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Transport and collision dynamics in periodic asymmetric obstacle arrays:
Rational design of microfluidic rare-cell immunocapture devices
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Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or
capture rare cells from complex samples has broad and impactful applications in biology and medicine. We
have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the
design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full
computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical
obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and
differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse
displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly
as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant
change in the flow field. Using these analytical and computational simulations, we elucidate design parameters
that induce high collision rates for all particles larger than a threshold size or selectively increase collision
frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate
how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental
observations from various obstacle array geometries are well described by our computational model.
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I. INTRODUCTION

Isolation of rare cells from a heterogenous population
has many applications in medical therapies and biomedical
research. The quantity of rare cells, for example circulating
tumor cells, can guide clinical decision making [1,2]. Addi-
tionally, analysis of the molecular and biochemical activity as
well as the genetic make-up of rare cells enable mechanistic
studies of cell behavior and pathogenesis [3–5]. However, such
investigations are limited by the number of cells available and
the purity of the cell population. It is difficult to improve
both the capture efficiency and purity of rare cell capture
systems that use immunospecific surfaces to capture cells
but that invariably experience nonspecific adhesion [6]. Thus
development of optimized rare cell capture devices involves
optimization of the receiver-operator characteristic of the
capture physics, simultaneously maximizing target cell capture
while minimizing capture of nontarget cells. The ideal system
induces target cells to contact the immunocoated surface for
as long and as often as possible to increase capture efficiency.
However, uniformly increasing cell-wall collisions does not
directly improve capture sample purity, as it also exposes
nontarget cells to the immunocoated surfaces and increases
nonspecific adhesion.

In recent years, microfluidic obstacle arrays have been
increasingly used for particle sorting and capture applications.
Deterministic ratchets have enabled size-based sorting of
microspheres [7,8], viruses [7], and mammalian cells [9–11],
and recently, antibody-coated obstacle arrays have been used
for rare cell capture from patient blood [12–14]. Microfluidic
obstacle arrays have found use because their geometry can be
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precisely defined and rational design approaches can be used to
generate subtle control of device performance. Although much
work has been performed to understand how array geometry
affects size-based particle displacement [8,15–19], few studies
have focused on the effects of these dynamics on surface
capture microdevices [12].

Our work has been particularly focused on the ability of
obstacle arrays to generate size-dependent particle – wall
collision rates that lead to pure and efficient circulating tumor
cell capture in complicated samples [3,12]. We refer to the
resulting optimization of the receiver–operator characteristic
performance of these types of microdevices as geometrically
enhanced differential immunocapture (GEDI). In this work, we
use a transport – centered design approach to investigate the
convection and collision dynamics of a polydisperse particle
population in obstacle arrays with varied geometries. This
analysis informs the design of immunocapture devices used
to capture rare cells from complex samples.

II. DILUTE SUSPENSION, INFINITESIMAL
OBSTACLE LIMIT

Fluid transport and related particle forces are important
for transport through obstacle arrays; however, many of the
central features can be approximated with a ballistic transport
model. We describe a ballistic model here and compare to
results from simulations with fluid transport in Sec. III. To
provide a simplified framework of particle collision dynamics
in obstacle arrays, we have developed two-dimensional (2D)
ballistic trajectory models for the advection of rigid, circular,
diffusionless particles through arrays of infinitesimal obstacles
(2r = 0). These arrays (Fig. 1) are arranged with obstacles
spaced � apart from each other in rows perpendicular to flow.
Obstacles in subsequent rows are offset from those of the
previous row by �, and the rows themselves are spaced by a
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FIG. 1. (Color online) Schematic displaying the pathlines gener-
ated by particles of different sizes (2a) as they are advected through an
array of infinitesimal obstacles (black dots, 2r = 0) defined by array
parameters �, �, and �. Obstacles are arranged in rows perpendicular
to flow, and fluid streamlines in this infinitesimal obstacle limit are
shown in gray.

distance � in the direction of flow. Infinitesimal obstacles are
convenient because, although they do lead to particle collision
when particles have a finite size, in a low-Reynolds-number
flow the obstacles perturb the fluid flow only in an infinitesimal
region. Thus the flow field and the resulting motion of the
particles can be assumed uniform except when particles impact
the obstacles. These simplifications result in a uniform flow,
and although many physical details are omitted, the behavior of
particles in these obstacle arrays captures much of the behavior
of real systems. As such, these 2D ballistic trajectory models
are an excellent tool for understanding particle collision
dynamics and the role of row offsets (�) and particle
size (a).

Particle motion in these models can be described by noting
the particle’s transverse position y and the effect that collisions
have on that transverse position (Fig. 1). The behavior of a
particle as it is transported through an array of infinitesimal
obstacles (N rows long) can thus be determined by integrating
the effects of a series of impingements on an obstacle,
recording the collisions, and recording the deflection when
collisions occur. By treating the particles as Lagrangian tracers
(particle Stokes number, St → 0), the collisions with obstacles
as inelastic, and the suspension as dilute, the only parameters
that control collision performance in these ballistic, uniform
flow, infinitesimal obstacle models are a/� and �/�.

A. Transport in infinite arrays

Infinite arrays are defined as obstacle arrays that are
infinitely wide and long with a constant lattice geometry.
For a specified particle of radius a, its advection through the
obstacle array, and therefore both its transverse displacement
d and its collision frequency, are dictated by �. A particle
colliding with an obstacle is transversely displaced to either
the left or the right side of the obstacle. For each of these
two possibilities, the particle will continue to move through
the obstacle array and will impact another obstacle, perhaps
after missing a number of rows, to again result in a left or
right transverse displacement. The transverse displacement
generated from these 2D ballistic trajectory models and, in
particular, the particle-size dependence [Fig. 2(a) and 2(c)] is
reminiscent of the displacements reported by Frechette and

FIG. 2. (Color online) Normalized lateral displacement (d/N�)
and the device averaged collisions per row (CpR) from ballistic model
simulations (a, b) highlight the complex behavior of particles advected
through obstacle arrays. This behavior is size dependent (c, d), and in
many instances for any given �/� different sized particles produce
the same lateral displacement with differential collision frequencies
(gray shaded region for �/� = 0.28 is one such example). These data
are discontinuous; connections between discontinuities are added for
clarity.

Drazer [18,19]. They used the term “directional locking” to
describe the convection of particles though a rotated square
array of finite obstacles as calculated with Stokesian dynamics,
and, although their array is defined differently from ours,
the fundamental dependences of the particle displacement
are similar. Although transverse displacement can be used
to physically separate particles of different size, this is a
fairly insensitive means for identifying rare cells in complex
biological samples relative to immunocapture techniques.
The performance of immunocapture devices is dependent on
interactions between particles and surfaces, rather than particle
location in a device; thus the collisions that occur in such
a device are important, whereas the transverse displacement
is not. Plotting the average collisions per row (CpR) for a
range of array geometries (�/�) [Fig. 2(b)] illustrates that the
collision-rate dependence has a more complicated shape and
mode structure than the displacement. In fact, the displacement
curve is continuous at many �/� where mode transitions occur
and CpR is discontinuous [Fig. 2(c) and 2(d) and Fig. 3].
Most importantly, the collision-rate dependence on � and
a is neither simple nor continuous. Taken together, the dis-
placement and collision dependences highlight how a specific
device design will affect a polydisperse suspension, whereby
dramatically different collision frequencies and trajectories
can be achieved for particles of a range of sizes.

As these obstacle arrays are periodic, the particle trajec-
tories are also periodic, and we can describe the particle
trajectories through the array by use of collision “modes.” We
denote collision modes using a shorthand notation, in which
L, R, and x denote rows in which the particle is deflected to
the left, deflected to the right, or has missed the obstacle. This
notation describes the periodic collision pattern of coherent
particle streams that lead to transverse particle displacement
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FIG. 3. (Color online) Particles advect through asymmetric ob-
stacle arrays in periodic collision modes. Transverse displacement (a)
and collision frequency (b) for a/� = 0.170 are plotted with collision
modes indicated in shorthand notation. To aid the reader, color is used
on the displacement curve to define pure (nxL: blue, mxR: green)
and mixed (nxRmxL: red) collision modes. Whereas CpR directly
maps to the collision mode, transverse displacement is continuous at
many mode-transition points. Connections in discontinuities in the
CpR curve are added for clarity. Particle pathlines for three example
modes highlighted in (b) are denoted pictorially in (c).

[Fig. 3(b) and 3(c)]. Thus R denotes that the particle collides
with every row, each time being displaced to the right, whereas
xxL denotes that a collision occurs every third row and the
collision results in a transverse displacement to the left side of
the obstacle.

For a given particle radius a and offset �, identifying the
trajectory of a particle starting on the left or right side of
an obstacle is enough to determine its collision mode and
collision rate. As the obstacles are in an array, modulo � gives
the relevant obstacle offset, and thus the criterion regarding
whether the particle at y collides with an obstacle that is p

rows away from its last collision is given by

mod(|p� − y| ,�) < a . (1)

The sign of p� − y determines the direction the particle is
displaced following the collision. After the row location of
the next collision is determined as well as the side of the
obstacle that is collided with, the mode can be defined as
noted in Table I. Here the variables n or m are nonnegative
integers denoting the number of rows in which the particle has
no collision. Using this formalism, given a, �, and examining
the trajectory to determine n and m, the mode, the number

TABLE I. Generalized rules that describe the resulting particle
convection mode, number of coherent streams, and collision rate
(CpR) for the various collision modes.

After L After R Resulting mode No. of coherent streams CpR

nxL mxL nxL n + 1 1
n+1

nxR mxR mxR m + 1 1
m+1

nxR mxL nxRmxL n + m + 2 2
n+m+2

of coherent streams, and the collision rate (CpR) can be
determined as denoted in Table I.

B. Transport in finite arrays

The modes as described are defined by what happens after
a collision; the presence of particles and the effect of collisions
limit particles to a fraction of the volume of an array. However,
particles initially enter the array randomly distributed and as
they progress through the obstacles the particles are displaced
into coherent pathlines described by collision modes. This
initial ordering phase, prior to obstacle collisions in which
particles pass through a fraction of the array, attenuates particle
displacements and collision rates. These effects can be ignored
in the infinite-array limit; however, the effects are significant
in obstacle arrays with finite length. The effects of a finite
array can be approximated by calculating the average fraction
of the array α during which a particle is in its final steady-state
collision mode. The array-averaged collision rate (CpR) for
particles is given by the infinite-array result multiplied by
α, where α −→ 1 in infinite arrays and 0 < α < 1 for finite
arrays.

As shown in Fig. 4(a), at any position we can calculate
the fraction α0 of particles that have hit an obstacle by that
point in the array. As the number of rows increases, a greater
fraction of the particles are deflected into their final collision

FIG. 4. (Color online) Obstacle arrays with finite length attenuate
CpR due to the initial ordering of particles into their collision modes.
The attenuation factor α is the area under the curve that represents the
fraction of particles that have hit an obstacle α0 over the number of
rows in the array N (a). Two examples illustrate the initial ordering
of randomly oriented particles as they enter an obstacle array and
form coherent particle streams (b). Examples are drawn with finite
obstacles and pathlines result from convection in a Stokes flow to
aid in visualization of the physical mechanism occurring in real
devices. The finite-array correction factor α plotted for differently
sized particles (c). An example CpR curve for a finite array (solid
curve) obtained by multiplying CpR for an infinite array (dotted
curve) by α (d). α and CpR are plotted over 0 � �/� � 0.5 because
these curves (and d/N�) are symmetric about �/� = 0.5.
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mode eventually reaching α0 = 1. For a given array geometry,
we use the symbol p to denote the maximum number of
rows until a subsequent collision (e.g., R, p = 1; xL, p = 2;
xxRxL, p = 3). We call this the mode number. Initially, as an
evenly distributed front of particles enters an array and advects
through the first p rows, a fraction of the particles (2ap/�) will
collide with the obstacles. Subsequent rows of obstacles then
sweep out the remaining space [Fig. 4(b)]; colliding with the
remaining particles until all particles have been deflected into
their steady-state collision mode. The finite-array correction
factor α is the average, along the length of the array, of the
fraction of particles that have collided with an obstacle; it is
given by α = 1

N

∫ N

1 α0 dx, where x is the row number.

For an array with N rows (where N � 1), if N <
�−2ap

�eff
, a

fraction of the particles never collides with an obstacle, and α

is given by

α =
(

1 − p

2N

) (
2ap

�
+ N�eff

2�

)

�eff = p ∗ min[mod (�,�/p), mod (�/p − �,�/p)]

(2)

As the array can be offset up (positive y direction) or down
(negative y direction) and � is always referenced in the
positive y direction, �eff is needed to to determine the distance
between � and the nearest �/p.

For an array N � �−2ap

�eff
, all of the particles are in their

final collision modes at the outlet, and α accounts for both
the period during which the obstacle array is sweeping out
the volume and the period during which particles are in their
modes:

α =
(

1 − p

2N

) [
2ap

�
+

(
1 − 2ap

�

) (
1 − � − 2ap

2N�eff

)]
.

(3)

With these analytical results, we can observe the perfor-
mance of the correction factor α as a function of particle size
and offset [Fig. 4(c) and 4(d)]. For large particles, one mode
number is observed and the curve has minima only at � = 0
and � = �, whereas for smaller particles the curve has more
minima and a lower peak value (1−�/4Na).

The location of these minima in α occur at a/� values
that are rational fractions, e.g., 1/2, 1/3, 2/3, and they are
important in part because they correspond to offsets that are
the most convenient for CAD design when making a design
for a microfluidic device. To design a device with many rows
of obstacles, the easiest procedure is to have the offset be a
rational fraction of n� and use a cut-and-paste operation to
complete the obstacle array. This procedure would effectively
produce the worst possible design, corresponding to minima
in collision rates and in many cases such offsets also curtail
differences in CpR between differently sized particles.

C. Transport in reversing arrays

Whereas a number of investigators have focused on the
displacement caused by obstacle arrays on particles and, in
particular, the size dependence of this effect [7,8,15,18,19], the
use of obstacle arrays for rare cell capture [12–14] motivates
geometries that maximize collisions for target particle sizes

FIG. 5. (Color online) Reversing arrays defined by repeating
array segments (of length Nr with ± �) that are offset by �∗(a)
can be used to minimize transverse displacement (b, c) and alter CpR
(d, e). Reversing arrays can produce a notch filter such that CpR is
increased for a narrow range of particle sizes within a polydisperse
population. Dashed lines represent a finite nonreversing array and
solid lines are ballistic results from a reversing array with �∗= 2�.

and reduce collisions for particles of unwanted size. If the goal
is to capture particles with a broad spatial input distribution,
displacement transverse to the flow is of little use and in fact
reduces the effectiveness of the array over time as the particles
of interest are often deflected to the edge of the array. Because
of this, optimal designs would minimize transverse deflection.
This can be achieved by reversing the row offset periodically
[Fig. 5(a)]. We define a reversing array such that after every
Nr rows, the row is offset by a distance �∗ and the rows to
follow have offsets equal to −�. This pattern with repeating
regions of posts offset by ±� continues along the length of
the array.

For particle convection through infinite, nonreversible
obstacle arrays, all particles are assumed to be in their
long-time limit in which they are repeatedly colliding with
obstacles following their mode pattern. However, in reversing
arrays, particles are advected through a series of finite obstacle
arrays, and therefore CpR is highly dependent on the position
of the coherent particle streams as they exit an obstacle section
and enter the subsequent reversed section. As such, the offset
at reversal �∗ provides an additional parameter that affects
the CpR vs a/� curve and can be used to to create additional
size-dependent responses. The effect of reversing the array is
nil when �∗ is chosen to put the particles back into the same
mode; this is observed for � < a < 2/�∗. If �∗ is chosen
so that particles of interest fall into this range, then reversing
the array minimizes the transverse displacement [Fig. 5(b)
and 5(c)] and transitions the CpR response of the system
from a high-pass filter to a notch filter [Fig. 5(d) and 5(e)].
If chosen otherwise, the CpR is attenuated because particles
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are affected by the finite-array CpR attenuation every time the
array reverses. A reversing array, therefore, has great utility for
increasing the collision frequency of a narrow range of particle
sizes within a polydisperse population.

III. DILUTE SUSPENSION, FINITE-SIZE, Pe = ∞
OBSTACLE LIMIT

The ballistic model applicable for infinitesimal obstacles
provides a framework for interpreting simulated or observed
CpR results but does not incorporate obstacle effects on
flow and fluid-particle forces. In real devices, the presence
of obstacles with finite size perturbs the fluid velocity field
and therefore alters particle transport through the array.
CFD models were used to solve for the resulting velocity
field, and a custom advection algorithm was used to track
particle trajectories in finite-sized obstacle arrays with various
geometries.

Simulations were performed using a 2D unit-cell approach.
An array of five obstacles in the direction normal to flow
and 13 perpendicular to flow was used to calculate the
flow field in the unit cell around the central obstacle.
The 2D assumption is appropriate only if the microdevice
height is much larger than the gap between the obstacles
(h � � − 2r) and the assumption that the inlet flow is
uniform is appropriate only if the flow resistance of the inlet
and outlet channels is large in comparison to the obstacle
array.

The fluid velocity field through the obstacle array was
calculated by solving the Navier-Stokes equation over the
domain. Velocity boundary conditions were applied at the inlet
(100 μm/s) and solid boundaries (no-slip, u = 0), whereas the
outlet boundary condition was handled by use of a velocity gra-
dient (∂u/∂n = 0). Although the full Navier-Stokes equations
were solved in dimensional form, all simulations satisfied the
Stokes approximation (Re � 1) and the resulting velocity field
is interpreted in nondimensional form (u∗ = u/uinlet).

Particle trajectories were calculated using custom Matlab
code with the particle position integrated forward in time
through the array with a fourth-order Runge-Kutta scheme.
A no-penetration condition was prescribed at the obstacle wall
with a quadratic potential field penalty function. Additional
particle-wall interactions, including lubrication forces, were
not addressed directly; instead the aforementioned surface
penalty function served as ad hoc accounting of transverse
forces for flow parallel to walls with an approaching particle.
Particle start positions were uniformly distributed along the
first unit cell boundary, and all computational data presented
herein result from advection of particles through 100 rows
of the nonreversing obstacle array. Particle advection was
assumed to be diffusionless (Péclet number, Pe → ∞),
and particles were treated as Lagrangian tracers (St → 0).
Numerical error tolerances and integration time steps were
adjusted such that solution convergence was achieved, and
numerical diffusion of the particles was observed to be
10−24 m2/s, a diffusivity much smaller than the diffusion
coefficient associated with Brownian motion for these particles
(10−14 m2/s).

A. Collision modes as a function of obstacle array geometry

In the finite-sized obstacle limit, the array geometry defines
the flow field and the resulting particle transport through the
array. The five lengths that govern this flow are �, a, �, �,
and the obstacle diameter 2r , which we organize into four
nondimensional parameters: the array constant �/� and the
nondimensional particle radius a/�, offset �/�, and obstacle
diameter 2r/�. We explore the effects of these geometric
parameters on CpR by altering variables from a datum state
(a/� = 1/8, �/� = 1/6, 2r/� = 2/3, and �/� = 1) in a
finite nonreversing array and evaluating over 0 � �/� � 0.5
because of the symmetry in the CpR curve.

The full CFD simulations produce results that are similar
to those from the ballistic analysis [Fig. 6(a)]. The uniform
velocity profile in the ballistic simulation is consistent with
a geometry where the depth is small relative to � and 2r/�

(i.e., a Hele-Shaw geometry) and is described by the Laplace
equation. The full CFD simulation models a tall device in
the regions away from the floor and the ceiling and is best

FIG. 6. (Color online) Collision dynamics for particles advected
though an array of finite-sized cylindrical obstacles (CFD model)
compared with infinitesimal obstacles (ballistic model) (a). The
flow field through a finite-sized obstacle array (gray streamlines,
stagnation streamline is black) is nonunidirectional and nonuniform
with an approximately parabolic velocity distribution in the gap
between posts (b). Particles with a center below the stagnation
streamline follow the stream tube around the subsequent obstacle
whereas larger particles are carried by the bulk flow in a direction
that follows the orientation of the array obstacles as defined by �/�.
CpR results for particles advected with CFD models investigating
effects of particle size (c), offset (d), and obstacle diameter (e, f). CFD
results are drawn as lines for clarity; however, individual data points
are shown for a/�= 0.0833 (c) and �/�= 0.033 (d) to indicate the
frequency of sampling of the �/� and a/� parameter spaces used to
resolve transitions in CpR for all CFD simulations.
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described by the 2D Navier – Stokes equations. The addition
of the fluid velocity field in the full simulations causes a
slight shift in the location of transitions between modes;
however, the collision-rate and displacement magnitudes (data
not shown) are well predicted by the ballistic model even
though it does not capture all effects of the fluid flow on particle
trajectories. Although full CFD simulations lead to results
that are slightly distorted from the ballistic models described
thus far, these ballistic models nonetheless provide an efficient
and intuitive description of the mode structure of the system
response.

As expected, the velocity field generated by finite obstacles
leads to alterations in the collision dynamics [Fig. 6(c)–6(f)].
The effect of fluid mechanics on the ability of the ballistic
trajectory model to predict mode thresholds varies depending
on the nature of the mode transition. This is attributable to two
errors, which largely cancel over much of the parameter space.
One error of the ballistic model is the uniform velocity profile,
which deviates from the actual (approximately parabolic) flow
profile, and a second error is the assumed unidirectionality
of the flow. Relative to the the flow between infinitesimal
obstacles, flow between finite obstacles is rotated along
sin−1(�/�) (for most of the gap cross section) whereas a
small portion of the flow (near the obstacle edge) is rotated
counter to this direction to satisfy the net unidirectionality of
the integrated flow [Fig. 6(b)]. As such, larger particles follow
pathlines that move in the direction of the bulk flow, whereas
smaller particles, with a particle center closer to the obstacle
than the stagnation streamline, follow streamlines that pull the
particle around to the other side of the subsequent obstacle.
This flow profile causes the shift in mode transitions from
those observed in the ballistic simulations. The tendency of
larger particles to remain in the L mode, for example, is made
more extreme by the finite-diameter obstacles as the particle
center remains in the array-aligned bulk flow [Fig. 6(c)].

The directionality of the flow field that arises with fi-
nite obstacles has not been included in previous analyses
[8,15–17,20,21]. These studies have ignored � as a parameter
as they typically examine square arrays (� = �) and therefore
do not account for the array parameter �/�. However, the
angle of incidence of the stagnation streamline relative to the
leading edge of the obstacle does change with �/� [Fig. 7(a)].
The nonunidirectional nature of the flow varies the position
of the stagnation streamline in the gap between the previous
row of obstacles. This leads to significant effects on the
collision modes with CpR varying with �/� at fixed �/� [Fig.
7(b)]. Furthermore, these changes do not exhibit monotonic
dependence on �/�, as is illustrated by plotting the transition
point out of the L mode �Lmode cutoff/� as a function of
�/� [Fig. 7(d)]. Inglis and coworkers analyzed deterministic
lateral displacement obstacle arrays by presuming a parabolic
distribution of velocity between obstacles and relating flow
rates and streamline locations to particle diameters with
specific attention to the L mode cutoff. This analysis, which
assumes that the flow is unidirectional in the direction of flow,
leads to the conclusion that the particle trajectory is dependent
only on the location of the particle center with respect to
the parabolic distribution. The location of the particle center
can be parameterized using a

�−2r
or, equivalently, a/�

1−2r/�
. If

we examine the L-mode cutoff as a function of the particle

FIG. 7. (Color online) Due to the nonunidirectional nature of the
flow, the position of the stagnation streamline in the gap between
obstacles and the angle of incidence of the stagnation streamline
relative to the leading edge of the obstacle, φ varies with the array
parameter �/� (a). This results in altered collision dynamics with
�/� (b, c). As one example of the variabilty in the transitions with
�/� we investigate the �/� parameter that defines the the transition
out of the L collision mode (d). The nonuniformity in the flow field
prevents a general parametrization to collapse the data with �/� (e).
Data shown for �/� values indicated in (e) for 2r/� = 2/3 (filled
symbols) and 2r/� = 1/2 (open symbols).

center [Fig. 7(e)], we see that Inglis’s parametrization captures
the contraction and dilation of the streamlines by assuming a
parabolic flow, but it does not capture the directionality of
the flow, as the curves do not collapse with �/�. For the
L-mode transitions, the streamline expansion associated with
the approximately parabolic flow profile cancels the flow tilt to
first order near the stagnation streamline. Thus a ballistic model
(which ignores both) gives good predictions. Models that
incorporate flow nonuniformity but not nonunidirectionality
are arguably physically more accurate but, in our simulations,
underperform as they do not have this error cancellation. For
other mode transitions, the net effect of the flow nonuniformity
and nonunidirectionality leads to a more complicated effect.
This results because the fluid physics leads to a nonlinear
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transform to the fluid particle locations, and the mode
transitions (which, absent fluid transport in the ballistic limit,
are described by linear displacement equations) are more
difficult to predict. Phenomenological adjustments can be used
to approximate these effects, but we have not been able to
determine a general linear transform for this correction.

IV. DILUTE VERSUS DENSE SUSPENSIONS: EFFECT OF
DIFFUSIVE TRANSPORT

In a dilute solution, particle – particle interaction is
minimized and Brownian diffusion is the main departure from
our Lagrangian model. For obstacle arrays used to induce
transverse displacements [7,8,17,18], optimal performance
occurs with high flow rates that increase the particle Péclet
number (Pe) and thereby enable deterministic displacements.
However, in immunocapture systems, high flow rates decrease
the residence time the particle has with an immunocoated
surface and increases the hydrodynamic shear stresses. This, in
turn, decreases the overall performance of the system. As such,
diffusive transport in lower-Pe flows is important to consider
for immunocapture applications.

In a system designed for rare cell capture, the cell size
ranges from 5 to 25 μm and as such, even with low flow rates
needed for immunocapture applications (mean velocities ∼
100 μm/s), the Pe is relatively high. In these dilute suspen-
sions, Pe exceeds 105 for typical rare cell capture microdevices
[22]. However, in many applications of immunocapture, the
desire to isolate specific cell populations from heterogenous
samples necessitate processing of dense cell suspensions.
This is particularly true for applications of rare cell capture
from blood, in which cell densities are on the order of
106 cells/μl (hematocrit, Hct ∼ 0.5). In these dense suspen-
sion flows, particle – particle interactions cannot be ignored as
in the dilute limit. In fact, these particle interactions coupled
with the size and heterogeneity in the mechanical properties of
the cells lead to interesting phenomena in blood, including the
Fahraeus effect and margination [22,23], which affect transport
of cells within the flow field. Additionally, dense suspension
flows exhibit shear-induced diffusion (SID) [24–28] whereby
particle – particle interactions, due to different relative speeds
along streamlines, result in displacements from the average
trajectories. In monodisperse suspensions, the resulting SID
or dispersion is dependent on the particle density and is
proportional to the particle size and the shear rate of the
suspending fluid (∼2a2γ̇ ) [24,29]. In dense suspensions of
red blood cells, the diffusivity increases by approximately two
orders of magnitude (D ∼ 10−12 m2/s) [24,28,30]. SID is a
primary source of diffusion for cells in whole blood; however,
blood is a complex polydisperse suspension, and a rigorous
analysis for polydisperse suspensions of deformable particles
is not available. From studies of bidisperse suspensions that
investigated SID of a low volume fraction of larger tracer
particles in a dense suspension of smaller particles, it was
determined that SID of the tracer particles decreased as the
ratio of particle sizes (atracer/asuspension) increased [31]. As such,
we would expect the SID for much larger blood cells, including
leukocytes and circulating tumor cells, to be significantly less
than the dispersion of red blood cells. Given the low shear
rates calculated from our CFD simulations (volume averaged:

FIG. 8. (Color online) The effects of varying Péclet number,
Pe, on the collision frequencies for two different particle sizes (a).
Experimentally measured CpR of individual particles tracked through
a small portion of an array (symbols) are well described by CFD
simulations (b) that account for Brownian motion of the particle
(solid line). Gray dashed line represents full CFD simulation data
with Pe = ∞ for comparison.

5.31 s−1) and the geometries for other typical rare cell capture
microdevices found in the literature [22] we estimate that the
particle Pe of target cells in whole blood would decrease by
an order of magnitude (104–105) relative to the dilute limit.

For the purposes of the current work, we have asked how
alterations in the Péclet number that result from any number
or combination of the mechanisms described would alter
the CpR response of the system. The effect of diffusion on
the transverse displacement has been studied theoretically
previously [17,32,33], and thus we focused on the effects
to collision frequency. We have altered the Pe of the full
CFD simulations by adding Brownian diffusion to the particle
transport equations, with a randomly oriented displacement
calculated from the diffusivity applied to the particle trajectory
at each time step. As such, the effective diffusivity, Deff = 0
corresponds to the dilute suspension, infinite Pe limit where
particles are modeled as Lagrangian fluid tracers.

Decreasing the Péclet number causes a smoothing of
the CpR curve with less sharp transitions between collision
modes [Fig. 8(a)]. As the Péclet number decreases, transport
through the device and the resulting collision frequencies
become less deterministic. This reduces the size-dependent
differences in collision frequency for a given obstacle array
geometry. For lower-Pe flows, choosing a larger value for a/�

is beneficial primarily because of the mode structure of the
CpR curve. Smaller a/� generates more complex collision
patterns with a greater number of higher order modes available
to a given particle. As such, transitions between modes are
more frequent, and the effect of particle diffusion has greater
consequences to the collision frequency. Larger a/� has
fewer collision modes and thus dispersive perturbations to
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the particle advection results in minor alterations to the CpR
curve.

To determine if these simulations describe experimental
observations, experiments were conducted in the dilute-
suspension limit and compared to CFD simulation data with
a Deff equal to the Brownian-motion-induced diffusivity for
a given particle diameter [Fig. 8(b)]. Device fabrication and
experimental conditions were the same as those described pre-
viously [3,12]. Briefly, cylindrical obstacle arrays were etched
into silicon (etch depth ∼100 μm, �= 150 μm, �/� = 1,
2r/� = 2/3) and placed into a plexiglass jig that clamps
a polydimethylsiloxane (PDMS) cover onto the device to
create a sealed microfluidic obstacle array. A single inlet port
branches into a ramified network of channels such that the
sample is uniformly distributed across the width of the array
and a symmetric series of channels at the end of the array simi-
larly channel fluid to a single outlet. Polystyrene microspheres
with sizes similar to blood cells (Bangs Laboratories; 10.11 ±
0.703 μm, 15.50 ± 1.52 μm, and 20.92 ± 0.64 μm) were
diluted to a 0.42% volume fraction in a density-matched deion-
ized water/glycerol solution (1.062 g/ml) to eliminate gravita-
tional settling. The suspension of microspheres was processed
through the device at a flow rate of 1 ml/h. Individual particles
were manually tracked as they traversed ten rows of obstacles,
their collisions were recorded, and CpR for the population was
calculated [CpR = total collisions/(10×number of particles)].
�/� values for the fabricated devices were chosen to capture
the transition between the L mode and higher-order modes for
each microsphere size. Experimental data in the dilute limit is
well described by our simulations that account for Brownian
motion of the particles [Fig. 8(b)], capturing both the CpR
magnitude and the transition out of the L mode. Whereas our
experimental data is only in the dilute limit owing to challenges
in recording collision dynamics within dense suspensions,
this analysis framework has been successfully used previously
[3,12] to design GEDI devices that capture cells from dense
cell suspensions. We have found that designing geometries
that have maximized the CpRtarget cell a/CpRnontarget cell a ratio
have generated significant improvements in capture efficiency
(40% increase, 85% efficiency) and purity (37% increase,
68% purity) of rare cells from whole blood [12]. As such, in
spite of the decreased Pe that results from dense suspensions
advected through these immunocapture microdevices, these
design principles enumerated herein are still relevant and
effective for immunocapture of cells from dense suspension
such as whole blood.

V. CONCLUSION

Fundamentally, microdevice-based immunocapture can be
thought of as a superposition of physical challenges (trans-
porting cells to immunocoated surfaces, maximizing residence
time at those surfaces, and minimizing hydrodynamic forces)
and chemical challenges (ligand-binding kinetics, specificity,
and surface stereochemistry). The work described herein
focuses on a physical aspect of the problem: designing
microdevice geometries that preferentially maximize the
transport of target cells to capture surfaces.

The shift in thinking for rare cell immunocapture [14]
from immunocoated surfaces and channel walls (effectively

two-dimensional thinking) to the use of immunocoated ob-
stacles staggered throughout the flow (taking advantage of
the third dimension) has produced a dramatic increase in the
performance of immunocapture devices. Often, the argument
for the design of these devices is one based upon diffusive
transport: increasing the surface area to volume ratio with
dense obstacle arrays thereby decreasing the critical diffusion
length to antibody-coated surfaces. However, in using this
approach an opportunity is lost to leverage fluid mechanics
to deterministically aid in immunocapture as is demonstrated
in geometrically enhanced differential immunocapture (GEDI)
microdevices [3,12]. In this context, we have built upon the
work of others [7,8,15,17–19] that have investigated transverse
particle displacements to design deterministic lateral displace-
ment (DLD) obstacle arrays.

As high-performance immunocapture devices require
slower flow rates and often the processing of dense polydis-
perse cell suspensions compared to DLD systems, diffusive
perturbations from convective pathlines cannot be ignored.
Altering the Pe of the flow in CFD simulations attenuates
the overall CpR curve; however, in the operating regimes for
these devices, size-based differences for larger a/� values
are robust. Experimental data are well predicted by CFD
simulations in the dilute limit, and trends in capture efficiency
of target cells from dense suspensions of whole blood reported
herein and previously published [3,12] are consistent with
predicted CpR.

Whereas previous work has not focused on the particle-
obstacle collision dynamics in microfluidic obstacle arrays, we
have identified a rich mode structure in the collision frequency
response of the system that is nonintuitive but produces
deterministic collision patterns. Furthermore, investigating
only transverse displacement is not sufficient to understand the
collision dynamics, as multiple collision modes produce the
same transverse displacement (L, Lx, Lxx, etc.) but different
CpR. Our results describe the effects that alterations in obstacle
array geometry have on CpR and demonstrate the ability to
generate differential collision frequencies based on particle
size. Unlike DLD obstacle arrays that focus on a critical
particle size, above which all larger particles are laterally
displaced, we have demonstrated that the array geometry can
similarly induce high collision rates for all particles above
a threshold size (nonreversing array) or selectively increase
CpR for a narrow range of particle sizes (reversing array)
within a polydisperse population. Continued advancements
in convective transport-based immunocapture systems, GEDI
microdevices, are important as this technology has broad utility
for a number of disciplines in cell biology and medicine with
applications ranging from isolation and enrichment of stem
cell populations to identification of cells with disease-specific
surface antigens to the enumeration of cancer cells from
clinical blood samples.
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