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Electrical percolation in quasi-two-dimensional metal
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We simulate the conductivity of quasi-two-dimensional mono- and polydisperse rod networks having rods
of various aspect ratios (L/D = 25–800) and rod densities up to 100 times the critical density and assuming
contact-resistance dominated transport. We report the rod-size dependence of the percolation threshold and the
density dependence of the conductivity exponent over the entire L/D range studied. Our findings clarify the range
of applicability for the popular widthless-stick description for physical networks of rodlike objects with modest
aspect ratios and confirm predictions for the high-density dependence of the conductivity exponent obtained
from modest-density systems. We also propose a heuristic extension to the finite-width excluded area percolation
model to account for arbitrary distributions in rod length and validate this solution with numerical results from
our simulations. These results are relevant to nanowire films that are among the most promising candidates for
high performance flexible transparent electrodes.
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I. INTRODUCTION

Thin films of high-aspect-ratio conductive particles, such
as carbon nanotubes, metal nanowires, and graphene flakes are
of increasing interest for high performance solution processed
flexible transparent conductors [1–3]. Random networks of
metal nanowires are the highest performing materials among
these emergent transparent conductor technologies, demon-
strating optoelectronic properties on par with the ubiquitous
indium tin oxide as well as compatibility with low-temperature
solution processing and large-area deposition [2,3]. Com-
putational and analytical studies of electrical percolation in
two-dimensional (2D) random rod networks are of increasing
interest in this field as they provide an important framework
for understanding and predicting the dependence of electrical
properties of nanotube and nanowire films on the nanoparticle
sizes and network structure.

Percolation theory predicts that the electrical conductivity
of a network of conducting particles scales with the particle
loading by the power-law dependence shown below

σ ∼
(

N − Nc

Nc

)t

, (1)

where N is number density of the objects (or equivalently,
their volume or area fraction), Nc is the critical number density
of objects at the percolation threshold, and t is conductivity
exponent. The power law in Eq. (1) is expected to hold at filler
loadings above, but close to, the percolation threshold with a
universal conductivity exponent t0 ≈ 1.3 in two dimensions [4].
To date, most theoretical studies of continuum percolation in
two dimensions have focused on the random widthless-stick
system [5–11] with particular emphasis on investigating the
key critical phenomena, such as the percolation threshold and
critical exponents as well as finite-size scaling behavior. The
critical number of density of sticks at percolation Nc for the
random widthless-stick system was obtained numerically via
Monte Carlo simulations first by Pike and Seager [5] and
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recently by Li and Zhang [8] who reported a high precision
value of the critical density NcL

2
stick = 5.637 26, where Lstick

is the stick length. Balberg et al. [12] and Balberg [13] related
Nc to the particle geometry using excluded area arguments
and numerical approximations to predict the dependency of
the percolation threshold on the aspect ratio and orientation
for both widthless and finite-width sticks. However, the
complimentary simulations in their papers were limited to
systems composed of small numbers of sticks (<103) and
low-aspect ratios (L/D < 15) [6,13].

Recently, there has also been debate in the literature
surrounding the nonuniversality of the conductivity exponent t
in Eq. (1) observed first in experiments of nanotube-based films
[14,15] and confirmed numerically by several studies [9,10,16]
reporting a strong dependence of t on both stick density and
the ratio of the contact and stick resistances (Rc/Rstick). On the
other hand, the conductivity exponent extracted from the size
dependence of the conductivity at the percolation threshold, as
opposed to its density dependence in Eq. (1), yields the uni-
versal value of t0 ≈ 1.3 independent of the resistance ratio [9].

In this paper, we simulate the conductivity of quasi-2D ran-
dom networks composed of soft-core rods that are confined to
a plane. We perform the simulations over a very wide range of
aspect ratios (L/D = 25–800) and rod densities up to 100Nc and
assume contact-resistance dominated transport (Rc � Rrod).
These simulated conductivities are then used to determine
the percolation threshold and the density dependence of the
conductivity exponent over the entire range of aspect ratios and
rod densities studied. The objective of this paper is to evaluate:
(1) the rod-size dependence of the percolation threshold as well
as (2) the density dependence of the conductivity exponent.
Previous numerical studies of these phenomena were based
on the widthless-stick description [5,6,8] and modest-density
systems (N < 10Nc) [7,9,10,16], respectively. The former
objective is particularly relevant since the implicit assumption
L/D → ∞ for widthless sticks might not hold for many
experimentally important modest-aspect-ratio systems. We
also (3) study the effect of rod-size dispersity on the percolation
threshold, proposing a heuristic extension to the finite-width
excluded area percolation model to account for arbitrary
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distributions in rod length and validating this solution with
simulation results using the example of a network with a
bi-disperse distribution of rod lengths. This paper builds upon
our previous studies of percolation in isotropic and aligned
networks of mono- and polydisperse three-dimensional (3D)
networks [17–19] as well as a concurrent study [20] in which
we integrated our simulation approach with experiments of
well-defined metal nanowire films to produce quantitative
predictions of the dependence of the sheet resistance on the
nanowire size, areal density, and size dispersity.

II. SIMULATION METHOD

Our simulation method calculates the conductivity of quasi-
2D rod networks as a function of the rod aspect ratio and
nanowire density using a two-step approach. First, random
assemblies of rods are generated using a Monte Carlo process,
and a clustering analysis is performed to identify the percolated
or spanning rod cluster. Second, the current across the sample
is calculated using a random resistor network approach [21] to
discretize the rod network, and Kirchoff’s current law (KCL)
equations are solved at each node. We have previously used this
simulation approach in three-dimensional networks to explore
the effects of rod orientation, aspect ratio, and size dispersity on
the electrical conductivity and percolation threshold [17–19].
These simulations are relevant to polymer nanocomposites
containing cylindrical nanofillers, such as carbon nanotubes
and metal nanowires. In the current paper, we adapt our 3D
simulation approach to model the sheet resistance of quasi-2D
nanowire films by confining the rods to a thin film.

A random configuration of straight soft-core (i.e., inter-
penetrable) cylindrical rods is generated in a supercell of
dimensions 1 unit by 1 unit by h. A confined quasi-2D
structure is achieved by defining the height of the supercell
h = Drod, where Drod is the diameter of the rods. The rods have
isotropic orientation about the z axis but are confined in the x-y
plane. Figure 1 shows a schematic of the configuration of the
pseudo-2D simulation, whereas, representative renderings of
the simulated rod networks are shown in the Supplemental
Material [22]. Similar “single-layer” structures have been
studied previously by Keblinski and Cleri [16] and Yi et al. [23]
for soft-core fibers and ellipsoids, respectively. In this study,
we simulate rod networks over a wide aspect-ratio range of L/D
= 25–800. Three values of h = Drod are specified depending
on the rod aspect ratio: Drod = 0.000 25 u (unit) for L/D =
25–100, Drod = 0.0001 u for L/D = 200–400, and Drod = 0.000
05 u for L/D = 600–800. These values of Drod are selected
such that the normalized system size Ls , defined as the square
length of the supercell (=1 u) normalized by the rod length

FIG. 1. Schematic of the quasi-2D simulation of rods (Drod,Lrod)
contained in a volume of height h where h = Drod. The soft-core rods
have angular isotropy. Typical simulations contain ∼3000–425 000
rods.

(Ls = Lsq/Lrod), is Ls � 25 to minimize error from finite-size
effects [9,10]. In this study, the normalized system size ranges
between Ls = 25 and 160 depending on the L/D with Ls

decreasing with increasing L/D. Simulations were performed
for each aspect ratio at a range of rod densities defined by
the volume fraction (φ). We compute the area fraction (Af )
of our quasi-2D networks based on the projected area of a
rod (LrodDrod), specifically, Af = 4φ/π . Simulations involve
∼3000–425 000 rods depending on the prescribed φ, L/D, and
normalized system size Ls .

The supercell is divided into tiling sub-blocks, whose
length is greater than the rod length, and rods that fall into
each sub-block are registered. Aided by the sub-block data
structures, the possible neighbors of each rod are determined
with computational complexity that scales linearly with the
total number of rods. Then, the shortest distance between the
centers of two neighboring rods is calculated using a close-
formed formula and, when this distance is <Drod, the rods are
in contact. A clustering analysis is then carried out to identify
the percolating cluster of contacting rods that spans across the
supercell, whereas, nonpercolating clusters are ignored. Every
rod i in the percolating cluster is assigned a uniform voltage Vi

(no internal resistance; Rrod = 0) that is an unknown variable,
except for those rods that touch the left (Vi = 1) or right (Vi = 0)
edges of the supercell. Assuming that all electrical resistance
results from contact resistance Rc between contacting rods
and writing KCL at each rod-rod junction, a system of linear
equations is established. Here, one contact resistance Rc =
2 k� is assigned to all rod-rod junctions in the system. This
assumption of uniform contacts has previously been applied
to nanotube systems, even though the junction resistances are
expected to vary widely due to the presence of both metallic
and semiconducting carbon nanotubes [9,10,24–26] and is
certainly more appropriate between metal nanowires. Note that
the value of Rc = 2 k� is based on an estimate of the effective
contact resistance between two silver nanowires obtained in
our concurrent study by fitting simulated sheet-resistance
values from our quasi-2D simulations to experimental data
from well-defined silver nanowire films [20]. Furthermore, we
assume contact-resistance dominated transport (Rc � Rrod) in
our system. In our previous 3D simulations of rod networks
in polymer nanocomposites [17–19], this assumption was
reasonable since the polymer barrier between nanotubes or
nanowires increases Rc significantly [17,27–29]. Similarly,
high contact resistances are reported in metal nanowire
networks associated with residual surfactant and/or poor
conformation of contacting surfaces [30–32]. Postprocessing
steps, such as thermal annealing, plasmonic welding, and
electrochemical annealing can improve the quality of the
contacts and can reduce Rc. Also, given that the length of
metal nanowires used in transparent conductors is generally
on the order of 5–20 μm, which is significantly larger than
the mean free path of electrons (λ ≈ 30 nm for Ag and
λ ≈ 20 nm for Cu [33]), Rnw can be significant. Naturally, the
specifics of nanowire synthesis and nanowire film fabrication
and processing can alter the applicability of our Rc � Rrod

assumption.
The system of linear equations established by apply-

ing KCL to all active junctions is then solved using the
preconditioned conjugate gradient iterative method [34] as
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implemented in the Portable, Extensible Toolkit for Scientific
Computation package where the incomplete LU factorization
preconditioner is used to obtain the cluster conductance. This
entire procedure is repeated to obtain an ensemble-averaged
conductance, achieving a standard deviation of less than 10%
of the mean value in all cases. The conductivity of the rod
network is calculated by normalizing the conductance by
the dimensions of the supercell. For correspondence between
simulation and physical units, we set Drod = 50 nm in all
cases, an experimentally typical value of the diameter of metal
nanowires used for transparent conductors.

III. RESULTS AND DISCUSSION

A. Percolation thresholds from quasi-2D simulations

To extract the value of the critical area fraction at the
percolation threshold (Af c) for each rod aspect ratio studied,
we apply Eq. (1) to our simulated conductivity values with
Af c and t as free variables, obtaining nonuniversal values
of the conductivity exponent (t ≈ 1.4–1.5) and high quality
fits in all cases, Fig. 2(a). Note that Af c and Nc notations
are equivalent in Eq. (1), but we prefer the areal density
notation for consistency with experiments. Power-law fits were
applied over a narrow range of nanowire densities ranging
between Af /Af c ∼ 1.1 and 2, which is expected to fall within
the critical region and, thus, to yield reliable estimates of
the critical phenomena [9,13]. At loadings too close to the
percolation threshold, finite-size errors are expected due to the
divergence of the correlation length, whereas, loadings too far
above the percolation threshold pull the system too far out
of the critical region. Figure 2(b) shows the dependence of
the critical area fraction as a function of the L/D of the rods,
whereby each Af c value was extracted from simulations as
described above. As expected, we observe a dramatic reduction
in the percolation threshold with increasing aspect ratio with
an order of magnitude difference between the thresholds for
L/D = 25 and 800. This finding is qualitatively consistent with
numerical and theoretical results from widthless-stick systems
where the critical number density of sticks (Nc) required
to form percolated networks is inversely proportional to
L2

stick(Nc ∝ 1/L2
stick) [5,8,12]. Experimentalists have exploited

the efficiency of high-(L/D) particles in network formation
to produce nanowire films for highly conductive transparent
electrodes at sufficiently low loadings required for high
transparency [35–37], and new synthetic methods are being
explored to produce ultrahigh-(L/D) nanowires to further
improve properties [38,39].

To approximate the error in the thresholds presented in
Fig. 2 associated with the finite size of our large simulations,
finite-size scaling approaches were used to extrapolate the con-
vergent threshold for an equivalent infinite system (Af c inf ).
The finite-size scaling behavior of the percolation threshold is
described by

Af c − Af c (Ls) = L−(1/ν)
s

[
a1 + a2L

−θ
s + · · ·], (2)

where a1 and a2 are constants, Af c(Ls) is the system-size-
dependent critical area fraction, ν = 4/3 is the correlation
length exponent in 2D, and θ is the first order correction-to-
scaling exponent. Values of θ ranging between θ ≈ 0.83 and 0.9
have been reported for lattice percolation and continuum-stick

FIG. 2. (Color online) (a) Critical area fraction (Af c) values
are obtained by applying a power-law fit to simulated conductivity
values over a narrow nanowire density range within the critical
region (1.1 < Af /Af c < 2). A representative example for rods with
L/D = 50 is shown. (b) Dependence of the critical area fraction (Af c)
extracted from simulations on the L/D of the rods.

systems [11,40–42]. In Fig. 3, we show Af c(Ls) as a function
of the normalized system size for rods with L/D = 800 and Ls

= 5–125. Fitting these data to Eq. (2), we find Af c inf = 0.007
27 and θ = 1.17. This value of θ for our quasi-2D system is
consistent with, but slightly larger than, the range of values
reported in the literature for 2D square lattice and continuum
systems. Furthermore, the value of Af c inf = 0.007 27 is only
1.23% smaller than the value of the threshold Af c(Ls = 25)
= 0.007 36 extracted from the smallest system size used in
Fig. 2(b). As finite-size errors in our system are expected to
be most dominant for the highest L/D (= 800) and smallest
system size (Ls = 25), we assume that the maximum error
due to finite-size effects in our calculated thresholds over the
entire L/D range studied will be on the order of ∼1%. This
error is significantly smaller than the individual data points in
Fig. 2(b). The low value of the maximum finite-size error in our
simulated thresholds is also consistent with previous studies of
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0.00727

Slope

FIG. 3. (Color online) The system-size-dependent critical area
fraction Af c, obtained by power-law fits to simulated conductivity
data, as a function of the normalized system size Ls for rods with
L/D = 800. The data show power-law convergence to the percolation
threshold for a corresponding infinite system Af c inf .

widthless-stick systems, which found that minimal finite-size
effects are expected for very large square systems with Ls >

20 [8–11]. This result further corroborates the reliability of our
simulated conductivities and calculated thresholds presented
in Fig. 2. Also, Fig. 3 shows, to leading order, a power-law
convergence of Af c(Ls) to Af c inf with an exponent of − 1/ν
− θ as expected since the prefactor a1 in Eq. (2) is significantly
smaller than a2 for a symmetric system in 2D (cf. Ref. [11]).

B. Comparison with models

Next, we compare our simulated thresholds to predictions
from the excluded area model and the widthless-stick result.
Rodlike objects in 2D can be modeled as finite-width or
widthless sticks with the former case approaching the latter
with increasing aspect ratio. The finite-width-stick description
is most consistent with our quasi-2D simulations of confined
networks composed of rods with projected area LrodDrod.

Furthermore, the widthless-stick description is inappropriate
for experimental nanowire films at modest nanowire aspect
ratios as will be shown later in this section.

The excluded area and excluded volume are widely used
concepts to describe the onset of percolation as a function of
the filler geometry in two and three dimensions, respectively.
In two dimensions, the excluded area Aex is the area around
an object into which the center of another identical object
cannot enter without contacting the first object [12,43]. In a
system of many objects, the average excluded area per object
〈Aex〉 is defined by taking the average over all possible relative
orientations. At percolation, the total excluded area is defined
as

〈Aex tot 〉 = Nc 〈Aex〉 . (3)

The total excluded area (or volume) is a dimensional
invariant only for a system of all-parallel soft-core objects
[12]. In three-dimensional rod networks, the total excluded
volume ranges between the all-parallel value of 2.8 and the

slender-rod-limit value of 1, exhibiting a strong dependence
on the aspect ratio for the nonparallel systems [17,44,45]. In
two dimensions, 〈Aex tot 〉 = 4.5 for parallel objects, whereas,
〈Aex tot 〉 = 3.4 − 4.1 has been reported for isotropic as-
semblies of soft-core ellipses, widthless sticks, and capped
rectangles [12,13,46].

The average excluded area per object in a system of
randomly oriented soft-core finite-width sticks with length L

and width D is given by [12]

〈Aex〉 = 2LD

(
1 + 4

π2

)
+ (L2 + D2)

2

π
. (4)

Following from Eqs. (3) and (4), the critical area fraction for
a system of randomly oriented finite-width sticks is

Af c = NcA = 〈Aex tot 〉(
2 + 8

π2

) + (
L
D

+ D
L

)
2
π

, (5)

where A = LD is the area of the rectangular stick. We estimate
〈Aex tot 〉 using our simulated thresholds from Fig. 2(b) in
Eq. (3), observing a weak dependence of this value on the
aspect ratio of the rods over the entire L/D range with
a mean value of 〈Aex tot 〉 ≈ 3.7 (Fig. 4). For comparison,
reported [12] 〈Aex tot 〉 for the random widthless-stick system
is 3.57. Moreover, Xia and Thorpe [46] observed a similar
weak dependence of the total excluded area (〈Aex tot 〉 ≈ 3.5)
on the aspect ratio in their study of percolation in random
systems of overlapping ellipses when the aspect ratio was
varied between ∼20 and 400. In Fig. 5(a), we compare our
simulated thresholds [replotted from Fig. 2(b)] to predictions
from the finite-width-stick excluded area model calculated
using Eq. (5) with 〈Aex tot 〉 = 3.7 and observe excellent
agreement between the two. In contrast, the widthless-stick
result

(
NcL

2
stick = 5.637 26

)
agrees with both our simulation

results and the finite-width model only when L/D > 100, see
Fig. 5(b), demonstrating that the widthless-stick description is
inappropriate for networks with modest-aspect-ratio fillers.

〈A
ex
_t
ot

〉

FIG. 4. (Color online) The total excluded area 〈Aex tot 〉 calculated
from our simulated thresholds using Eq. (2) (points) as a function of
L/D shows weak dependence on the rod aspect ratio. The dashed line
shows the mean value of 〈Aex tot 〉 = 3.7.
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FIG. 5. (a) Simulation (points) and finite-width excluded area
model predictions [Eq. (5)] (solid line) for Af c of isotropic quasi-2D
rod networks as a function of L/D. (b) Comparison of results from
simulation and the finite-width excluded area model with predictions
from the widthless-stick system (dashed line) at L/D � 100. The
2D widthless-stick approximation when applied to nanowire films is
most reliable for nanowires with sufficiently high L/D’s.

C. The conductivity exponent

In this paper, we study the conductivity exponent t from
Eq. (1) as a function of the rod aspect ratio and density in a
contact-resistance dominated system (Rc � Rrod) over a very
large range of aspect ratios (L/D = 25–800) and nanowire
densities (0.1 < N < 100Nc). Balberg et al. [7] determined,
for the first time, the conductivity exponent for a 2D system
of randomly distributed conducting sticks, finding a value of
t = 1.24 ± 0.03, in reasonable agreement with the universal
value of t0 ≈ 1.3. In quasi-2D networks of fibers confined to a
plane, Keblinski and Cleri [16] showed that the universal power
law holds only for low-stick densities N < 2Nc, whereas, at
higher concentrations (up to 10Nc), t transitions to a value of
either 1 or 1.75 for stick- and contact-resistance dominated
transport, respectively. Similarly, Li and Zhang [9] simulated
the dependence t on Rc/Rstick in a random widthless-stick

system over a narrow range of N < 2Nc, observing a
monotonic increase in t with increasing Rc /Rstick. A maximum
value of t ≈ 1.42 was reported for Rc/Rstick � 102, and a
minimum value of t ≈ 1.2 was reported for Rc/Rstick � 10−2.
These results are consistent with Žeželj and Stanković [10]
who observe that the conductivity exponent converges to the
universal value at the percolation threshold irrespective of
Rc/Rstick in random networks of widthless sticks and takes on
a range of values 1 � t � 2 depending on the stick density and
Rc/Rstick. Here, when N � Nc, t converges towards a value
of 2 in the limit of superconductive sticks (Rc � Rstick) and 1
in the limit of superconductive junctions (Rstick � Rc). Žeželj
and Stanković [10] credit this (Rc/Rstick)-dependent behavior
of t to the structure of dense networks, wherein most of the
sticks in the system contribute to the conductivity. Thus, the
density of the current-carrying sticks is directly proportional to
the stick density, and the density of current-carrying contacts
is proportional to the square of the stick density, the latter
case arising from the proportionality between the number of
contacts per stick and the total number of sticks in the system.
In contrast to the current paper, which simulates rod densities
up to 100Nc and a wide range of L/D = 25–800, these previous
studies of the electrical conductivity exponent in 2D were
limited to modest-density systems (N < 10Nc), and the sole
study addressing finite-width rods [16] was limited to L/D
≈ 50. For completeness, also note that a rigorous finite-size
scaling analysis similar to Eq. (2) is required to extrapolate the
critical conductivity exponent t0 at N = Nc. An example of
this procedure is provided in the Supplemental Material [22]
for rod networks with L/D = 800, yielding t0 = 1.36, close
to the expected universal value of t0 ≈ 1.3. The discussion
in the remainder of this section is limited to the exponent t

from Eq. (1), which is of particular interest in the study of the
electrical properties of various nanowire- and nanotube-based
experimental systems.

Figure 6 shows a log-log plot of the simulated conductivity
versus the reduced rod number density [(N − Nc)/Nc] for

S

S

FIG. 6. (Color online) Simulated conductivity versus the reduced
rod number density [(N − Nc)/Nc] for L/D = 25–800 and rod density
up to 100Nc in a contact-resistance limited system (Rc � Rrod). For
all L/D studied, t = 1.42 at low densities (N/Nc < 2), and t = 2 at
high densities (N/Nc > 10). Error bars are smaller than the points.
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L/D = 25–800 where the value of the percolation threshold
for each aspect ratio is given in Fig. 2(b) and is converted
to number density notation. The slope gives the conductivity
exponent t . Across the entire L/D range, the data show
power-law behavior with an exponent of t = 1.42 at low
densities (N/Nc < 2) and t = 2 at high densities (N/Nc > 10)
with a crossover region at intermediate densities 2 < N/Nc

< 10. The low-density behavior is consistent with the finding
of Li and Zhang [9] that t ≈ 1.42 for a contact-resistance
dominated network with N < 2Nc as well as with Žeželj
and Stanković [10] who report a value of the local density-
dependent conductivity exponent of t(N ) ∼ 1.4–1.5 at N ∼
2Nc when Rc > Rstick. In addition, the high-density behavior
in Fig. 5 is consistent with predicted convergence to t = 2 for
Rc � Rrod and N � Ncreported by Žeželj and Stanković [10]
and Keblinski and Cleri [16], although neither of these studies
investigated sufficiently high rod densities to observe a value
of t = 2.

The results presented in Fig. 6 are significant by verifying
the high-density (N � Nc) behavior of the conductivity
exponent as predicted from modest-density systems [10,16]
and showing the invariance of t with rod size in quasi-2D rod
networks.

D. Size dispersity

We previously demonstrated the capability of our simu-
lation method to simulate the conductivity of random three-
dimensional soft-core rod networks with arbitrary distributions
in rod size [17]. We also determined a percolation threshold
from our simulations of polydisperse rods with experimentally
typical Gaussian distributions in length and diameter as well as
engineered bi-disperse mixtures of low- and high-aspect-ratio
rods [17]. Furthermore, using empirical approximations from
our simulation data, we generalized the widely used slender-
rod-limit excluded volume percolation model to account for
both finite L/D and arbitrary size dispersity. Here, we extend
this approach to study the effect of rod-size dispersity on the
percolation threshold in 2D using the example of a rod network
with a bi-disperse distribution of rod lengths. These networks
exploit the dominant contribution of high-(L/D) fillers in
network formation (Figs. 2 and 5), whereas, capitalizing on
the availability and processability of modest-(L/D) particles.
This is particularly relevant in nanowire films for transparent
conductor applications whereby very high L/D (>400) is
required to meet performance criteria for many critical
applications [20]. To simulate a bi-disperse network, we define
reference rods with L/D = 50 (LRef = 0.0125 u and DRef =
0.000 25 u) and longer high-(L/D) rods with L/D = 400 (LLong

= 0.1 u and DLong = DRef) where the rod-length ratio is rL =
LLong/LRef = 8. The proportion of longer rods in the network is
expressed as a relative area fraction FLong = Af Long/(Af Ref

+ Af Long) and is varied between FLong = 0 (monodisperse;
L/D = 50) and FLong = 1 (monodisperse; L/D = 400). Similar
to the monodisperse case, Rc = 2 k� for all rod junctions
in the network and Rrod = 0, and percolation thresholds are
extracted from the simulated conductivities by applying the
power-law fit in Eq. (1). We plot the percolation threshold of
our simulated bi-disperse rod networks as a function of FLong

= 0, 0.2, 0.5, 0.8, and 1 (Fig. 7). As expected, we observe

FIG. 7. Af c as a function the relative area fraction of long rods
(FLong) in bi-disperse quasi-2D rod networks containing a mixture of
short rods with L/D = 50 and long rods with L/D = 400. Simulated
results (points) agree well with predictions from our generalized
finite-width excluded area model [Eq. (5)] (line).

a significant reduction in Af c with an increasing fraction of
high-(L/D) rods in the network.

Next, we propose a heuristic generalization of the excluded
area model solution for monodisperse rods [Eq. (5)] to predict
the percolation threshold for isotropic networks of rods with
arbitrary distributions in length by taking the average of
Eq. (5),

Af c poly = 〈Aex tot 〉〈L〉nD
2〈L〉nD

(
1 + 4

π2

) + (〈L2〉n + D2) 2
π

= 〈Aex tot 〉(
2 + 8

π2

) + ( 〈L〉w
D

+ D
〈L〉n

)
2
π

, (6)

where the subscripts n and w denote weight and number
averages, respectively, and 〈Aex tot 〉 = 3.7. Note that, for
quasi-2D single-layer confined networks, D defines the system
height, and thus, dispersity in D is not allowed. The D

/〈L〉
n

term in the denominator of Eq. (6) is negligibly small at
low L/D and vanishes as L/D increases, thus, the expression
is dominated by the weight average term Lw. Others have
observed a weight average dependence of the percolation
threshold on the rod length in three dimensions [17,47–50], and
this result is intuitive since higher L/D rods in the polydisperse
network play a more critical role in network expansion.
Figure 7 shows there is excellent agreement between our
simulations and predictions from our generalized finite-width
excluded area model expression [Eq. (6)]. Our generalized
expression in Eq. (6) provides a convenient and accessible
solution for the percolation threshold of confined random
networks of rods with arbitrary distributions in length.

IV. CONCLUSIONS

We have simulated mono- and polydisperse quasi-two-
dimensional random networks of soft-core conductive cylin-
ders over a very wide range of aspect ratios (L/D =
25–800) and nanowire densities (0.1 < N < 100Nc). For
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monodisperse networks, we observe a significant reduction in
the percolation threshold with increasing aspect ratio. These
percolation thresholds are in quantitative agreement with the
widthless-stick result at L/D > 100 and are in excellent
agreement with the finite-width excluded area model across
all L/D’s studied. We also report the conductivity exponent
t as a function of the rod density in a contact-resistance
dominated system (Rc � Rrod) for the highest rod densities
studied to date. We find t = 1.42 at low densities (N/Nc

< 2) and t = 2 at high densities (N/Nc > 10) with a
crossover region at intermediate densities 2 < N/Nc < 10.
These results are consistent with recent numerical findings
on the nonuniversality of the conductivity exponent in 2D
widthless-stick systems [9,10,16]. In addition, we report t as a
function of the aspect ratio, observing the same nonuniversality
across the entire aspect-ratio range of L/D = 25–800. Finally,
we generalize the finite-width excluded area model to account
for arbitrary dispersity in rod lengths, finding a weight average
dependence of the percolation threshold on the rod length.
Moreover, we compare predictions from this generalized

model to results from our simulations of rod networks with
a bi-disperse distribution of rod lengths, obtaining good
agreement between the two and further validating our model.

To summarize, the percolation threshold predictions from
our simulations of quasi-2D rod networks and the generalized
finite-width excluded area model presented in this paper
provide experimentalists with valuable guidance to design and
to optimize the properties of transparent conductors based on
thin films of nanowires and nanotubes.
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