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We derive analytical results for various quantities related to the excited-state quantum phase transitions in
a class of Dicke superradiance models in the semiclassical limit. Based on a calculation of a partition sum
restricted to Dicke states, we discuss the singular behavior of the derivative of the density of states and find
observables such as the mean (atomic) inversion and the boson (photon) number and its fluctuations at arbitrary
energies. Criticality depends on energy and a parameter that quantifies the relative weight of rotating versus
counterrotating terms, and we find a close analogy to the logarithmic and jump-type nonanalyticities known from
the Lipkin-Meshkov-Glick model.
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I. INTRODUCTION

The recent successful experimental realization [1] of the
Dicke-Hepp-Lieb superradiance [2,3] with cold atoms in
photonic cavities has sparked a renewed interest in the Dicke
model. Although a detailed understanding of the quantum
phase transition (QPT) associated with the phenomenon
requires somewhat more involved modeling [4–8], the simplest
one-mode form of the Dicke Hamiltonian (a boson coupled to
a large angular momentum) continues to serve as a simple
model with fascinating properties. One reason for this is the
nonintegrability of the model and the appearance of quantum
chaos and its relation to the bifurcation-type QPT in the
thermodynamic limit N → ∞ of infinitely many (pseudo-spin
1
2 ) two-level systems [9–12].

Apart from various modifications of the model for adap-
tation to, e.g., multilevel systems [13,14] or realizations in
other materials [15–17], the Dicke model has been discussed
recently [18–20] in the context of excited-state quantum phase
transitions (ESQPTs). In contrast to ground-state QPTs, these
occur at higher energies and have singularities in the energy
level structure as their hallmark [21,22]. Numerical calcula-
tions [18] confirmed a line of ESQPTs in the superradiant
phase of the Dicke model at the energy coinciding with the
ground-state energy of the normal phase. In a semiclassical
picture, this energy corresponds to the excitation energy from
a spontaneously symmetry-broken ground state right onto the
top of a local maximum in a Landau functional-type potential.

Most of the research on ESQPTs so far has been dealing
with mean-field-type Hamiltonians, where a classical potential
landscape governs the singularities for both types of quantum
phase transitions (see [18] for further references). This is also
the case for the Lipkin-Meshkov-Glick (LMG) model [23] that
describes a simple nonlinearity for a large angular momentum
and for which Ribeiro, Vidal, and Mosseri [24,25] presented
an exhaustive analysis of the phase diagram. Our results for the
class of Dicke superradiance models discussed in this paper re-
veal a very close analogy to their findings for the LMG model,
but they also show interesting aspects that are particular to the
superradiance case and highlight the role of the semiclassical
limits N → ∞ and h̄ → 0 at constant Nh̄ [11,12] for the level
density ν(E) and all quantities derived from it.

In our model we introduce a control parameter g that
quantifies the relative weight of rotating versus counterrotating

terms [26,27], which corresponds to the amount of anisotropy
in the LMG model coupling parameters. As a limit of
particular interest we then obtain the Tavis-Cummings model
[28], where the integrability leads to a Goldstone mode
that persists throughout the superradiant phase and removes
a logarithmic ESQPT singularity in favor of a first-order
jump-type discontinuity, with a reemergence of the former
if the Hilbert space is properly restricted to a single-excitation
number only.

The key difference between ESQPT and finite-temperature
phase transitions in quantum systems is the role of entropy.
The ESQPT in the Dicke model appears in the Hilbert space
spanned by the Dicke states |jm〉 with fixed j = N/2. The
level density [density of states (DOS)] ν(E) of the eigenstates
of the Hamiltonian of energy E then defines a microcanonical
ensemble that is abnormal in the thermodynamic sense that the
associated entropy S(E) ≡ ln ν(E) does not scale linearly with
the particle number N , but only logarithmically, i.e., ν(E) itself
is only proportional to N . In contrast, the canonical partition
sum Z(T ) that determines the original calculations [29,30] for
finite-temperature phase-diagram sums over all 2N states of the
two-level systems. The saddle point approximation to Z(T ) for
N → ∞ contains the typical entropic contribution reflecting
the high degree of degeneracy in that case and thermodynamic
quantities such as free energy and entropy are extensive, i.e.,
proportional to N .

The structure of this paper is a follows. Section II describes
the model and the main method, Sec. III discusses some
general properties of the level density ν(E), and Sec. IV is
devoted to a detailed discussion of the Dicke model. In Sec. V
we then describe the ESQPTs in the generalized Dicke models,
in Sec. VI we discuss the somewhat exceptional case of the re-
stricted Tavis-Cummings model, and we conclude in Sec. VII.
Appendixes A–D give some technical details on the angular
momentum traces, the integrations needed in the Dicke model,
the logarithmic singularities, and the Bogoliubov transforma-
tion for the normal phase of the generalized Dicke models.

II. MODEL AND METHOD

A. Hamiltonian

Our model describes a single bosonic cavity mode a†

coupled to N two-level systems that are described by a
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collective angular momentum algebra Jα ≡ 1
2

∑N
j=1 σ̂

(j )
α ,

where α = x,y,z with J± ≡ Jx ± iJy and Pauli matrices σ̂
(j )
α .

The Hamiltonian reads

H = h̄ωa†a + h̄ω0Jz + h̄λ√
N

∑
±

1 ± g

2
(aJ± + a†J∓), (1)

where 0 � g � 1 is a parameter weighting rotating and
counterrotating terms such that for g = 0,H describes the non-
integrable Dicke model (rotating and counterrotating terms),
whereas g = 1 describes the integrable Tavis-Cummings
model (rotating terms only). The model has a ground-state
QPT when the criticality parameter

μ ≡ λ2

ωω0
(2)

equals unity, with the transition from the normal phase (μ < 1)
to the superradiant phase μ > 1. Importantly, for our choice
of coupling [31] the ground-state QPT and all ground-state
quantities are independent of the value of g [26], whereas g

will turn out as a control parameter for the ESQPT in the
superradiant phase.

In the particular case g = 1 (Tavis-Cummings model), the
Hamiltonian H conserves the excitation number

Nex ≡ a†a + Jz + j, (3)

where again j = N/2 and one has to specify the value(s) of
Nex for which the QPT is discussed. In contrast, the g �= 1 case
only conserves a parity defined by (−1)Nex .

We will include the limit g = 1 in the discussion for
0 � g < 1 below in a natural way by defining an unrestricted
Tavis-Cummings model where the calculation is performed
by averaging over all values of Nex. In the last section, we
then return to the Tavis-Cummings model restricted by a fixed
excitation number, which turns out to be technically somewhat
more involved than the unrestricted case. If fact, QPT criticality
is (for our choice of coupling strengths) determined by the
condition λ > |ω0 − ω|/2 in that case regardless of Nex [18].

B. Partition sum

The key quantity to obtain the level density (DOS) ν(E) is
the partition sum Z(β),

Z(β) ≡ Tre−βH ≡
∫ ∞

E0

dE e−βEν(E), (4)

from which ν(E) follows via Laplace back-transformation.
Here E0 is the ground-state energy of H [32].

We evaluate Z(β) by the method of Wang and Hioe [29]
using coherent photon states and the limit N → ∞ (which we
will always consider in the following), whereby the operators
a,a† can be replaced by numbers α,α∗ and one obtains

Z(β) =
∫

d2α

π
e−βh̄ω|α|2Z(α; β),

Z(α; β) (5)

≡ Tre

[
−βh̄

(
ω0Jz + λ√

N

∑
±

1 ± g

2
(αJ± + α∗J∓)

)]
.

The next step is to evaluate the angular momentum trace
Z(α; β) (which is taken over the basis of Dicke states |jm〉 with
maximum j = N/2 only [33]) by employing the semiclassical
limit βh̄ω0 → 0. In the energy domain, this means that we are
interested in energies E that are macroscopic with respect to
h̄ω0 in the sense that the scaled energy

ε ≡ E

Nh̄ω0
(6)

is of order one. The semiclassical limit is thus formally defined
as h̄ → 0 together with the thermodynamic limit N → ∞ such
that the product L ≡ h̄j = h̄N/2 remains finite, where L is the
conserved classical angular momentum [12]. The evaluation
of Z(α; β) (Appendix A) yields

Z(β) =
∫ ∞

1
dy

∫ 2π

0
dϕ

N
∑

± ±eNβh̄ω0�±(α(ϕ),y)

4πμβh̄ωg
, (7)

where we defined the two dimensionless functions

�±(α,y) ≡ −α

4
(y2 − 1) ± y

2
(8)

that play an important role in the following analysis and the
ϕ-dependent function

α(ϕ) ≡ 1

μ

(
1 + 1 − g2

g2
sin2 ϕ

)
. (9)

C. Density of states

The density of states ν(E) is determined by the inverse
Laplace transformation

L−1

[
eNβh̄ω0�±

β

]
(E) = θ (E + Nh̄ω0�±) (10)

under the integrals in Eq. (7), from which we obtain our first
key expression

ν(ε) = N

h̄ω

∫ 2π

0

dϕ

4πμg
I (ϕ),

(11)

I (ϕ) ≡
∑
±

±
∫ ∞

1
dy θ (ε + �±(α(ϕ),y)),

with the unit step function θ (x). We thus find ν(ε) as a
product of the system size N = 2j , the constant DOS 1/h̄ω

(corresponding to the semiclassical limit βh̄ω → 0 of a
single-oscillator mode with frequency ω), and a term that
only depends on the dimensionless energy ε [Eq. (6)] and
the parameters μ [Eq. (2)] and g.

III. LIMITING CASES OF ν(ε)

The physics contained in the level density ν(ε) is quite rich
and it is therefore instructive to consider limiting cases before
analyzing the full analytical expressions to be derived from
Eq. (11).

A. Noninteracting case

Already the noninteracting case λ = 0 shows some general
features of ν(E) that persist in the interacting case too. We
directly obtain the DOS by the inverse Laplace transformation
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FIG. 1. (Color online) The DOS ν(ε) (in units N/h̄ω) as a
function of scaled energy ε ≡ E/Nh̄ω0 for the Dicke model (g = 0)
at different values of criticality parameters μ ≡ λ2/ωω0. The thin
solid line indicates the DOS ν(ε) for the unrestricted Tavis-Cummings
model (17) at μ = 2 and the dotted lines indicate the slopes that are
determined by the product of the collective excitation energies ε± near
the lower band edge (24). The inset shows the DOS derivative ν ′(ε)
(in units N/h̄2ωω0) displaying the logarithmic ESQPT singularity at
ε = − 1

2 for μ > 1.

of Eq. (5) or via ν(E) = ∑∞
n=0

∑
m δ(E − h̄ωn − h̄ω0m) again

using the limits N → ∞ and h̄ → 0, thus converting sums into
integrals,

ν(ε) = N

h̄ω

⎧⎪⎨
⎪⎩

0, ε � − 1
2

1
2 + ε, |ε| < 1

2

1, ε � 1
2 ,

(12)

where ε = − 1
2 is the scaled ground-state energy for λ = 0

(no bosons, all lower atomic levels occupied). Above this
lower band edge, ν(E) grows linearly with a slope (h̄2ωω0)−1,
followed by a constant DOS N/h̄ω when E > Nh̄ω0/2, the
total energy of the upper atomic levels. Graphically, ν(ε) is
very close to the weak-coupling (μ = 0.2) curve in Fig. 1.

The simple form (12) of ν(ε) also follows from the
convolution ν(E) = ∫ ∞

−∞ dE′νosc(E − E′)νang(E′) with the
boson and angular momentum DOS νbos(E) = θ (E)/h̄ω and
νang(E) = θ (h̄ω0/2 − |E/N |)/h̄ω0 in the semiclassical limit.

B. Band edges

As a matter of fact, even for arbitrary g and μ one has

ν(ε) = N

h̄ω
, ε � 1

2
. (13)

To prove Eq. (13), we note that the argument of the step
function in Eq. (11) is a downward parabola as a function
of y with zeros

yσ
1,2 ≡ σ

α(ϕ)
∓

√
1

α(ϕ)2
+ 1 + 4ε

α(ϕ)
, σ = ±, (14)

where the index 1 (2) belongs to the negative (positive) root.
For energies below ε = 1

2 , we have y−
1 < y−

2 < 1 and only the
plus part in the sum

∑
± contributes to ν(ε) in Eq. (11). In

contrast, for energies above ε = 1
2 , we find y+

1 < −1, y+
2 > 1,

y−
1 < −1, and y−

2 > 1 and the y integral is given by I (ϕ) =∑
± ±(y±

2 − 1) = 2/α(ϕ). For the remaining ϕ integration we

now use ∫ π

0
dϕ

1

a − b sin2 ϕ
= π√

a
√

a − b
(15)

to find Eq. (13) at arbitrary g and μ.
The energy ε = 1

2 thus plays the role of an upper edge
for nontrivial behavior of the DOS ν(ε). For ε > 1/2, ν ′(ε)
vanishes and the DOS is solely determined by the oscillator
frequency ω. In particular, in this high-energy limit ν(ε)
does not depend on the two-level energy h̄ω0. Note that the
nonanalyticity of ν(ε) at ε = 1

2 resulting from Eq. (13) is not
an ESQPT, as it is not related to the interaction between the
boson and the two-level systems: It also occurs for λ = 0,
where it reflects the disparity between the unbounded boson
and the bounded angular momentum DOS.

The lower band edge, in contrast, is determined by
the ground-state energy, which is given by E = −Nh̄ω0/2
(ε = − 1

2 ) in the normal phase and

ε0 ≡ E0

Nh̄ω0
≡ −1

4

(
μ + 1

μ

)
(16)

in the superradiant phase. This (known) result for E0 also
follows from the asymptotic behavior of the partition sum
Z(β) for β → ∞. The interval [ε0,

1
2 ], which we will call the

band for the rest of the paper, therefore defines the region of
nontrivial excited-state physics for the N → ∞ limit of our
model.

C. Unrestricted Tavis-Cummings model

For g = 1, the ϕ integration in Eq. (11) is trivial and the
result for ν(ε) is determined by the boundaries of the y integral
due to the step function, which can be expressed in terms of the
zeros (14). As a result, we find ν(ε) = N (y+

2 − y+
1 )/2h̄ωμ for

ε0 � ε � −1/2, ν(ε) = N (y+
2 − 1)/2h̄ωμ for −1/2 � ε �

1/2, and thus inside the band

ν(ε) = 2N√
μh̄ω

√
ε − ε0θ (μ − μc), ε0 � ε < −1

2

= N

2h̄ω

[(
1 − 1

μ

)
+ 2√

μ

√
ε − ε0

]
, |ε| <

1

2
. (17)

The DOS (17) in the superradiant case is shown in Fig. 1.
Two particular features (discussed in detail in Sec. V) are
clearly visible already. First, there is a jump of the derivative
at ε = − 1

2 , which is a signal of a first-order ESQPT with jump
discontinuity. Second, the infinite slope ν ′(ε0) at the lower band
edge is due to the vanishing of one of the collective excitation
modes above the ground state in the superradiant phase.

D. Dicke model in the ultrastrong-coupling limit

The limit μ � 1 (or alternatively ω0 → 0) for the Dicke
model (g = 0) can be extracted from the exact results (see
below), but also in a much simpler way via the polaron
transformed Hamiltonian [34] with a factorizing partition sum

Z(β) =
N/2∑

m=−N/2

e(βh̄λ2/Nω)m2
∞∑

n=0

e−βh̄ωn. (18)
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In the semiclassical limits N → ∞ and h̄ → 0 we convert the
sums into integrals and the DOS becomes

ν(E) = N

h̄ω

∫ 1/2

−1/2
dx θ

(
E

N
+ h̄λ2

ω
x2

)
, (19)

which leads to the simple square-root form

ν(E) = N

(
1

h̄ω
− 2

h̄λ

√
−E

Nh̄ω

)
, E0 � E � 0. (20)

In this limit, the ground-state energy becomes E0 =
−Nh̄λ2/4ω and the upper band edge energy E = 0.

IV. DICKE MODEL (g = 0)

In the following, we derive and discuss results for the Dicke
case g = 0 separately because of its high relevance for the
existing theoretical and experimental literature. The partition
sum is obtained along the lines of the calculation in Sec. II and
follows as

Z(β) =
√

N

πβ3h̄3ωλ2

∫ ∞

1
dy

∑
± ±eNβh̄ω0�±(1/μ,y)√

y2 − 1
. (21)

A. Low-energy excitations

We make an interesting observation in a simple analysis of
Z(β) with the Laplace method [35] for βN → ∞,

Z(β) ∼ eβh̄(Nω0/2)

β2h̄2ωω0
√

1 − μ
, μ < 1 (22)

∼ 2
eβh̄(Nω0/4)(μ+1/μ)

β2h̄2ωω0

√
μ2 − 1

, μ > 1. (23)

The DOS corresponding to this asymptotic form generalizes
the straight-line behavior (12) to the interacting case at low
energies E and is given by

ν(ε) ≈ N
1 + θ (μ − 1)

ε+ε−
(ε − ε0)θ (ε − ε0), ε → ε0, (24)

with the product ε+ε− of the excitation energies coinciding
with those obtained, e.g., via the Holstein-Primakov transfor-
mation [9] method. The additional factor 2 in the superradiant
phase reflects the twofold degeneracy of energy levels for
N → ∞ [20] (see the discussion in Sec. V D).

The form (24) confirms that the low-energy behavior of
the Dicke model is governed by two independent collective
modes. The partition sum of the two oscillators describing
these modes factorizes and as a consequence the associated
DOS for excitations above the ground state with energy E0

(including an additional degeneracy factor gd) is

νcoll(E) = gd

∫
dx1dx2δ(E − x1ε+ − x2ε− − E0)

= gd
E − E0

ε+ε−
, E > E0 (25)

as in Eq. (24) with gd = 1 in the normal phase and gd = 2 in
the superradiant phase.

B. Density of states

We will give explicit analytical results for the derivative
of the DOS within the band in terms of an elliptic integral
below, but for the numerical evaluation it is more convenient
to use the integral representation that follows from the simple
Laplace back-transformation of the partition sum (21),

ν(ε) = N

πh̄ωμ

∫ y+

y0

dy

√
(y− − y)(y − y+)√

y2 − 1
, (26)

with y± ≡ μ ± 2
√

μ
√

ε − ε0 and the lower limit y0 ≡ y− if
ε < − 1

2 and y0 ≡ 1 if ε > − 1
2 (see Appendix B).

In Fig. 1, the transition from an almost straight-line form
of ν(ε) at small couplings μ in the normal phase [resembling
the noninteracting case (12)] to a more complex form in the
superradiant phase is clearly visible. The slope ν(ε) at the lower
band edge is given by Eq. (24) and diverges at the QPT point
μ = 1 due to the vanishing of one of the excitation energies
there [9], as expected.

The most interesting feature, however, is the signature of
the ESQPT at ε = − 1

2 in the superradiant phase (μ > 1), a
feature that was first found numerically by Pérez-Fernández
and co-workers [18,19]. This nonanalyticity is only weakly
visible in ν(ε) itself, but it shows very clearly in the form of
a logarithmic divergence in the derivative ν ′(ε) (inset). Near
ε = − 1

2 we find

ν ′(ε) ≈ −
ln |ε+ 1

2 |
16(1−1/μ)2

πh̄2ω0ω
√

μ − 1
, (27)

as derived in Appendix C [also see Eq. (45)]. The origin of this
feature lies in a saddle point in a classical potential landscape
[18,22] (see Sec. V A).

C. Expectation values of observables

As in the LMG model [25], we can obtain averages of
observables Â such as the inversion Jz or the boson number
n̂ ≡ a†a as sums over eigenstates |α〉 with energies Eα ,

〈Â〉(E) = 1

ν(E)

∑
α

〈α|Â|α〉δ(E − Eα). (28)

This can be rewritten by use of the Hellmann-Feynman
theorem, which takes advantage of a parametric dependence
of the Eα , i.e., ∂Eα(λ)

∂λ
= 〈α| ∂

∂λ
H|α〉. In our microcanonical

ensemble we can now rewrite Eq. (28) as

〈Jz〉(E) = 1

ν(E)

∑
α

∂Eα(ω0)

∂h̄ω0
δ(E − Eα)

= − 1

ν(E)

∂

∂h̄ω0

∫ E

−∞
dE′ν(E′) (29)

and correspondingly for 〈n̂〉(E) with the derivative with respect
to ω instead of ω0. Note that these expressions hold for all our
models (arbitrary g).

In the superradiant phase of the Dicke model (g = 0), this
generalizes the ground-state expectation values [9]

〈Jz〉(E0) = − N

2μ
, 〈n̂〉(E0) = N

4

ω0

ω

(
μ − 1

μ

)
(30)
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FIG. 2. (Color online) (a) Inversion 〈Jz〉/N as a function of scaled
energy ε ≡ E/Nω0 for the Dicke model (g = 0): analytical results
from Eq. (29) and numerical data for μ = 9 by Pérez-Fernández
et al., Fig. 2 in Ref. [19] (red fluctuating line; the inset shows a
zoom near ε = − 1

2 ). The dotted lines indicate the result (34) for the
(unrestricted) Tavis-Cummings model (g = 1): (b) boson number n

scaled with its ground state values (30) and (c) Fano factor F ≡ var
(n)/n, both as a function of scaled energy e ≡ E/|E0| for various
criticality parameters μ approaching the ultrastrong-coupling regime
(36) (solid black curve).

to higher energies, with Eq. (30) following from the l’Hôpital
rule applied to Eq. (29),

〈Jz〉(E0) = −
∂

∂h̄ω0
ν(E)

∂
∂E

ν(E)

∣∣∣∣∣
E=E0

= ∂E0

∂h̄ω0
(31)

and again correspondingly for 〈n̂〉(E0), with E0 given in
Eq. (16) [36]. Explicit expressions for the integrals needed in
Eq. (29) are given in Appendix B.

Results for the inversion as a function of energy in the
superradiant regime μ > 1 are shown in Fig. 2(a). First, 〈Jz〉(ε)
becomes flat and levels off at exactly zero above the upper band
edge ε = 1

2 , a feature that has already been presented in the
numerical data of Pérez-Fernández et al. [19]. In fact, we have
for arbitrary g and μ that

〈Jz〉 = 0, ε � 1
2 , (32)

which follows from Eq. (29), where we can extend the upper
limit of the integral to ∞ for E � Nh̄ω0

2 because of Eq. (13) and
we use

∫ ∞
−∞ dE ν(E) = Z(β = 0) [Eq. (4)] with the partition

sum being infinite in the limit of infinite temperature but
formally independent of ω0 [see Eq. (5)].

The agreement between our analytical result and the
numerical data for j = 30 (fluctuating red line in Fig. 2 for
μ = 9 [19,37]) is so good that the curves basically lie on
top of each other for all energies. The data from the numerical
diagonalization are obtained as an average over 20 eigenstates,
but they still show quantum oscillations due to the finiteness
of N (and h̄). In contrast, the analytical result is based on
the semiclassical limits N → ∞ and h̄ → 0 (with Nh̄ kept
constant), which smear out these oscillations.

Figure 2 also shows how hard it is to directly see the
logarithmic singularity at ε = − 1

2 in the observable 〈Jz〉: On
the scale shown in the figure, it is somewhat masked by the
minimum that lies slightly above ε = − 1

2 . From our analytical

expressions, we extract the derivative

∂

∂ε
〈Jz〉(ε) ∝ ln

∣∣∣∣ε + 1

2

∣∣∣∣ (33)

(see Appendix B).
The logarithmic singularity is absent in the restricted

Tavis-Cummings model, where instead of Eq. (33) we find
that 〈Jz〉(ε) = −N/(2μ) is constant below the critical energy
ε = − 1

2 , followed by a square-root nonanalyticity

〈Jz〉(ε)

N
=

ε − 1
2

(√
4ε
μ

+ 1
μ2 + 1 − 1

μ

)
μ − 1 + μ

√
4ε
μ

+ 1
μ2 + 1

, |ε| � 1

2
, (34)

and a vanishing of 〈Jz〉(ε) above the upper band edge ε = 1
2

(dotted lines in Fig. 2). The nonanalyticity at the ESQPT
position ε = − 1

2 is consistent with the jump in the DOS
derivative ν ′(ε) [see Eq. (17) and the discussion in the next
section].

D. Average boson number and its fluctuations

We can directly relate expectation values of the boson num-
ber n̂ ≡ a†a and powers thereof to the Q or Husimi function
Q(α; β) ≡ e−βh̄ω|α|2Z(α; β) that appears as an integrand in our
partition sum Z(β) [Eq. (5)]. In the semiclassical limit, normal
or antinormal ordering of operators plays no role and we can
write the definition (28) as

〈n̂m〉(E) = 1

ν(E)
L−1

[∫
d2α

π
|α|2mQ(α; β)

]
(E), (35)

with the inverse Laplace transform of the Q function. The
|α|2m under the integral can be replaced by the operation
(−1)m ∂m

∂(βh̄ω)m , which is useful to derive explicit results. For
m = 1, we thus immediately recover the Hellmann-Feynman
form (29) for 〈n̂〉(E) [division of Z(β) by β corresponds
to integration over energy of ν(E)]. Details for the integrals
needed for 〈n̂m〉(E), m = 1,2, are given in Appendix B.

The agreement between our analytical result for 〈n̂〉(E)
and numerical data of Pérez-Fernández for the case μ = 9
(unpublished data for j = 15, not shown here) is very good
for all energies (numerically this requires large boson numbers
for the truncated boson Hilbert space). Above the upper
band edge ε � 1

2 , we reproduce the linear dependence in
energy found by Altland and Haake via their classical Q

function [12]: From Eq. (13) and the limiting value at ε = 1
2

we find 〈n̂〉(ε) = N ω0
ω

(μ

6 + ε). Similarly, our expressions for
the variance var n̂(E) ≡ (〈n̂2〉 − 〈n̂〉2)(E) exactly reproduce
the linear energy dependence for ε � 1

2 [12] and display the
macroscopic scaling with N2 at any finite energy E > E0. As
expected, the ESQPT log-singularity shows up at ε = − 1

2 in
the mean value and the variance.

In the ultrastrong Dicke limit (20), from the partition sum
(18) and Eq. (35) we derive the mean value and the variance
of the scaled boson number n ≡ n̂/〈a†a〉(E0). At E = E0,
the variance vanishes as our calculation only accounts for
the leading terms ∝N2 and is not sensitive to subleading
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dependences ∝N [38]. We find

n(e < 0) =
2
3 + e + 1

3 (−e)3/2

1 − √−e
,

var n(e < 0) = 1

5
[(1 + √−e)(6 + 4e) + e2] − n2, (36)

n(e > 0) = 2

3
+ e, var n(e > 0) = 34

45
+ 2

3
e,

with the energy variable e ≡ E/|E0| > −1 scaled with the
ground-state energy E0. Figures 2(b) and 2(c) clearly show
Eq. (36) as the limiting form for the scaled boson number n

and the Fano factor F ≡ var n/n when μ increases to large
values in the superradiant regime.

V. GENERALIZED DICKE MODELS (g � 0)

We now turn to the general case of arbitrary 0 � g � 1 in
our model Hamiltonian H [Eq. (1)].

A. Classical potential

As we are dealing with a mean-field Hamiltonian in
the thermodynamic limit N → ∞, all critical features are
expected to be related to extremal points in a classical potential
landscape [22]. In fact, the following very simple analysis of
potential extrema is very helpful for interpreting the various
critical regions following from the exact expressions for the
DOS derivative ν ′(E) in terms of elliptic integrals.

The partition sum Z(β) [Eq. (5)] contains a potential in a
natural way: After carrying out the angular momentum trace,
we can write it as phase-space integral

Z(β) = N

πβh̄ω

∫
dx dp

∑
± ±e−βNh̄ω0U±(x,p)√
1 + μ(x2 + p2)

,

(37)

U±(x,p) ≡ 1

4
(x2 + p2) ∓ 1

2

√
1 + μ(x2 + g2p2).

The contribution relevant for the region ε � 1
2 below the upper

band edge of the DOS is the plus part, i.e., U+, whereas the
minus part, i.e., U−, only contributes to ε � 1

2 in ν(ε) leading
to the leveling off at the constant oscillator DOS [see Eq. (13)].

The extrema of the (dimensionless) potential U+(x,p) have
a simple structure. We only discuss the superradiant phase μ �
1, which is of interest for the ESQPT. For all g there are two
minima at (x = ±√

μ − 1/μ,p = 0), where U (x,p) = ε0 [the
scaled ground-state energy (16) as expected], and an extremum
at (x = 0,p = 0), where U (x,p) = −1/2, the scaled ESQPT
critical energy. For g < 1√

μ
, the extremum (x = 0,p = 0) is a

saddle point leading to logarithmic nonanalyticities in ν(ε) as
we already saw in the Dicke case g = 0.

In contrast, for g > 1√
μ

, the saddle point at (x = 0,p = 0)
is transformed into a local maximum and instead two new sad-
dle points at finite momenta (x = 0,p = ±

√
g2μ − 1/g2μ)

appear where U (x,p) = εg with the energy εg (again scaled
by Nh̄ω0) given by

εg ≡ −1

4

(
g2μ + 1

g2μ

)
. (38)

As we will see below, this leads to a logarithmic-type ESQPT
in ν ′(ε) at ε = εg , in addition to a nonanalyticity at ε = −1/2
that is now a first-order jump discontinuity-type ESQPT.

Finally, at g = 1 (restricted Tavis-Cummings model), the
potential becomes a sombrero function with only one local
maximum at (x = 0,p = 0) and a continuous ring of minima
where again U (x,p) = ε0. We emphasize that this Goldstone
mode appears for all couplings μ > 1 in the superradiant phase
and not only at criticality [27]. Its origin lies in the gauge
symmetry a → aeiφ , J+ → e−iφJ+ of the Hamiltonian H,
which is in rotating-wave form at g = 1. In the normal phase,
〈a〉 and 〈J+〉 vanish and this symmetry does not play a big role,
in contrast to the superradiant phase where both expectation
values become macroscopic.

As a consequence, for g = 1, one of the collective excitation
energies in the superradiant phase vanishes, as we also directly
confirmed using the equation-of-motion method by Bhaseen
et al. [7]. This is the reason for the divergence of ν ′(ε) at the
lower band edge ε = ε0, as we already observed in Eq. (17)
and Fig. 1. In contrast, for g < 1 one has a nondiverging ν ′(ε0)
[see Eq. (24) for the Dicke case g = 0].

B. Exact expressions for ν ′(ε)

We now turn to the full exact solution for arbitrary 0 �
g � 1. Instead of trying a direct evaluation of the DOS ν(ε)
[Eq. (11)] (which is cumbersome due to the step function),
progress is made by calculating the derivative ν ′(ε), for which
we obtain the expression

ν ′(ε) = 1

4πh̄2λ2g

∫ ∞

1
dy

∫ 2π

0
dϕ

∑
±

±δ(ε + �±(α(ϕ),y))

= − 1

2πh̄2λ2g

∑
±

±Im
∫ ∞

1

× dy√
ε + i0 + �±(μ−1,y)

√
ε + i0 + �±(g−2μ−1,y)

(39)

with �± defined in Eq. (8) and where we used −πδ(x) =
Im1/(x + i0) and Eq. (15).

To evaluate Eq. (39) we first recall that only the plus term in
the

∑
± contributes within the band [ε0,

1
2 ] [see the remark after

Eq. (14)]. Next we use
√

x + i0 = √
xθ (x) + i

√−xθ (−x) to
rewrite Eq. (39) within the band as

ν ′(ε) = 1

2πh̄2λ2g

∫ ∞

1

dy θ (ε − p(y))θ (q(y) − ε)√−[ε − p(y)][ε − q(y)]
, (40)

where we defined the two parabolas p(y) ≡ −�+(μ−1,y) and
q(y) ≡ −�+(g−2μ−1,y) between which the energy ε has to
lie. This determines the boundaries of the y integral, expressed
in terms of the zeros of p(y) and q(y),

y± ≡ μ ± 2
√

μ
√

ε − ε0, (41)

z± ≡ g2μ ± 2
√

g2μ
√

ε − εg. (42)

In the superradiant phase (μ > 1), by considering p(y) <

ε < q(y) we find two regimes depending on the value of the
parameter g. For g2μ < 1, for energies ε � − 1

2 the boundaries
are [y−,y+]. In contrast, for g2μ > 1 there are two regions:
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one with boundaries [y−,y+] if ε � εg and the other for
energies εg � ε � − 1

2 with y− � z− � z+ � y+ and two
intervals [z+,y+] and [y−,z−] contributing to the y integral.
Furthermore, for all values of g and μ and for energies ε � − 1

2 ,

the boundaries are [z+,y+] with z− � y− � z+ � y+. We also
note that for ε � εg , the z± become complex.

This now allows us to give explicit expressions for
ν ′(ε) [39]:

ν ′(ε) = 4

πh̄2ωω0

1√
p+p−

K

(
(y+ − y−)2 − (p+ − p−)2

4p+p−

)
for ε0 � ε � εg, (43a)

ν ′(ε) = 4

πh̄2ωω0

{ 2√
(y+−z−)(z+−y−)

K
( (y+−z+)(z−−y−)

(y+−z−)(z+−y−)

)
, g2μ � 1

1√
(y+−z+)(y−−z−)

K
( (y+−y−)(z+−z−)

(y+−z+)(y−−z−)

)
, g2μ � 1

for εg � ε � −1

2
, (43b)

ν ′(ε) = 4

πh̄2ωω0

1√
(y+ − y−)(z+ − z−)

K

(
(y+ − z+)(y− − z−)

(y+ − y−)(z+ − z−)

)
for −1

2
� ε � 1

2
. (43c)

Here y± and z± have already been defined in Eq. (41),

p± ≡
√

(g2μ − y±)2 + 4g2μ(εg − ε), (44)

and K(m) ≡ ∫ π/2
0 dϕ(1 − m sin2 ϕ)−1/2 denotes the elliptic

integral of the first kind. Note that for the normal phase μ < 1
only Eq. (43c) is relevant.

C. The ESQPT for 0 � g � 1

Figure 3 (left) displays the main features contained in
our expressions (43) in the superradiant phase. At small
g < 1/

√
μ, only the logarithmic-type singularity appears at

ε = − 1
2 , reflecting the ESQPT that we already saw in the

Dicke (g = 0) case and anticipated from the discussion of the
potential (37). Writing the scaled energy ε = − 1

2 + δ with

-0.6 -0.5 -0.4
ε

0

2

4

6

8

ν′
(ε

)

g = 0.95
g = 0.9
g = 0.8
g = 0.6

0 1 2
ε

0

0.5

1

1.5

2

ν(
ε)

λ = 0.1
λ = 0.5
λ = 0.75
λ = 1.0

FIG. 3. (Color online) On the left is the DOS derivative ν ′(ε)
[Eq. (43)] as a function of scaled energy ε ≡ E/Nh̄ω0 for generalized
Dicke models in the superradiant phase for various values of g

[Eq. (1)] and criticality parameter μ = 2. On the right is the DOS
for the Tavis-Cummings model (55) restricted to excitation number
Nex = N [see Eq. (3)] and frequencies ω = 2 and ω0 = 1 for various
coupling parameters λ. The solid dots on the ε axis indicate the values
of the band edges for the respective values of λ in the numerical data
in Fig. 4 of Ref. [18].

small δ, from our exact expressions for ν ′(ε) we explicitly
extract (Appendix B) the logarithmic divergence

ν ′
(

−1

2
+ δ

)
≈ − ln

∣∣ r
16δ

∣∣
πh̄2ωω0

√
(μ − 1)(1 − g2μ)

(45)

with the constant r defined in Eq. (C3).
This situation changes for larger g > 1/

√
μ, where the

singularity at ε = − 1
2 becomes a jump-type discontinuity with

a jump by a factor of 2,

ν ′
(

ε = −1

2
± 0+

)
= 3 ∓ 1

2h̄2ωω0

√
(μ − 1)(g2μ − 1)

. (46)

In addition, the logarithmic-type ESQPT singularity has now
moved to the position ε = εg corresponding to the two new
saddle points in the potential landscape U+(x,p).

In the limit g = 1, from Eq. (43) we recover the Tavis-
Cummings result (17): When pushed against the lower band
edge ε0, all that remains from the logarithmic singularity
is a square-root divergence, which (as discussed above) can
be traced back to the Goldstone mode of the rotating-wave-
approximation model in the superradiant phase. Another check
is the ultrastrong Dicke (g = 0) limit (20) that follows from
Eq. (43) for ω0 → 0.

D. Collective excitations and degeneracies

In the normal phase μ < 1 and again in analogy with the
Dicke case, we confirm the low-energy behavior

ν ′
(

ε = −1

2

)
= 1

ε+ε−
= 1

h̄2ωω0

√
(μ − 1)(g2μ − 1)

(47)

at arbitrary 0 � g � 1 with the collective low-energy exci-
tation energies ε±. We checked that Eq. (47) also follows
from the diagonalization of our Hamiltonian H [Eq. (1)] via
a Bogoliubov transformation (Appendix D) or alternatively as
the determinant of the Jacobian belonging to the normal-phase
fixed point in the classical equation-of-motion method [7].
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In the superradiant phase μ > 1, we directly find from
Eq. (43), using y± = μ at ε = ε0, that at the lower band edge

ν ′(ε0) = 2

ε+ε−
= 2

h̄2ωω0

√
(1 − g2)(μ2 − 1)

. (48)

Again we recover the divergence of ε+ε− at g = 1 (Tavis-
Cummings model) and our Dicke result for g = 0 [Eq. (24)].

At the upper band edge ε = + 1
2 , in contrast, we have y− =

z− = −1, y+ = 1 + 2μ, and z+ = 1 + 2g2μ and thus from
Eq. (43)

ν ′
(

1

2

)
= 1

h̄2ωω0

√
(1 + μ)(1 + g2μ)

. (49)

Both forms (47) and (48) are consistent with the general form
of the low-energy behavior of the model described by two
collective modes with energies ε±, i.e., ν ′(ε) → gd/ε+ε− at
the lower band edge both in the normal and in the superradiant
phase, where gd is the level degeneracy factor [see Eq. (25)].
Note that the classical potential (37) has gd = 2 equivalent
minima at μ > 1, which is of course consistent with the two
effective Hamiltonians describing the superradiant phase at
low energies [9]. Here the Tavis-Cummings case (g = 1) can
be formally interpreted as having degeneracy gd = ∞.

At this point, an interesting comparison can be made with
recent numerical results by Puebla, Relaño, and Retamosa
[20], who found that in the superradiant phase, the energy
levels in the Dicke model (g = 0) are doubly degenerate
(gd = 2) below the ESQPT critical energy ε = − 1

2 and
nondegenerate (gd = 1) above that energy. In the normal phase,
in contrast, they found no degeneracy at any energy.

Our results above only refer to energies at the band edges,
but they are consistent with this picture and generalize it to
models with g � 0. In particular, the upper-band-edge value
(49) holds for all values of the criticality parameter μ, in
agreement with the absence of degeneracy at large energies
found in Ref. [20].

E. Comparision with the LMG model

As mentioned in the Introduction, our results bear close
analogies to the extensive studies of Ribeiro, Vidal, and
Mosseri [24,25] for the LMG model,

H = − 1

N

(
γxJ

2
x + γyJ

2
y

) − hJz, (50)

where in the γy-γx phase diagrams four different phases
were identified. Nonanalyticities in the DOS ν(E) and the
integrated DOS were related to extremal points in the classical
potential landscape belonging to Eq. (50) (see our analysis in
Sec. V A) and analytical expressions in terms of elliptic
integrals followed via a mapping to a first-order nonlinear
differential equation.

For the Dicke-type models (1), due to the additional boson
degree of freedom, the derivative ν ′(E) of the level density
[rather than ν(E) itself] is the key quantity in the analysis, but
otherwise we have a clear correspondence. First, in the normal
(symmetric) phase both models have smooth level densities.
Next, the single-logarithmic-divergence phase of the LMG
model (phase II in Ref. [25] with |γy | < h < γx) corresponds
to the case g2μ � 1 in the Dicke models, whereas the

single-logarithmic-jump phase of the LMG model (phase IV in
Ref. [25] with h < γy < γx) corresponds to the case g2μ � 1
in the Dicke-type models. In this latter phase, we obtain the
same factor of 2 jump discontinuity as [25] [see Eq. (43)],
but with our method we cannot further analyze the spectral
subtleties there since we have no access to, e.g., the energy
difference between two consecutive levels. Also note that we
have only considered positive couplings in Eq. (1), which
is why there is no analogon to the phase III [25] with two
logarithmic divergences in the LMG model.

Finally, the isotropic LMG model (γy = γx) is easily solv-
able in term of Jz eigenstates only and it has a single Goldstone
mode [40]. In this limit, the LMG model corresponds to
the (unrestricted) Tavis-Cummings Hamiltonian (g = 1) [see
Eq. (17) and Sec. V A].

VI. RESTRICTED TAVIS-CUMMINGS MODEL

Finally, we turn to the Tavis-Cummings model (g = 1)
including the restriction defined by a fixed value of the
conserved excitation number Nex [Eq. (3)]. Pérez-Fernández
et al. found a ground-state QPT determined by the condition
λ > |ω0 − ω|/2 and an ESQPT in the form of a strongly
increased level density at ε ≡ E/Nh̄ω0 = + 1

2 and a needlelike
singularity of the observable 〈Jz〉 at that energy [18]. Unfor-
tunately and somewhat ironically, in contrast to a numerical
analysis, the additional conserved quantity Nex in the restricted
Tavis-Cummings case g = 1 makes it much harder to make
analytical progress (when compared to all other models for
0 � g � 1 including the Dicke case g = 0).

In our method based on the partition sum, Z(β) now has
to be carried out at fixed Nex, a condition that can be included
in the angular momentum trace part (5) in the form of a δ

function reflecting Eq. (3) (see Appendix A), leading to

Z(β) =
∑
mm′

exp

(
− βh̄m′

√
ω2

0 + 4λ2

N
(K − m)

)

× e−βh̄ω(K−m)|dmm′ (θ )|2, (51)

where K ≡ Nex − N/2,

dmm′ (θ ) ≡ 〈m|e−iθJy |m′〉 (52)

is a rotation matrix element (Wigner’s d function) [41], and
the angle θ is defined by

cos θ = 1√
1 + 4λ2

Nω2
0
(K − m)

. (53)

As we are interested in the N ≡ 2j → ∞ limit only, we use the
semiclassical approximation for the rotation matrix element
[41,42],

|dmm′ (θ )|2 ≈ 1

π
[j 2 sin2 θ − m2 − m′2 + 2mm′ cos θ ]−1/2,

(54)

which holds for positive arguments of the square root and
where |d|2 is approximated by zero otherwise.
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After converting the m sums into integrals using m ≡ Nx

and m′ ≡ Nx ′, this leads to

ν(ε) = N

∫ 1/2

−1/2
dx

θ
(

1
2 − |x ′|)

h̄

√
ω2

0 + 4λ2
(

K
N

− x
) |dNx,Nx ′ (θ )|2,

(55)

x ′ ≡ ε/h̄ − ω
(

K
N

− x
)

√
ω2

0 + 4λ2
(

K
N

− x
) .

Note that in contrast to the DOS in the unrestricted cases
discussed above, ν(ε) is of order N0 = 1 and thus not
proportional to N (the factor N cancels with 1/N from
the Wigner d function at large N ). This corresponds to the
reduction of dimensionality of the model due to the additional
conserved quantity Nex and is best visualized in a lattice
representation of our model H [Eq. (1)], where each point
of the lattice represents a basis state |jm〉 ⊗ |n〉 [10]. The
rotating-wave-approximation version g = 1, i.e., the Tavis-
Cummings model, then decomposes into independent parallel
chains that can be labeled by Nex and become one-dimensional
lines in the thermodynamic limit, whereas the full lattice is two
dimensional.

Results for the DOS ν(ε) for the restricted Tavis-Cummings
model with conserved quantity K = N/2 (Nex = N ), ω0 = 1,
and ω = 2 are shown in Fig. 3. For small λ, ν(ε) essentially
has the shape of the uncoupled case where

ν(ε) =
θ
(

1
2 − ∣∣ ε/h̄−ω/2

ω0−ω

∣∣)
h̄|ω0 − ω| , (56)

which follows from the partition sum (51) for λ = 0 and
dmm′ (θ ) = δmm′ . At finite λ, we did not find a simple analytical
form for the band edges of ν(ε), but their numerical values
following from Eq. (55) agree well with the results from exact
numerical diagonalizations by Pérez-Fernández et al. [18].

In a similar way, we find a logarithmic singularity in ν(ε) at
ε = 1

2 for λ > λc, in agreement with the needlelike singularity
of 〈Jz〉 found in Refs. [18,43]: Expanding the argument of the
d function (54) below the upper integration limit x = 1

2 , we
find a purely quadratic behavior

sin2 θ

4
− x2 − x ′2 + 2xx ′ cos θ ≈ (−1 + 4λ2)

(
x − 1

2

)2

(57)

with no constant or linear term at ε = 1
2 and thus

|dNx,Nx ′ (θ )|2 ∝ |x − 1
2 |−1, which upon integration leads to the

logarithmic form for λ > 0.5 there.

VII. CONCLUSION

In all of our calculations, we have only considered the semi-
classical limit for which the partition sum Z(β) and thereby
the DOS can be obtained without further approximations.
Importantly, in order to arrive at our results we had to keep
the full angular momentum character of the model, i.e., we
did not make any kind of expansion using Holstein-Primakov
bosons [9,10]. The close analogy to results for the LMG
model [25] suggests an equivalence between the LMG and
Dicke models not only for canonical thermodynamics [44] but

also for the abnormal microcanonical situation relevant for
ESQPTs [45].

For finite N , an obvious next task would be to extract finite-
size scaling exponents [46–48] for the ESQPT (see recent
numerical results for the Dicke g = 0 case [20]) or a 1/N

expansion similar to the LMG [24,25] model.
The Hellmann-Feynman theorem (29) links the ESQPT

nonanalyticities to observables (or in fact the QPT order
parameters), which might be more relevant for possible
experiments than the DOS itself. Here our analysis has
remained incomplete in that we have only focused on the Dicke
(g = 0) case. In the g > 0 case, the analytical evaluation of
〈Jz〉 is in principle straightforward, but for a comparison with
the regime in which spectral subtleties similar to the LMG
model [25] are expected one would have to put forth quite
some numerical effort in addition. Another open point is the
calculation of angular momentum observables (such as Jx)
that cannot directly be obtained via the Hellmann-Feynman
theorem.

An essential condition for the ESQPT in the Dicke models
is the restriction to the Dicke states |jm〉 with maximum
j = N/2 in order to avoid the usual high degeneracy, i.e., the
entropy term inZ(β) that leads to completely different physics,
i.e., a thermal phase transition. In the ultrastrong-coupling
limit λ → ∞ of the Dicke (g = 0) model, we have recently
discussed [34] a realization of such a restriction with bosons,
where the partition sum does not contain the combinatorial
degeneracy factor of the usual fermionic (spin- 1

2 ) Dicke case
and as a result, the thermal phase transition does not occur.
An interesting option therefore would be to use bosons and to
directly explore the properties related to the thermodynamic
ensemble defined by our canonicial partition sum (5). In
principle, one could then try to directly reconstruct ESQPT
properties from equilibrium quantities at finite temperatures.

A further point is the peculiar character of the models
where ESQPTs have been studied so far. The Dicke or LMG
models (which correspond to zero-dimensional field theories)
are special in that there is no intrinsic length scale (like in lattice
spin models). In the thermodynamic limit, mean-field theory
becomes exact and the ground-state QPTs always follow some
(classical) bifurcation scenario, on top of which one has
nontrivial finite-size corrections. A next step would therefore
be to investigate ESQPTs in generic many-body systems in
an expansion around a mean-field approximation (see [49] for
a recent study of metastable QPT in a one-dimensional Bose
gas).

We also emphasize that the DOS ν(E) relevant for ESQPTs
is different from the usual single-quasiparticle excitation
density of states known from, e.g., optical excitation spectra
in many-body systems (see [50] for a recent example in the
Bose-Hubbard Hamiltonian). Nevertheless, it would be worth
investigating the relation between the two quantities (be it only
on a technical level) for further models in detail, in particular in
view of the band-structure character of our calculation above.

Finally, we comment on possible experimental realizations
of ESQPTs in Dicke models. Quantum quenches [18,20] seem
to be a promising possibility to convert the singular energetic
features into the time domain. The ground-state QPT has
been experimentally tested for both the Dicke-Hepp-Lieb [1]
and the LMG [51] models in Bose-Einstein condensates. One
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challenge, as mentioned above, is to stay within the relevant
subspaces of states (e.g., the Dicke states with j = N/2) when
implementing the effective Hamiltonian H [Eq. (1)] for a real
physical system.
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APPENDIX A: ANGULAR MOMENTUM TRACE

We evaluate the angular momentum trace Z(α; β) ≡
Tre−βHg in Eq. (5) by writing α = x + ip and

Hg ≡ h̄ω0Jz + 2h̄λ√
N

(xJx − gpJy). (A1)

We carry out the trace by unitarily rotating the angular
momentum, first rotating around the Jz axis via

γ1(−Jy sin φ + Jx cos φ) = eiφJzγ1Jxe
−iφJz (A2)

with parameters γ1 sin φ = gp 2λ√
N

and γ1 cos φ = x 2λ√
N

after
which we rotate the resulting ω0Jz + γ1Jx around Jy , using

γ (−Jx sin θ + Jz cos θ ) = eiθJy γ Jze
−iθJy (A3)

and identifying ω0 = γ cos θ and −γ sin θ = γ1. The resulting
exponent in the trace is now diagonal,

Z(α; β) = Tre−βh̄γ Jz =
N/2∑

m=−N/2

e−βmγ (A4)

with the frequency γ = √
γ 2

1 + ω2
0 given by

γ = ω0

√
1 + 4λ2

Nω2
0

(x2 + g2p2). (A5)

Note that we can use either the positive or negative square
root for γ as the sum is symmetric in m. For large N → ∞,
we can neglect the difference between N and N + 1 to write
Z(α; β) = ∑

± ±e±βγh̄N/2/(eβh̄γ − 1). In the semiclassical
limit βh̄ω0 → 0 this becomes

∑
± ±e±βγh̄N/2/βh̄γ , a result

that one also obtains by replacing the sum (A4) by the integral
N

∫ 1/2
−1/2 dm e−βNmh̄γ . Rescaling of the integration variables

x̃ ≡ x/
√

N and p̃ ≡ gp/
√

N , introducing polars, and defining

y ≡
√

1 + 4λ2

ω2
0
r2 now leads to Eq. (7).

For the Tavis-Cummings model (g = 1) discussed in
Sec. VI, the partition sum is restricted by a conserved excitation
number Nex, which is included in the angular momentum trace
in the form of a δ function,

ZTC ≡ Tr[δ(K − |α|2 − Jz)e
−βHg ], (A6)

with the same Hg [Eq. (A1)] and K ≡ Nex − N/2. Again, we
first rotate the exponential by an angle φ around the Jz axis

as above, but the second rotation by the angle θ around the Jy

axis does not commute with Jz in the δ function and therefore

ZTC = Tr[δ(K − |α|2 − Jz)e
iθJy e−βh̄γ Jze−iθJy ] (A7)

with γ given by Eq. (A5) for g = 1. Here the angle θ is given
by

cos θ = 1√
1 + 4λ2

Nω2
0
|α|2

. (A8)

The trace can be done explicitly by inserting a complete set of
Dicke states |jm〉, leading to

ZTC =
∑
mm′

δ(K − |α|2 − m)|dmm′(θ )|2e−βh̄γm′
, (A9)

where the matrix element dmm′ is Wigner’s d function (52).
Inserting into Eq. (5) and carrying out the α integral then
yields Eq. (51).

APPENDIX B: DICKE MODEL

The DOS in the Dicke case (g = 0) follows from the
Laplace back-transformation of the partition sum (21) by use
of

L−1[β−3/2e−β�](E) = 2√
π

√
E − �θ (E − �) (B1)

and writing Re
√

x + i0 = √
xθ (x) (which is convenient for

some of the following transformations),

ν(ε) = 2N

π
√

μω
Re

∑
±

±
∫ ∞

1
dy

√
ε + i0 + �±

(
1
μ
,y

)
√

y2 − 1
. (B2)

Within the band, the explicit evaluation of the step function
leads to Eq. (26).

Next and again within the band, the mean inversion follows
from Eq. (29) as

〈Jz〉 = − N2

2πh̄ωμν(ε)
I

1/2
− , (B3)

where we defined the integrals (that we numerically evaluate
to obtain the curves in Fig. 2)

Iα
σ ≡

∫ y+

y0

σ
y2−1

μ
+ y√

y2 − 1
[(y− − y)(y − y+)]αdy, (B4)

with the sign σ = ±, α = ± 1
2 , and the lower limit

y0 = y−, ε � −1

2
; y0 = 1, ε � −1

2
; (B5)

and y± ≡ μ ± 2
√

μ
√

ε − ε0. At ε = 1
2 we find I

1/2
− = 0 and

thus 〈Jz〉 = 0 [see Eq. (32)].
In the vicinity of the ESQPT, we write ε = − 1

2 + δ.
For δ → 0, we find ∂

∂ω0
ν(ε) ≈ 1

4ν ′(ε) with the logarithmic
singularity (27) [see also Eq. (45)] and as a consequence the
derivative of 〈Jz〉(ε) is given by

∂

∂ε
〈Jz〉(ε) = −

∂
∂ε

ν(ε)〈Jz〉(ε) + ∂
∂ω0

ν(ε)

ν(ε)
∝ ln |δ|, (B6)
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with ∂
∂ω0

ν(E) = N
2πωω0

I
−1/2
− . As we checked numerically, the

logarithmic singularity near ε = − 1
2 in Eq. (B6) has a prefactor

that (depending on the value of μ) is either positive or negative.
For the boson number n̂, we used the Hellmann-Feynman

theorem to find the first moment

〈n̂〉(ε) = Nω0

ω

(
ε

3
+ N

6πμh̄ων(ε)
I

1/2
+

)
, ε � 1

2
(B7)

and the linear form [12] 〈n̂〉(ε) = N ω0
ω

(μ

6 + ε) for ε � 1
2 ,

where the constant follows from I
1/2
+ = πμ(2 + μ) at ε = 1

2 .
We obtain the second moment via Eq. (35) by Laplace
back-transformation and carrying out the integration

〈n̂2〉(ε) =
(

Nω0

ω

)2
N

πh̄ων(ε)

[
J

1/2
2

μ
+ J

5/2
0

80μ3
+ J

3/2
1

6μ2

]
,

(B8)

where we defined the integrals (to be solved numerically)

J α
σ ≡

∫ ∞

1
dy

Re
∑

± ±[(y±
1 − y)(y − y±

2 ) + i0+]α

(4μ)σ (y2 − 1)1/2−σ
, (B9)

with yσ
1,2 ≡ σμ ∓

√
μ2 + 1 + 4εμ, σ = ± where the index 1

(2) belongs to the negative (positive) root.

APPENDIX C: LOGARITHMIC SINGULARITIES IN ν′(ε)

In the superradiant regime (μ > 1) we first consider g2μ <

1 near the ESQPT, writing the scaled energy ε = − 1
2 + δ with

small δ. Expanding y± and z± [Eq. (41)] in δ, one finds for
the arguments of the elliptic integral in Eq. (43)

(y+ − z+)(y− − z−)

(y+ − y−)(z+ − z−)
= 1 + rδ + O(δ2), δ > 0 (C1)

(y+ − y−)(z+ − z−)

(y+ − z+)(y− − z−)
= 1 − rδ + O(δ2), δ < 0, (C2)

with the parameter

r ≡ 2μ2 − g2μ(1 + μ)

2(μ − 1)2(g2μ − 1)
, (C3)

and we use K(1 − |x|) = − 1
2 ln |x|

16 + O(x) to arrive at
Eq. (45).

At g2μ > 1, the logarithmic singularity moves to the energy
ε = εg [Eq. (38)], where z± = g2μ and thus

(y+ − z+)(z− − y−)

(y+ − z−)(z+ − y−)
→ 1. (C4)

The value unity in the argument of the elliptic integral K again
denotes the appearance of a logarithmic singularity. Finally, we
numerically checked that the argument of K

(y+ − y−)2 − (p+ − p−)2

4p+p−
= θ (g2μ − 1), ε = εg, (C5)

which confirms that also for energies just below εg , we have a
logarithmic divergence for g2μ > 1.

APPENDIX D: BOGOLIUBOV TRANSFORMATION
(NORMAL PHASE)

To extract the collective excitation energies ε± in the normal
phase, we use the Holstein-Primakoff representation with a
bosonic mode created by b† [9,10],

J+ = b†
√

N − b†b, Jz = b†b − N

2
, (D1)

and expand the Hamiltonian (1) for large N , which leads us to

H = h̄ωa†a + h̄ω0b
†b + h̄(λ+ab† + λ−ab + H.c.), (D2)

where we defined λ± ≡ λ
1±g

2 and omitted a constant. We write
H in canonical form [52] H/h̄ = a†αa + 1

2 a†γ ã† + 1
2 ãγ †a =

1
2�N��̃ − 1

2 Trα, with vectors a† ≡ (a†,b†), ã ≡ (a,b), and
� ≡ (a†,ã), where the tilde converts rows into columns and
vice versa. Here we used the canonical commutation relations,
written in dyadic form with the 4 × 4 symplectic unity � as

[�̃,�] = �−1 =
(

0 −1

1 0

)
, (D3)

and we defined the matrices

N ≡
(

α −γ

γ † −α

)
, α ≡

(
ω λ+
λ+ ω0

)
, γ ≡

(
0 λ−
λ− 0

)
.

(D4)

As in classical mechanics, a canonical transformation �′ =
�M leaves Eq. (D3) invariant if M̃�−1M = �−1, i.e., if M is
symplectic. The eigenvalues of H follow from the eigenvalues
of N , which come in pairs ±ε±. The product ε+ε− thus simply
follows from the determinant of N ,

det N = (ε+ε−/h̄2)2 = λ4(1 − μ−1)(g2 − μ−1)

= (ωω0)2(μ − 1)(g2μ − 1), (D5)

where in the last step we used μ = λ2/ωω0 [Eq. (2)], which
confirms Eq. (47).
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