2| (triangles)
and reversed one |F ′

2| (circles) versus number of sites for inhomoge-
neous chains. Here, T = 1, a1 = 2, aN = 1, β = 1.5. A linear graded
mass distribution, cj = j , and an exponential one, cj = exp(−δj ),
with δ = 0.05, are assumed in (a) and (b), respectively. For both
cases, κj,� = c/|j − �|1.1, c = 100.

models. However, some conditions assumed in our analysis,
e.g., the exponential graded mass distribution and the slow
polynomial decay of the interaction, may be extremely difficult
to be approached in real materials. We have used such mass
distribution in order to obtain a very asymmetric chain. A
more realistic description, still giving a very asymmetric chain,
may be obtained by taking a more acceptable graded mass
distribution together with graded interparticle potentials, with
graded on-site anharmonic potentials, etc., i.e., with other
asymmetric characteristics. Anyway, we understand that a
study with exaggerated conditions is still useful to make
transparent, to amplify effects which will survive, without such
intensity, in a more realistic situation.

In summary, in the present work, we investigate the
effects of range interaction on the heat flow. We show that
interactions beyond nearest-neighbor sites may increase the
thermal conductivity and even change the transport regime,
properties of practical interest. More importantly, addressing
a crucial problem of phononics, we show that long-range
interactions may considerably increase the rectification power
and may avoid its decay with the system size, problems of the
usual proposals of rectifiers. In particular, we show that such
phenomenon occurs in graded systems, realizable materials in
which thermal rectification ubiquitously holds. In short, our
results indicate that graded materials are genuine candidates
for the actual fabrication of thermal diodes.
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