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Frieden wave-function representations via an Einstein-Podolsky-Rosen-Bohm experiment
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The appearance of the spin- 1
2 and spin-1 representations in the Frieden-Soffer extreme physical information

(EPI) statistical approach to the Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) experiment is shown. In order
to obtain the EPR-Bohm result, in addition to the observed structural and variational information principles of
the EPI method, the condition of the regularity of the probability distribution is used. The observed structural
information principle is obtained from the analyticity of the logarithm of the likelihood function. It is suggested
that, due to the self-consistent analysis of both information principles, quantum mechanics is covered by the
statistical information theory. The estimation of the angle between the analyzers in the EPR-Bohm experiment is
discussed.
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I. INTRODUCTION

In the 1990s the generalization of the maximum likelihood
method (MLM) and Fisher information (IF ) analysis in the
statistical inference [1] was proposed by Frieden and Soffer
[2] (more information is given at the end of this section).
It concerns the nonparametric estimation that permits the
selection of the equation of motions (or generating equations)
of various field theory or statistical physics models. They
called it the extreme physical information (EPI) method.
Although the EPI method is mainly used to describe physical
phenomena [2,3], other applications [2–5] have also been
considered. This paper is devoted to the application of EPI for
the description of the Einstein-Podolsky-Rosen-Bohm (EPR-
Bohm) experiment proposed by Frieden [3]. The basis for this
kind of statistical analysis of the phenomena was introduced in
the 1920s by Fisher [1]. His statistical model selection method,
which is particularly useful for a small sample, was constructed
independently from the contemporary development of the
physical models, especially quantum mechanics. It appeared
that the EPI method leads to the estimation of the equations
of physical field theories for which a small size of the sample
is also a characteristic feature of the physical models [2,3].
For example, the size of the sample of the EPI model of the
EPR-Bohm problem is equal to N = 1 [3]. Previously, the
EPR-Bohm type problems have mainly been understood as
manifestations of the quantum-mechanical reality.

The central quantity in an EPI analysis is the information
channel capacity I , which is the trace of the expectation value
of the Fisher information matrix. The basic tools of the EPI
method of estimation are two information principles.

In [6] the derivations, first of the observed and, second,
of the expected structural information principle from basic
principles, was given. It was based first on the analyticity
of the logarithm of the likelihood function, which allows
for its Taylor expansion in the neighborhood of the true
value of the vector parameter � [6], and second on the
symmetric and assumed positive definite form of the Fisher
information matrix. The Fisher information enters into the EPI
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formalism as the second order coefficient of this expansion
[6]. The output of the solution of the information principles
comprises the equations of motion of basic field theories or
a distribution generating equation. For example, in [3] the
Maxwell equations for N = 4 were obtained, while in [4,7]
the construction of the information channel capacity for the
vector position parameter in the Minkowskian space-time was
completed. This has laid the statistical foundations of the
kinematical term of the Lagrangian of the physical action for
many field theory models that have been derived by the EPI
method of Frieden and Soffer [2], where the metricity of the
statistical space S of the system is also used. Additionally, the
fact that the formalism of the information principles is used for
the derivation of the distribution generating equation signifies
that the microcanonical description of the thermodynamic
properties of a compound system has to meet the analyticity
and metricity assumptions as well (in agreement with the
Jaynes principle [8]).

Although the analysis of the EPR-Bohm problem presented
below originates in the Frieden approach [3], the paper gives
both a mathematical background [4,6] and a modified physical
interpretation. First, the EPI analysis follows from a meaning
different than in [2,3] of the structural information principle
[6], which originates in the above-mentioned analyticity
condition of (in this case) the one-dimensional statistical
space S (Sec. II B) [6]. Second, the joint space of events
(see Sec. II B) for the construction of the Fisher information
for the EPR-Bohm problem is different than in [3]. The
information channel capacity that is necessary to solve the
EPR-Bohm problem in EPI method is presented in Sec. III.
The new meaning of the structural information principle is also
connected with a more physical [6,9] and less informational
[2,3] oriented interpretation of the physical information K .
The variational information principle is connected with the
extremization of K [2,3,6,9]. Third, the probability distribution
that is characteristic for the EPR-Bohm problem [see Eq. (111)
in Sec. V B3] is obtained as the solution of two information
principles: the observed structural principle, which is the
differential one, and the variational principle (Sec. IV). The
condition of the regularity of the probability distribution on
the one-dimensional statistical space S, equipped with the
Rao-Fisher metric [10–14], is also used (Sec. V B2). This
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metric appears to be constant on S. Thus, the result is not
obtained using the quantum mechanical precondition of the
basis wave functions orthogonality, as was done in [3]. Also,
a minute aspect of the analysis is that the boundary conditions
are put in order [15]. The experimental settings (Sec. II A) for
spin- 1

2 particles (electrons) are the same as in [3]; however, for
spin-1 (massless photons), they are different than in [3]. They
are arranged in such a way that the joint space of the events
of the pair of spin projections in the analyzers (see Sec. II B)
is the same in both cases. This makes the EPI results in both
cases basically of the same form and, therefore, they are more
easily interpreted as unveiling the origin of the rotation group
representation to which a particular particle in the EPI-Bohm
experiment belongs. Next, it is suggested that the Fermi-Dirac
(for electrons) and the Bose-Einstein (for photons) statistics
used in the quantum mechanical description of the EPR-Bohm
problem [16] seem to be a reminiscence of two consecutive
steps. In the case of fermions that are ruled by the Dirac
equation, the first step consists of the appearance of the
generalized Einstein-Brillouin-Keller quantization conditions
[17]. In the case of the free electromagnetic field that fulfills
the Maxwell equations, the first step consists of the existence
of the conserved generalized helicity [18]. For both cases the
relevant equations of motion are obtained in advance by the
EPI method [3]. The second step consists of the appearance
of the statistical information principles, which, as shown in
Secs. III and IV, follow the analyticity of the log-likelihood
function of the statistical space of the model. Thus, in the
case of fermions, the Pauli exclusion principle has a statistical
information theory background.

Next, for the measurement performed by the experimental-
ist, in Sec. VI the statistical estimation of the angle ϑ between
the analyzers in the EPR-Bohm experiment (see Sec. II A)
is presented. In this context, both the difference between the
inner accuracy of the estimation [3,7] of the angle ϑ in the
EPI analysis of the inner N = 1-dimensional sample collected
by the system alone [2,3] and the accuracy of the estimation
of ϑ in the experiment performed by the experimentalist are
discussed. In the latter case the asymptotic local unbiasedness
of the ϑ estimator is analyzed. Finally, throughout the analysis
the priority of the analytical form of the observed Fisher
information is kept and the metric form of the observed Fisher
information is absolutely secondary; i.e., on the observed level,
it is consequently the full analytical model that is solved
(see Sec. IV).

The Frieden-Soffer original form of the physical informa-
tion and information principles. Frieden and Soffer use two
Fisherian information quantities: the intrinsic information J of
the source phenomenon and the information channel capacity
I , which connects the phenomenon and observer. Using the
information channel capacity I and “bound” information J, the
physical information K ≡ I − J was postulated [2,3], which
(together with its densities) was used for the construction of
the Frieden-Soffer information principles, at both the observed
and the expected levels. Although the structural information
principle is postulated at the expected level, in the Frieden and
Soffer approach it is then reformulated to the observed one,
giving, together with the variational principle, two coupled
differential equations. Thus, Frieden and Soffer, along with
Plastino and Plastino [2], put the solution of the (differential)

information principles for various EPI models into practice.
The above-mentioned analytical background of the structural
information principle was derived in [6] and postulated
previously in [9] (where the right direction for the transfer
of information during the measurement, i.e., J → I , for the
description of the Frieden interpretation should be used). In our
approach [6] to the construction of the information principles
(see Sec. IV A) the notion of the (total) physical information
(T PI ) K = Q + I instead of K = I − J introduced in [2] is
used, where Q is the structural information. This difference
does not affect the derivation of the equation of motion or the
generating equation for the problems that have been analyzed
until now [2,3], since, identically, Q = −J. Nevertheless, the
above-mentioned analyticity condition appears to be fruitful
for the EPI modeling (see Sec. IV B).

II. THE PHYSICAL SETTINGS
AND BOUNDARY CONDITIONS

A. The physical settings and statistical space S
Let us consider two types of the EPR-Bohm experiment:

the first one for the spin-0 charged molecule which decays into
bipartite system of two identical spin- 1

2 particles (electrons
e− in this paper) and the second one for the spin-0 neutral
molecule which decays into a bipartite system of two spin-1
(massless) photons. In both cases the total angular momentum
along the z axis is zero (see Fig. 1). For the first case, such a
bipartite state for the EPR-Bohm experiment can be effectively
prepared, e.g., as the final state in the scattering process
e−e− → e−e−, where the spins of the initial electrons of the
process are arranged to be one up and the other down along
the z axis, whereas their momenta �p and − �p are along the
y axis [16] [see Fig. 1(a)]. There is the nonzero probability
that two scattered particles (here final electrons) move along
the x axis with the opposite momenta [19]. In the EPR-Bohm
experiment, the measurement of the spin projections of the
scattered particles is performed.

The analyzer “a”, which is the Stern-Gerlach device,
measures the projection Sa of the spin �S1 of the particle
“1” along the direction of the unite vector �a and similarly
the analyzer “b” measures the projection Sb of the spin �S2

of the particle “2” along the direction of the unite vector �b.
The angle between the planes of the vectors �a and �b that include
the x axis is equal to ϑ = χ1 − χ2, 0 � ϑ < 2π . Similarly,
for the second case, the process e−e+ → γ γ is the relevant
one, where electron e− and positron e+ are prepared with spins
up and down along the z axis and with momenta �p and − �p
along the y axis, respectively [see Fig. 1(b)]. The electron and
positron annihilate into two photons. The created photons 1
and 2 move up and down along the z axis with the opposite
momenta, and there is also a nonzero probability that such a
process occurs [19]. The polarizations of photons are measured
by polarizers with polarization vectors making angles χ1 and
χ2 with the x axis, respectively [16].

Below, in Sec. II B we derive the boundary conditions for
the EPR-Bohm problem in the EPI method, taking care not to
appeal to the quantum mechanical vision of reality. However,
we take into account the general statement that if P (AB) is the
joint probability distribution for two random vaiables A and B
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FIG. 1. (Color online) The EPR-Bohm experiment. The possible
configurations of processes are presented (see the text). (a) Process
e−e− → e−e−. One of the initial electrons has the spin up and the
other down along the z axis. Their momenta along the y axis are
�p and − �p, respectively. The final electrons of the bipartite system
move along the x axis with opposite momenta and are registered in the
Stern-Gerlach devices. The angle ϑ between the directions �a and �b of
the Stern-Gerlach devices is signified. χ1 and χ2 are the angles of the
analyzers with the z axis; ϑ = χ2 − χ1. (b) Process e−e+ → γ γ . The
initial electron and positron have their spins up and down along the z

axis and their momenta along the y axis are �p and − �p, respectively.
The created photons “1” and “2” of the bipartite system move up
and down along the z axis with the opposite momenta, respectively,
and their polarizations are measured by two polarizers, which make
angles χ1 and χ2 with the x axis; ϑ = χ2 − χ1.

and P (A) and P (B) are their marginal distributions, then [3]

IF [P (AB)] � IF [P (A)] + IF [P (B)] ≡ C̃, (1)

where the equality holds if the variables are independent. Here
C̃ is the information channel capacity of the composite system.
Relation (1) means that if there is any dependence among the
variables, then, if we know the result of the experiment for
the first variable, the amount of information needed for the
determination of the result of the experiment for the other one
diminishes. So, the existence of the dependence in the system
increases the Fisher information IF on the parameters that
characterize the probability distribution of the system.

Note on the common notion for electron and photon spin
projections. The notation is common for the measurement of
the spin projection of final particles, whether they are electrons
[Fig. 1(a)] or photons [Fig. 1(b)]. The final electrons [Fig. 1(a)]
are recorded in the Stern-Gerlach devices and the final photons
[Fig. 1(b)] are recorded in the polarizers. When the spin- 1

2

particle (e.g., electron 1) is registered then “+” signifies the
observed value of its polarization along the direction �a and
the spin projection on �a that is equal to Sa = S+ = +h̄/2,
whereas “−” signifies the observed value of its polarization
along the direction −�a and the spin projection on �a equal to
Sa = S− = −h̄/2. When the spin-1 photon (e.g., photon 1)
is registered then + signifies the observed value of its
polarization along the direction �a and the spin projection
(helicity) on the z axis (direction of its propagation) equal
to Sa = S+ = +h̄, whereas − signifies the observed value of
its polarization along the perpendicular direction �a⊥ and the
spin projection on the z axis equal to Sa = S− = −h̄. Similar
notation is used for the particle 2 (electron or photon) that is
registered in the polarizer b.

B. The boundary conditions for the EPR-Bohm problem

In order to determine the problem of the differential
equations of the EPI method, it is necessary to indicate the
boundary conditions for the probabilities. They follow the
phenomenological premises, conservation laws, and special
symmetries of the system being examined.

1. Determination of the spin projection

The basic EPI method concept from which the derivation of
the Dirac equation follows is the (density of the) information
channel capacity I , which for the spinorial field is invari-
ant under the isometry transformations in N/2-dimensional
complex space CN/2 of fields ψ ≡ [ψn(x)]N/2

n=1 [20]. After
decomposing the density of I into the components [3], each of
them can be factorized into terms that are the elements of the
Clifford group Pin(1,3) [20]. The group Pin(1,3) is a subset of
the Clifford algebra C(1,3). As the spinor representations of
an orthonormal basis in C(1,3) are the Dirac γ μ matrices;
therefore, in summary, the Dirac equation appears via the
factorization of the density of the information channel capacity
[3] and due to the previously mentioned observed structural
information principle and the variational one, in which the
density of the information channel capacity i forms the kinetic
term. In this way in [3] for the N = 8-dimensional sample
the Dirac equation for the spinorial field [i.e., for the complex
field ψ ≡ [ψn(x)]4

n=1 of the rank N = 8] was obtained. Then,
under the assumption of the conservation of momentum, it was
supplemented [21] by the EPI method background of the de
Broglie-Fourier representation of a particle [22].

Next, in [17] the semiclassical theory for spinning particles
(ruled by the Dirac equation) was presented. Here, Keppeler
derived a form of the Einstein-Brillouin-Keller quantization
conditions generalized for the particles with spin, in which
the spin quantum number equal to ±1/2 appears. In [17] the
latitude of the classical spin vector appears as a constant of
motion. This type of semiclassical quantization also appears
in [23] for the description of the spin of the neutron. The
suitable steps for the photon are as follows. For N = 4,
the EPI method leads to the Maxwell equations [3,7] (with
the Lorentz condition additionally imposed). Then, for the
free electromagnetic field seen as the composition of the
circularly polarized right- and left-handed photons [16,24], the
existence of the conserved classical generalized helicity was
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proven in [18]. Finally, in [25] the stochastic trial to explain
the quantization of the spin projection was presented.

[Meanwhile, the classical statistics estimation relevant for
stochastic processes is connected with the analysis of the
(pure) likelihood function and, hence, it omits the logarithmic
structure of the system [4,6,26] (which is present in the EPI
method)].

2. The joint space of events

Thus, in accordance with the above section, the boundary
condition connected with the existence of strictly (up to the
noise in the measuring devices; see Sec. VI D) two possible
spin projections appears, which for a particle with spin h̄/2 are
on the arbitrary space direction and for the massless photon
with spin h̄ on the direction of the propagation. In agreement
with the above Note on the common notation (Sec. II A), we let
+ signify the observed value of the spin projection Sa = +h̄/2
or Sa = +h̄, while − signifies Sa = −h̄/2 or Sa = −h̄ for the
particle with spin h̄/2 or a photon with spin h̄, respectively.
We introduce the common denotation for the base space S of
the random variable Sa for both cases:

S = {S−,S+} ≡ {−,+}. (2)

Similar notation is used for the observed value of the spin
projection Sb, for which the base space is also S.

The joint space of events �ab of the pair of spin projections
for particles 1 and 2 is as follows [3]:

SaSb ≡ Sab ≡ ab ∈ �ab = {S++,S− −,S+ −,S− +}
≡ {+ + , − −, + −, − +}. (3)

It can be checked that the form of �ab is different for a spin-1
massive particle or a higher than spin-1 particle. The analysis
of these cases is not included in this paper.

Let us suppose that four joint conditional probabilities can
be defined P (Sab|ϑ),

P (+ + |ϑ), P (− − |ϑ),P (+ − |ϑ), P (− + |ϑ), (4)

where ϑ ∈ 〈0, π ) ≡ Vϑ and Vϑ is the parameter space.
Let us remark that in the case of the lack of the joint

probability space �AB for the random variables, let us say A

and B, there is no possibility to define the joint probability dis-
tribution P (A,B) for these two variables, even if their marginal
distributions P (A) and P (B) exist. This means that they cannot
be simultaneously measured. Also, in general, despite the
existence of the joint marginal probability distribution P (A,B)
for the variables A and B and the existence of the joint marginal
probability distribution P (B,C) for the variables B and C, the
joint probability distribution P (A,B,C) for variables A, B,
and C does not exist. Let us notice that in the proof of the
Bell inequality [27,28], it is taken for granted that the joint
distribution P (A,B,C) does exist [27,28]. Such a possibility
always exists only if the joint events space �ABC for these
three random variables exists, which is the Cartesian product
�A × �B × �C . On the other hand, Bell-type inequalities
are known from Boole’s times as the test, which, if failed,
comfirms the impossibility of the construction of the joint
probability distribution. The above consideration could be

extended for an arbitrary number of random variables [28,29].
In the full description of the EPR-Bohm experiment, not only
the random variables of the spin projection measured in the
analysers a and b but two random angle variables measured
for these particles in the moment of their production should be
taken into account.

Because of the mutual exclusion of different number
ℵ = 4 of events Sab, (3), the condition of the probability
normalization P (SaSb|ϑ) in the EPR-Bohm problem can be
written as follows:

P

(⋃
ab

Sab|ϑ
)

=
∑
ab

P (Sab|ϑ)

= P (S+ +|ϑ) + P (S−−|ϑ)

+P (S+ −|ϑ) + P (S− +|ϑ)

= 1, ∀ ϑ ∈ Vϑ. (5)

These four joint probabilities P (Sab|ϑ) form the statistical
(sub)space S,

S = {P (Sab|ϑ)| ϑ ∈ 〈0 2 π ) ≡ Vϑ ⊂ R1}, (6)

of the EPR-Bohm problem, which is the one-dimensional
submanifold of the ℵ − 1 = 3-dimensional probability sim-
plex [30] coordinatized by the parameter ϑ (see the Appendix).

Taking into account the Note on the common notation in
Sec. II A and keeping the order of the consecutive summands
in Eq. (5), we obtain the following. In the case of a spin- 1

2
particle and using the notation from Fig. 1(a), we see that
Eq. (5) has the form [16]∑

ab

P (Sab|ϑ) = P (�a,�b) + P (−�a,−�b)

+P (�a,−�b) + P (−�a,�b)

= 1,

where for the particle 1 and the polarizer a, the event �a
under the denotation of the probability P signifies the particle
polarization in the direction �a, i.e., Sa = S+, and −�a signifies
the event of the particle polarization in the direction −�a, i.e.,
Sa = S− (and similarly for the particle 2 and the polarizer b).
In the case of spin-1 photon and using the notation from
Fig. 1(b), we see that Eq. (5) has the form [16]∑

ab

P (Sab|ϑ)

= P (�a,�b) + P (�a⊥,�b⊥) + P (�a,�b⊥) + P (�a⊥,�b) = 1,

where for the photon 1 and the polarizer a, the event �a under the
denotation of the probability P means the photon polarization
in the direction �a, which signifies the spin projection on the z

axis equal to Sa = S+, and �a⊥ means the event of the photon
polarization in the direction perpendicular to �a and therefore
Sa = S− (and similarly for the photon 2 and the polarizer b).

Note on the method of the estimation of ϑ . In Sec. VI
we see that, due to the fact that the frequencies of the events
Sab, (3), observed in the analyzers a and b, are locally unbiased
estimators of the probabilities (4), the value of the angle ϑ

can be robustly estimated by an experimentalist by taking
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a large enough M-dimensional (outer) sample. However, to
make this possible, an analytical model which enables the
derivation of the formulas for the probability distribution (4)
is needed, and it can be obtained using the EPI method. The
dimension of the (inner) sample in the EPI analysis has to be
taken as equal to N = 1 (Sec. III). Although the result was
originally obtained by Frieden [3], we regain it without any
reference to the quantum mechanical formalism (i.e., here to
the orthogonality of the quantum mechanical wave functions).

C. The formulation of the boundary conditions

For every event Sab, (3), the probability P (Sab) of
the appearance of Sab, irrespective of the value of ϑ , is
equal to

P (Sab) =
∫ 2π

0
P (Sab,ϑ)dϑ. (7)

Here, using the definition of the conditional probability, the
probability P (Sab,ϑ) is defined as

P (Sab,ϑ) := P (Sab|ϑ)r(ϑ), (8)

where r(ϑ) is the so-called lack of knowledge function.
(A) Because the events (3) are mutually exclusive and they

span the entire space of events �ab, the first boundary condition
is the normalization∑
ab

P (Sab) = P (S+ +) + P (S− −) + P (S+ −) + P (S− +) = 1,

(9)

which is fulfilled irrespective of the value of ϑ .
Because of the normalization conditions (5) and (9) and

using Eqs. (7) and (8), it can be noticed that the possible form
of r(ϑ) can be chosen as

r(ϑ) = 1

2π
, ϑ ∈ Vϑ, (10)

which means that in the range 〈0,2π ) of the measuring
apparatus variability of the angle ϑ (see Fig. 1) and due to the
lack our knowledge, every value of ϑ ∈ Vϑ is equally possible.

Remark on the value of the angle ϑ . The value of ϑ is
connected with the arrangement of the measuring analyzers
a and b (Stern-Gerlach devices or polarizers), and it is
hardly to be (seriously) treated as possessing the distribution.
Essentially, ϑ is the parameter which is characteristic for
the experiment being carried out. Nonetheless, r(ϑ) is seen
as a priori known “probability” by some, which means that
quantum mechanics that is deduced in this way should be
treated as the Bayesian statistical theory [31].

(B) The consecutive conditions follow from the symmetry of
the system and the law of the total spin conservation (assuming
that the relative orbital angular momentum of the particles is
equal to zero in the experiment).

Let us consider a simple case ϑ = 0 when both planes in
which the measuring devices (Stern-Gerlach or polarizer) are
set up are oriented in the same way. From the condition of the

total spin conservation it follows that

P (+ + |ϑ = 0) = P (− − |ϑ = 0) = 0, (11)

which means that with this arrangement of the apparatus, we
never see both spins simultaneously directed up or down. Also,
we never see the spins directed one up and the other down in
the following situations:

for spin − 1

2
if ϑ = π

⇒ P (+ − |ϑ = π ) = P (− + |ϑ = π ) = 0,

and (12)

for spin − 1 if ϑ = π

2

⇒ P

(
+ −|ϑ = π

2

)
= P

(
− +|ϑ = π

2

)
= 0,

respectively. As a result, from the law of the total spin
conservation, we find that if we know that in the case of spin- 1

2
particle ϑ = 0 or ϑ = π (or in the case of spin-1 photon ϑ = 0
or ϑ = π/2), then the observation of one spin projection gives
us complete knowledge about the second one. In this case,
the spin states are clearly not independent. This conclusion is
incorporated in their preparation method intuitively (discussed
in Sec. II A).

Next, as P (Sb|ϑ) is the marginal probability of the
appearance of the particular value of the spin projection of
the particle 2, it does not depend on Sa , i.e., on the orientation
of the spin projection of the particle 1. From the normalization
condition for P (Sb|ϑ), it follows that

P (Sb = +|ϑ) + P (Sb = −|ϑ) = 1. (13)

Next, due to the fact that, because of the symmetry, the
definition of the up vs down spin projection Sb is chosen
arbitrarily, we see that Eq. (13) leads to

P (Sb = +|ϑ) = P (Sb = −|ϑ) = 1
2 . (14)

Thus, we have obtained

P (Sb|ϑ) = 1
2 for Sb = +, − , (15)

independent of the angle ϑ between the vectors �a and �b. It
follows that

P (Sb) =
∫ 2π

0
P (Sb|ϑ)r(ϑ)dϑ

= 1

2

∫ 2π

0
r(ϑ)dϑ = 1

2
for Sb = +, − , (16)

where r(ϑ) is specified in Eq. (10).
The other important property of the spacial symmetry of

the experiment is the lack of the preference for upward or
downward orientation of the the spin; i.e.,

P (S+ −|ϑ) = P (S−+|ϑ) and P (S+ +|ϑ) = P (S− −|ϑ).

(17)

This means that if we observe the experiment for the system
rotated around the x axis by the angle π , then the probability
would be exactly the same.
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From Eq. (17) and Eqs. (7) and (8), we obtain

P (S+ +) =
∫ 2π

0
P (S+ +|ϑ)r(ϑ)dϑ

=
∫ 2π

0
P (S− −|ϑ)r(ϑ)dϑ = P (S− −) (18)

and, analogously,

P (S+ −) = P (S− +). (19)

Additionally, we obtain

P (S+ −) =
∫ 2π

0
P (S+ −|ϑ)r(ϑ)dϑ

=
{∫ 2π

0
P (S+ −|ϑ + π ) r (ϑ + π ) dϑ

=
∫ 2π

0
P (S+ +|ϑ)r (ϑ + π ) dϑ

}
for spin

1

2

=
{∫ 2π

0
P

(
S+−|ϑ + π

2

)
r
(
ϑ + π

2

)
dϑ

=
∫ 2π

0
P (S+ +|ϑ)r

(
ϑ + π

2

)
dϑ

}
for spin 1

= P (S+ +), (20)

where in the second and fourth lines the simple change of the
(circle) variables ϑ → ϑ + π or ϑ → ϑ + π/2 for spin- 1

2 or
spin-1 particle, respectively, has been used (i.e., the starting
point of integration around a closed circle is insignificant).
Then, in the third line, for spin- 1

2 particle we use the equality

P (S+ +|ϑ) = P (S+ −|ϑ + π ) , for spin 1
2 , (21)

and in the fifth line for spin-1 photon,

P (S+ +|ϑ) = P

(
S+ −|ϑ + π

2

)
, for spin 1. (22)

The conditions (21) or (22) follow from the equivalence of the
events of obtaining the “+” polarization in the direction �a of the
measuring device and the “−” polarization in the direction −�a
or �a⊥ in the case of an electron or photon, respectively. Finally,
in the last equality in Eq. (20), we use r(ϑ) = r(ϑ + π ) =
r(ϑ + π

2 ) = 1/(2π ).
As a consequence of Eqs. (18)–(20), we obtain

P (S− +) = P (S− −) . (23)

Taking into account Eqs. (18)–(23) and Eq. (9), we obtain

P (Sab) = 1
4 , for every Sab ∈ �ab. (24)

Finally, the Bayes’ formula for the conditional probability
gives

P (Sa|Sb) = P (Sab)

P (Sb)
= 1/4

1/2
= 1

2
, for every Sa,Sb. (25)

By reasoning similar to that which gave Eqs. (15), (16),
(24), (25) previously, we obtain

P (Sa|ϑ) = 1
2 , P (Sa) = 1

2 , for Sa = +, − , (26)

P (Sba) = 1
4 , P (Sb|Sa) = 1

2 , for every Sa,Sb, (27)

respectively.

Final remarks on the boundary conditions. Let us note
that, to this point, we have not used the EPI method in the
derivation of formulas (11)–(25). This is because these are
the boundary conditions for the equations of the EPI method.
These conditions follow from (i) the initial observation of
the existence of exactly two possible spin projections for the
spin- 1

2 particle (here the electron) or for the spin-1 (massless)
photon (see the Note on the common notation in Sec. II A),
(ii) the normalization of the probability distribution, (iii) the
law of the total angular momentum conservation, and (iv) the
symmetry of the system. Finally, in what follows, when a
solution of the equation generating the distribution is chosen,
in Sec. IV B we use the geometrical symmetry of the system
under the rotation by the angle 2π once more.

III. THE INFORMATION CHANNEL CAPACITY
FOR THE EPR-BOHM PROBLEM

Below we derive the EPI method results for the proba-
bilities (4). While they are consistent with the ones obtained
in [3], there are also some noticeable differences (Secs. III)
and extensions of the method (e.g., in Secs. V and VI).

The general form of I for independent data. Let an original
random variable Y (a discrete or continuous one) take values
y ∈ Y , where Y is the base space, and suppose that parameter
θ of the regular (in θ ) distribution p(y) in which we are inter-
ested, is the scalar one. Let the data y = (yn)Nn=1 be a realization
of the N -dimensional sample Ỹ = (Y1,Y2, . . . ,YN ) ≡ (Yn)Nn=1
and pn(yn|θn) be a point distribution for the nth observation
in the N -dimensional sample [4,7]. The set of all possible
realizations y of the sample Ỹ forms the sample space B of the
system. We assume that the variables Yn of the sample Ỹ are
independent. It is also supposed that pn(yn|θn) does not depend
on the parameter θm for m �= n. Thus, the data are generated in
agreement with the point probability distributions, which fulfill
the condition pn(yn|�) = pn(yn|θn) (n = 1, . . . ,N), where
� ≡ (θn)Nn=1, and the likelihood function P (y |�) of the sample
y = (yn)Nn=1 is the product

P (�) ≡ P (y|�) =
N∏

n=1

pn (yn|θn). (28)

The expected Fisher information matrix on the statistical
(sub)space S at point P (�) [14] is defined as

IF (�) ≡ E�(iF(�)) =
∫
B

dy P (y|�) iF(�), (29)

where B is the sample space, the differential element is given
by dy ≡ dNy = dy1dy2 · · · dyN , and iF(�) is the observed
Fisher information matrix [4,6,7,32]. The subscript � in the
expected value signifies the true value of the parameter under
which the data y are generated. The Fisher information matrix
defines on S the Riemannian Rao-Fisher metric [7,14].

The central quantity of EPI analysis is the information
channel capacity I , which is the trace of the (expected)
Fisher information matrix. Because under above conditions,
the observed Fisher information matrix is diagonal iF(�) =
diag(iFnn(�)); hence, the information channel capacity I (�)
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is equal to

I (�) =
N∑

n=1

∫
B

dy P (y|�) iFnn(�) =
∫
B

dy i, (30)

where i := P (�)
∑N

n=1 iFnn(�) is the information channel
density [4,7].

When expressed by the point probability distributions, the
analytical form of the information channel capacity I (�) is as
follows [2,3]:

I (�) =
N∑

n=1

IFn(θn)

= −
N∑

n=1

∫
Y

dyn pn (yn|θn)
∂2 ln pn (yn|θn)

∂θ 2
n

= −
N∑

n=1

∫
Y

dyn

∂2pn (yn|θn)

∂θ2
n

+
N∑

n=1

∫
Y

dyn

1

pn (yn|θn)

(
∂pn (yn|θn)

∂θn

)2

, (31)

where in the second line both Eq. (28) and the normalization of
the point distributions pn(yn|θn), n = 1, . . . ,N were used [3].
Due to the normalization and the condition of regularity of the
probability distribution (in every θn) [32], it follows that∫

Y
dyn

∂2pn (yn|θn)

∂θ2
n

= ∂2

∂θ2
n

∫
Y

dyn pn (yn|θn) = ∂2

∂θ2
n

1 = 0 (32)

and the information channel capacity (31) for the vector
parameter � ≡ (θn)Nn=1 can be written in its metric form [3,14]:

I (�) =
N∑

n=1

IFn(θn)

=
N∑

n=1

∫
Y

dyn pn (yn|θn)

(
∂ ln pn (yn|θn)

∂θn

)2

. (33)

The Fisher information IFn is the measure of the precision
of the estimation of one scalar parameter θn [4,7]. Below the
forms of the Fisher information will be adopted for the purpose
of the estimation of the angle ϑ (see Fig. 1).

Note. According to the main assumption of the EPI method
proposed by Frieden and Soffer, the system alone samples
the the space of the positions that is accessible to it using
its Fisherian, kinematical degrees of freedom [2,7]. Thus, the
bipartite system alone measures [3,7] the values of the spin
projections of two particles, i.e., particle 1, which is Sa , and
particle 2, which is Sb.

The sample space in the EPR-Bohm problem. The particular
form of the information channel capacity takes into account the
measurement channel [7], i.e., the channel which is indivisible
from an experimental point of view. In the EPR-Bohm problem
the sample appears to be N = 1-dimensional [3], which (as we
will see) gives the required form of the estimated probabilities
and the measurements of Sa and Sb appear dependent [7]. Thus,

the measurement channel consists of one joint measurement
(performed by the system alone) of the pair of spin projections
Sa and Sb, i.e., of the random variable Sab, which takes the
value from the joint space of events �ab that is given by Eq. (3).
Using the general formula (33) the assignments which pertain
to the EPR-Bohm problem are

y1 ≡ Sab, Y ≡ �ab, θ1 ≡ ϑ,
(34)∫

Y
dy1 ≡

+∑
Sa=−

+∑
Sb=−

≡
∑
ab

, (N = 1),

where the summation over ab in
∑

ab is performed over the
joint space of events �ab. As N = 1 the sample space B is
equivalent to the base space �ab. Because, in accordance with
Eq. (34), the dimension of the sample is equal to N = 1, the
information channel capacity I in Eq. (33) (let us call it the
“single-value-ϑ” information channel capacity) reduces to the
Fisher information IF n=1(θ1) = IF (ϑ) for θ1 ≡ ϑ .

The likelihood function. As a bipartite system (of two
particles) performs the measurement of Sab by itself, the
likelihood function for the problem stated above is

P (Sab|ϑ) is the likelihood of the sample for ϑ parameter,

(35)

which means that in Eq. (33) the assignment p1 ≡ P (Sab|ϑ)
also has to be performed. Now the form of P (Sab|ϑ) is
searched for using the EPI method.

The probability amplitudes qab are defined in the following
way [14,30]:

P (Sab|ϑ) = 1
4 q2

ab(ϑ) for every Sab ∈ �ab. (36)

Because the dimension of the sample is equal to N = 1, the
rank of the amplitude qab(ϑ) of the field is also equal to 1 [3].

A. The expected Fisher information and the information
capacity of the channel (ϑ)

As ϑ is the scalar parameter and the dimension of the sample
is equal to N = 1, thus taking into account the assignments
given by Eq. (34), the information channel capacity I (ϑ), (33),
of the measurement channel (ϑ) is equal to the Fisher
information IF (ϑ) of the parameter ϑ ,

I (ϑ) = IF (ϑ), (37)

where the analytical form (31) of the (expected) Fisher
information on parameter ϑ is equal to

IF (ϑ) =
+∑

a=−

+∑
b=−

P (Sab |ϑ ) iFab(ϑ)

=
∑
ab

P (Sab |ϑ )

(
− ∂2 ln P (Sab |ϑ )

∂ϑ2

)

≡
∑
ab

iab =
∑
ab

[
− ∂2P (Sab |ϑ )

∂ϑ2
+ (q ′

ab)2

]

=
∑
ab

(
− qabq

′′
ab + ∂2P (Sab |ϑ )

∂ϑ2

)
, (38)
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where Eq. (36) and the denotations
∑

ab ≡ ∑+
a=−

∑+
b=− ,

q ′
ab ≡ dqab(ϑ)

dϑ
, and q ′′

ab ≡ d2qab(ϑ)
dϑ2 have been used. In the last

equality the relation

∂2P (Sab|ϑ)

∂ϑ2
= 1

2
(q ′

ab)2 + 1

2
qab q ′′

ab (39)

was also applied. Due to the normalization, (5), and the
regularity condition [see Eq. (32)],∑

ab

∂2P (Sab|ϑ)

∂ϑ2
= ∂2

∂ϑ2

∑
ab

P (Sab|ϑ) = ∂2

∂ϑ2
1 = 0, (40)

the analytical form (38) of the Fisher information transforms
into the following metric form:

IF (ϑ) =
∑
ab

P (Sab |ϑ ) ĩFab(ϑ)

=
∑
ab

1

P (Sab |ϑ )

(
∂P (Sab|ϑ)

∂ϑ

)2

=
∑
ab

(q ′
ab)2. (41)

The analytical form of the observed Fisher information iF(ϑ)
in Eq. (38) differs from its metric form ĩF(ϑ) in Eq. (41)
by −1

P (Sab|ϑ)
∂2P (Sab|ϑ)

∂ϑ2 . However, also due to Eq. (40) and in
accordance with Eq. (37), we see that both the EPI method
form of the (expected) Fisher information for the EPR problem
and its single-value-ϑ information channel capacity for the
measurement channel (ϑ) are equal to

I (ϑ) = IF (ϑ) = −
∑
ab

qab(ϑ)q ′′
ab(ϑ). (42)

Remark. Thus, IF (ϑ) is the information about the unknown
angle ϑ confined in the N = 1-dimensional sample for the
random variable Sab (which is the pair of spin projections for
particles 1 and 2 of the bipartite system).

The total information capacity I for the parameter ϑ . As the
angle ϑ is the parameter whose value can change continuously
in the interval 〈0,2π ), in accordance with Eq. (42), there are an
infinite number of channels for which the Fisher information
on ϑ can be calculated. To handle such a situation, the EPI
method uses single, scalar information [2,3] (let us denote
it simply I ) called the (total) information channel capacity.
This quantity is constructed by summing all of the possible
single-value-ϑ information channel capacities. Thus, first, the
information channel capacity I (ϑk) of one channel (ϑk), where
ϑ = ϑk , is given by Eq. (42), and second, the summation runs
over all of the values of ϑk . As a result of this summing
we obtain the (total) information channel capacity I for the
parameter ϑ ∈ Vϑ = 〈0,2 π ):

I ≡
∑

k

I (ϑk)

→ I =
∫ 2π

0
I (ϑ) dϑ = −

∑
ab

∫ 2π

0
qab(ϑ) q ′′

ab(ϑ) dϑ,

(43)

where the integration appears by the reason of the substitution
of the summation over the discrete index k by the integration
over the continuous set of values of the parameter ϑ . This
means that after determining what the single k channel

connected with ϑ is, we perform the integration, which runs
in accord with Eq. (6) from 0 to 2π in order to obtain the total
information channel capacity. The single-value-ϑ information
channel capacity (42) has been used in the last equality. The
information channel capacity I is the one which enters into
the estimation procedure of the EPI method. The derivation of
the form of the amplitude qab as the solution of the information
principles was presented in [3]; however, the sample space for
IF (ϑ) and the definition of qab are different in [3] and [33].

IV. THE INFORMATION PRINCIPLES
AND GENERATING EQUATION

A. The general form of the information principles

In [9,15] the existence of the (total) physical information K ,

K = I + Q � 0, (44)

was postulated (see also Sec. I on the Frieden-Soffer original
form of the physical information and information principles).
The choice of the intuitive condition K � 0 is connected
with the expected structural information principle of the EPI
method,

I + κ Q = 0, (45)

derived for κ = 1 in [6], where κ is the so-called efficiency
coefficient [3]. The general form of I (�) was given previously
by Eq. (30). Here, Q is the structural information, whose
general form is as [6]

Q =
∫
B

dy q =
N∑

n=1

∫
Y

dyn pn(yn|θn) qF
n(qn(yn)), (46)

where qF
n(qn(yn)) ≡ qF

nn(qn(yn)) is the observed structural
information [6] under the assumption that the variables Yn

of the sample Ỹ are independent and pn(yn|θn) does not
depend on the parameter θm for m �= n (see the text at the
beginning of Sec. III). Then the observed structural informa-
tion matrix is equal to qF = diag(qF

n (qn(yn))). The quantity
q := P (�)

∑N
n=1 qF

n(qn(yn)) in Eq. (46) is the structural
information density [4,6,7]. The form of the information
principle, which is more fundamental than (45), is the observed
structural information principle that has the form qF + iF = 0
(derived for the EPR-Bohm problem in the following section).
This follows from the analyticity of the logarithm of the
likelihood function, which allows for its Taylor expansion in
the neighborhood of the true value of the vector parameter
� ≡ (θn)Nn=1 [6] and in information densities it reads [4,6]

i + κ q = 0, (47)

where i and q are the information channel density [see
Eq. (30)] and structural information density, respectively. It
has to be stressed that it is the (modified) observed structural
information principle (and not the expected one), which is
the one that is solved self-consistently together with the
variational information principle [3,4],

δ(I + Q) = 0, (48)

which for the EPR-Bohm problem is introduced in Eq. (63).
[The modified observed structural information princi-

ple. The observed structural information principle (47)
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and the modified observed structural information principle
ĩ + C + κ q = 0 are connected, and they are equivalent under
the integral [in the sense that both of them lead to the expected
structural information principle (45)], i.e.,∫

B
dy (̃ i + C + κ q) = 0 ⇔

∫
B

dy (i + κ q) = 0

⇒ I + κ Q = 0, (49)

where the integration is over the entire sample space B and C

is a constant. The transition from the second to the first integral
in Eq. (49) is due to Eq. (32) and other transformations, which
are equivalent under the integral [3,4]].

B. The information principles for the EPR-Bohm problem

1. The structural information principle

After the assignments (34) and integration over all of
the possible values of ϑ [similar to that in Eq. (43) for I ],
the general form of the structural information Q given
by Eq. (46) results in the following form of the (total)
structural information in the EPR-Bohm problem for the
system described by the set of amplitudes qab:

Q ≡ 1

4

∑
ab

∫ 2π

0
q2

ab(ϑ) qF
ab(qab) dϑ. (50)

Now the physical information K , (44), in the EPR-Bohm
problem is [3,6]

K = I + Q =
∑
ab

∫ 2π

0
kab(ϑ) dϑ, (51)

where I is given by Eq. (38). Let us notice that with this general
understanding of K , the diversity of the equations of the EPI
method is a consequence of the diverse preconditions dictated
by physics. These could be, e.g., the continuity equation (which
by itself is the result of a statistical estimation [4,6]) and some
symmetries that are characteristic for the phenomena and the
normalization conditions [3,34].

In Eq. (51), kab(ϑ) is the density of the physical information,
which according to Eqs. (38), (50), and (39) is equal to [35]

kab(ϑ) = − 1
2 qabq

′′
ab + 1

2 (q ′
ab)2 + 1

4 q2
ab qF

ab(qab)

= − 1
2 qabq

′′
ab + 1

4 q2
ab q̃F

ab(qab)

for every Sab ∈ �ab, (52)

where the modified observed structural information q̃F
ab used

in the EPI method has been introduced:

q̃F
ab(qab) := 2

q2
ab(ϑ)

(q ′
ab)2 + qF

ab(qab). (53)

In what follows we see [compare Eq. (68)] that q̃F
ab is free

from the first derivative of qab for the EPR-Bohm problem,
which means that 2

q2
ab(ϑ)

(q ′
ab)2 cancels a term in qF

ab(qab).

Let us suppose the analyticity of the log-likelihood function
ln P (Sab|ϑ). After Taylor expanding ln P (Sab|ϑ̃) around the
true value of ϑ we obtain

qF
ab(P (Sab|ϑ)) (ϑ)2

≡ 2

[
ln

P (Sab|ϑ̃)

P (Sab|ϑ)
− ∂ ln P (Sab|ϑ̃)

∂ϑ̃
|ϑ̃=ϑ ϑ − R3

]

= ∂2 ln P (Sab|ϑ̃)

∂ϑ̃2

∣∣∣∣
ϑ̃=ϑ

(ϑ)2 ≡ −iFab(ϑ) (ϑ)2,

for every Sab ∈ �ab, (54)

where ϑ ≡ (ϑ̃ − ϑ) and R3 is the remainder of Taylor
series. The observed structural information qF

ab is defined
by the left-hand side (LHS) of Eq. (54) and the right-hand
side (RHS) is equal to −iFab(ϑ) (ϑ)2, where iFab(ϑ) is the
observed Fisher information on the parameter ϑ [6]. Let us
note that after omitting (ϑ)2 on both sides, the observed
structural information principle iFab + qF

ab = 0 [6] for the
EPR-Bohm problem is obtained. This arises purely as a
result of the analyticity of the log-likelihood function. After
using the denotations of the kind ∂2 ln P (ϑ)

∂ϑ2 ≡ ∂2 ln P (ϑ̃)
∂ϑ̃2 |ϑ̃=ϑ and

q ′
ab(ϑ) ≡ ∂qab(ϑ̃)

∂ϑ̃
|ϑ̃=ϑ , next passing on the RHS of Eq. (54)

from the derivative of ln P (Sab|ϑ̃) to the one of P (Sab|ϑ̃) and
using the relation (39) on the RHS of Eq. (54), we can rewrite
this equation as follows:

qF
ab (ϑ)2 = 1

q2
ab(ϑ)

[2qab(ϑ)q ′′
ab(ϑ) − 2(q ′

ab(ϑ))2] (ϑ)2.

(55)

Omitting (ϑ)2 on both sides, Eq. (55) can be rewritten in the
form

q̃F
ab(qab) ≡

[
qF

ab(qab) + 1

q2
ab(ϑ)

2 (q ′
ab(ϑ))2

]
= 1

q2
ab(ϑ)

2 qab(ϑ)q ′′
ab(ϑ), (56)

where the appearance of qab, (36), in the argument of qF
ab

means that the probability P (Sab|ϑ̃) (and its derivatives)
present in qF

ab, which is defined by Eq. (54), has been replaced
with the amplitude qab (and its derivatives). Now the forms of
the amplitudes qab that are the solution to the EPR-Bohm
problem are sought among the sin and cos trigonometric
functions. Thus, because of the form of the RHS of the above
equation, terms with the first derivative q ′

ab(ϑ) on its LHS also
have to cancel each other.

The modified observational structural information princi-
ple. Let us rewrite Eq. (56) as

−2 qab(ϑ)q ′′
ab(ϑ) + q2

ab(ϑ) q̃F
ab(qab) = 0

for every Sab ∈ �ab, (57)

which, because of moving the term 1
2 (q ′

ab)2 in Eqs. (55)
and (56) [and as a consequence in Eq. (52)] from the Fisher
information part to the structural one, will be called the
modified observed structural information principle of the
EPR-Bohm problem. The LHS of Eq. (57) is (up to the factor
1
4 ) the density of the physical information kab(ϑ) given by
Eq. (52). This one is the function of the observed structural
information qF

ab(qab) [which at most can be the function of
the amplitudes qab(ϑ)], of the amplitudes themselves qab(ϑ),
and of their second derivatives.

The efficiency factor in the EPR-Bohm problem. As we
mentioned in Sec. IV A, in general, the efficiency factor κ

appears before the density of the structural information q,
which in the EPR-Bohm case is equal to q = 1

4 q2
abq̃F

ab(qab).
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In the EPR-Bohm case κ = 1 [3]; the value κ = 1 follows
from the fact that except for the information principles, no
additional differential constraints are put upon the amplitudes
qab. Thus, the presented EPI model is a pure analytic one [6].

Using Eq. (52) the physical information K , (51), takes the
following form:

K = I + Q

=
∑
ab

∫ 2π

0

[
−1

2
qabq

′′
ab + 1

4
q2

ab(ϑ) q̃F
ab(qab)

]
dϑ. (58)

From Eq. (57) the expected structural information principle
[see Eq. (45)], for κ = 1, follows:

I + Q = 0, (59)

where I + Q is given by the RHS of Eq. (58).
The differential equation (57) is the first one from the

information principles used in the EPI method. The second one
is the variational information principle, obtained below [3,6,9].

2. The variational information principle

In order to obtain the variational information principle, we
have to transform the physical information K , (58), into the
metric form, i.e., the one quadratic in q ′

ab. Therefore, after
integration by parts, K can be rewritten as

K = I + Q =
∑
ab

∫ 2π

0

[
kmet
ab (ϑ) − Cab

2

]
dϑ, (60)

where the constant Cab is equal to

Cab = 1

2π
[qab(2π )q ′

ab(2π ) − qab(0)q ′
ab(0)] (61)

and kmet
ab (ϑ) is the metric form of the density of the physical

information:

kmet
ab (ϑ) = 1

2 q ′2
ab + 1

4 q2
ab(ϑ) q̃F

ab(qab). (62)

The variational information principle [3,6,9] has the form

δ(qab)K ≡ δ(qab) (I + Q)

= δ(qab)

{∑
ab

∫ 2π

0

[
kmet
ab (ϑ) − Cab

2

]
dϑ

}
= 0. (63)

The solution of the variational problem (63) with respect to
qab is the Euler-Lagrange equation:

d

dϑ

(
∂kmet

ab (ϑ)

∂q ′
ab(ϑ)

)
= ∂kmet

ab (ϑ)

∂qab

for every Sab ∈ �ab. (64)

From this equation and for kmet
ab (ϑ) as in Eq. (62), the following

differential equation is obtained for every amplitude qab:

q ′′
ab = 1

2

d
( 1

2q2
abq̃F

ab(qab)
)

dqab

for every Sab ∈ �ab. (65)

As q2
ab(ϑ)q̃F

ab(qab) is explicitly the function of qab only, the
total derivative has replaced the partial derivative over qab

present in Eq. (64).
The modified observed structural information principle (57)

and the variational information principle (63) [from which the
Euler-Lagrange equation (65) follows] serve for the derivation
of the equation that generates the distribution.

3. The derivation of the generating equation

Using the relation (65) in Eq. (57), we obtain

1

2
qab

d
(
q2

abq̃F
ab(qab)

)

dqab

= q2
abq̃F

ab(qab) for every Sab ∈ �ab.

(66)

Let us rewrite the above equation in a handier form,

2dqab

qab

= d
( 1

2q2
abq̃F

ab(qab)
)

1
2q2

abq̃F
ab(qab)

, (67)

from which, after integration on both sides, we obtain

1

2
q2

ab(ϑ)q̃F
ab(qab) = q2

ab(ϑ)

A2
ab

, (68)

hence, q̃F
ab(qab) = 2

A2
ab

for every Sab ∈ �ab,

where the constants of integration A2
ab are in general complex

numbers. This result was obtained previously in [3], but the
arrival at the structural information principle is different in this
paper and the form of both information principles also differs
slightly.

The generating equation. By substituting Eq. (68) into
Eq. (65), we obtain the searched for differential generating
equation for the amplitudes qab [3],

q ′′
ab(ϑ) = qab(ϑ)

A2
ab

for every Sab ∈ �ab and ϑ ∈ Vϑ, (69)

which is the consequence of both information principles, the
structural and variational ones.

The solution of the generating equation. As the amplitude
qab is the real one, thus A2

ab has also to be real and it can be
displayed with the aid of the other real constant aab as Aab =
aab or Aab = i aab [3], where here i is the imaginary unit.
Therefore, there are two classes of solutions for Eq. (69). For
Aab = aab, the solution of Eq. (69) is purely of an exponential
character [3]:

qab(ϑ) = B ′′
ab exp

(
− ϑ

aab

)
+ C ′′

ab exp

(
ϑ

aab

)
for every Sab ∈ �ab, (70)

where the B ′′
ab and C ′′

ab constants are real. For Aab, which is a
purely imaginary number,

Aab = i aab, (71)

we obtain the solution of Eq. (69) that is purely of a
trigonometric character [3],

qab(ϑ) = Bab sin

(
ϑ

aab

)
+ Cab cos

(
ϑ

aab

)
for every Sab ∈ �ab, (72)

where aab, Bab, Cab are the real constants.
The invariance under the rotation. The possible values of

the angle ϑ between measuring devices range from 〈0,2π )
(see Fig. 1). The physical periodicity is also inferred from
the geometrical symmetry of the measuring system under the
rotation of the angle 2π . Thus, the distribution P (Sab|ϑ) =
1
4 q2

ab(ϑ), (36), and every amplitude qab(ϑ) are also periodic
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functions of ϑ . Therefore, from the solutions (70) and (72), we
choose only the one which has a trigonometric character [in
fact, we did it below Eq. (56)]. Next, the functions sin and cos
in Eq. (72) form the basis for the probability amplitudes qab(ϑ).
As qab(ϑ) is determined on the parameter space Vϑ = 〈0,2π ),
the orthogonality condition of the base functions,

∫ 2π

0
sin

(
ϑ

aab

)
cos

(
ϑ

aab

)
dϑ = aab

2
sin2

(
2

aab

π

)
= 0,

(73)

gives the form of the constants aab [3]

aab = 2

nab

, where nab = ±1 or ± 2 or . . .

for every Sab ∈ �ab, (74)

and in Sec. V A we see that only nab = ±1 (for every Sab ∈
�ab) or ±2 (for every Sab ∈ �ab) are permitted where the
“plus” or “minus” signs correspond to the right-handed or
left-handed polarization, respectively, of two final particles in
the bipartite system.

The requirement of the orthogonality of the amplitudes
q+ +(ϑ) and q+ −(ϑ), (72), is not invoked here. From Sec. V B,
it follows that the orthogonality of q+ +(ϑ) and q+ −(ϑ)
arises afterwards from the condition of the regularity of the
probability distribution.

The condition of the minimal capacity I . The orthogonality
condition (73) is the one that gives the possible values of aab,
but its solution (74) permits their infinite sequence. Therefore,
in [2,3] the condition of the minimal value of the information
(kinematical) channel capacity I → min is postulated as the
one that, first, in accordance with the additive form (33) of
I > 0, fixes the value of N to 1 and, second, also fixes the
value of nab in a unique way [3]. However, in the present
paper the second consecutive value of I is also analyzed
(see Sec. V).

[Sometimes the nonminimal values of I are also discussed
as they lead to the EPI method’s models, which are of a
physical significance. For example, the information principles
of the EPI method analyzed in the realm of classical statistical
physics [2,3] led (for the space component of the four-
momentum vector) to the Maxwell-Boltzmann velocity law
[3], in which case the minimal I appears for N = 1, whereas
for N > 1, nonequilibrium, stationary solutions were obtained
(that otherwise follow from the Boltzmann transport equation)
[2,3]. For the time component of the four-momentum vector
and with N = 1 which minimizes I , the Boltzmann probability
law of the equipartition of energy in the form (70) was also
obtained [2,3]].

Thus, in the present paper N = 1 and the consecutive values
of I are obtained for increasing values of |nab| (Sec. V).

Now, the generating equation (69) allows q ′′
ab to be

eliminated, thus giving the useful form of the information
channel capacity (42):

I = −
∑
ab

1

A2
ab

∫ 2π

0
q2

ab(ϑ) dϑ. (75)

The integral in Eq. (75) is calculated as∫ 2π

0
q2

ab(ϑ) dϑ ≡ 4
∫ 2π

0
P (Sab |ϑ ) dϑ = 4

∫ 2π

0

P (Sab,ϑ)

r(ϑ)
dϑ

= 8π

∫ 2π

0
P (Sab,ϑ) dϑ = 8πP (Sab)

= 8π
1

4
= 2 π, (76)

where Eqs. (36), (8), (10), (7), and (24), respectively, have
been used in the successive equalities.

Using Eqs. (75) and (76) and Aab = i aab, (71), together
with Eq. (74), the information channel capacity I can be
expressed via the constants nab, giving

I = −Q = −
∑
ab

1

A2
ab

∫ 2π

0
q2

abdϑ = 2π
∑
ab

1

a2
ab

= π

2

∑
ab

n2
ab where nab = ±1 or ± 2 or . . . ,

for every Sab ∈ �ab. (77)

Here, in the first of the above equalities, the relation Q = −I ,
which was obtained from the expected structural information
principle (59), has been used.

V. THE FORMS OF THE AMPLITUDE

A. The first and second minimal I

Let us recall only that in the entire EPI-Bohm problem
analyzed in this paper, the inner sample taken by the system
alone is a N = 1-dimensional one (see the paragraph on The
condition of the minimal capacity I just above).

1. The spin- 1
2 with nab = ±1 case of minimal I

From the above condition, it follows that the minimization
condition for I will be fulfilled when [3]

nab = ±1 (for every Sab ∈ �ab)

⇒ I → minimal, (78)

for arbitrary Sab. According to Eq. (74), the condition nab =
±1 corresponds to the following values of aab:

aab = ±2 for every Sab ∈ �ab. (79)

The summation in Eq. (77) runs over all pairs Sab of the spin
projections for particles 1 and 2, (3); thus, for nab = ±1, we
obtain the minimal value of I equal to

I(min) = 2 π for nab = ±1. (80)

Thus, the minimal value of the information channel capacity
for the parameter ϑ is obtained. As the amplitude given by
Eq. (72) for aab = ±2 has the form

qab(ϑ) = Bab sin

(
±ϑ

2

)
+ Cab cos

(
±ϑ

2

)
, (81)

we notice that qab(ϑ + 2π ) = −qab(ϑ) and its period is equal
to T1/2 = 4π . This means that the solution with nab = ±1 is
characteristic for the two-dimensional representation of the
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rotation group operator to which the spin- 1
2 particles belong.

Below we see that the EPR-Bohm problem formulas on
the probabilities for the case of the bipartite system of two
spin- 1

2 particles are consistent with this finding [3]. Finally,
nab = +1 corresponds to the right-handed polarization of two
final electrons and similarly nab = −1 corresponds to the
left-handed polarization of two final electrons.

2. The spin-1 with nab = ±2 case of second minimal I

The second smallest value of I is obtained for

nab = ±2 (for every Sab ∈ �ab)

⇒ I → second minimal, (82)

for arbitrary Sab. According to Eq. (74), the condition nab =
±2 corresponds to the following values of aab:

aab = ±1 for every Sab ∈ �ab. (83)

The summation in Eq. (77) runs over all pairs Sab of the
spin projections for particles 1 and 2, (3), and therefore for
nab = ±2, we obtain the second minimal (s.min) value of the
information channel capacity I for the parameter ϑ , which is
equal to

I(s.min) = 8π for nab = ±2. (84)

As the amplitude (72) for aab = ±1 has the form

qab(ϑ) = Bab sin(±ϑ) + Cab cos(±ϑ); (85)

thus, qab(ϑ + 2π ) = qab(ϑ) and the period of the amplitude
under the rotation is equal to T1 = 2π . Thus, the solution
with nab = ±2 is characteristic for the bipartite system of
two spin-1 particles, which belong to the three-dimensional
representation of the rotation group operator. Below, we see
that the EPR-Bohm problem formulas on the probabilities for
the case of the bipartite system with spin-1 particles are also
consistent with this finding. Finally, nab = +2 corresponds to
the right-handed polarization of two final photons and, simi-
larly, nab = −2 corresponds to the left-handed polarization of
two final photons.

It follows from the above considerations that for |nab| > 2
the basic period of the amplitudes qab is smaller than 2π , which
would be characteristic for bipartite systems of spin-1 massive
particles or those higher than spin-1 particles. However, then
the base space is different than �ab given by Eq. (3) [see also
the text below Eq. (3)]. Therefore, we conclude that the EPI
method analysis for �ab given by Eq. (3) permits nab = ±1 or
nab = ±2 only. We discuss this splitting in Sec. V B5. Finally,
from Eqs. (72) and (74), we see that the amplitudes qab have
the form

qab(ϑ) = Bab sin

(
nab

ϑ

2

)
+ Cab cos

(
nab

ϑ

2

)
,

where nab = ±1 or ± 2

for every Sab ∈ �ab and ϑ ∈ Vϑ. (86)

B. The determination of the constants of amplitudes
and the Rao-Fisher metric

In the amplitudes (86) [or particularly in (81) or (85)], there
are the constants Bab and Cab, which have to be determined.

1. The restrictions from pure boundary conditions

In order to perform the task, we appeal at first to the values
of the joint conditional probabilities P (Sab|ϑ) for ϑ = 0,
which was previously determined in Eq. (11) [3]. According
to Eq. (36), we know that P (Sab|ϑ) = 1

4 q2
ab, and thus it

follows that

qab(ϑ) = 0 if only P (Sab|ϑ) = 0. (87)

Therefore, using Eq. (87) we see that for both the amplitudes
given by Eq. (81) for the bipartite system of the spin- 1

2
particles and for the amplitudes given by (85) for the bipartite
system of the spin-1 photons, the boundary condition (11) in
ϑ = 0, P (+ + |0) = P (− − |0) = 0, leads to [3]

C++ = C− − = 0. (88)

Moreover, by appealing to the geometric symmetry of
the experiment, P (S+ −|ϑ) = P (S−+|ϑ) and P (S+ +|ϑ)
= P (S− −|ϑ), given by Eq. (17), we obtain [3]

B+ + = B−− and B+ − = B−+, (89)

and

C+− = C− +. (90)

2. Restrictions from the regularity condition

After using Eqs. (88)–(90) and Eqs. (36) and (86), the
normalization condition (5) reads∑

ab

P (Sab|ϑ)

= 1

2

[
B+− sin

(
nabϑ

2

)
+ C+− cos

(
nabϑ

2

)]2

+ 1

2
B2

+ + sin2

(
nabϑ

2

)
= 1,

where nab = ±1 or ± 2 for every Sab ∈ �ab. (91)

From the above equation and the regularity condition (40), it
follows that

∂2

∂ϑ2

∑
ab

P (Sab|ϑ)

= 1
4 n2

ab[−2 B+ −C+− sin(nabϑ)

+ (B2
+ + + B2

+− − C2
+ −) cos(nabϑ)]

= 0, ϑ ∈ Vϑ,

where nab = ±1 or ± 2 for every Sab ∈ �ab. (92)

This condition gives

B2
++ = C2

+ − �= 0 (93)

and [together with Eq. (89)]

B+− = B− + = 0, (94)

as otherwise, i.e., for C+ − = 0, from the conditions (88)–(90)
and Eq. (92), we obtain the zeroing of all coefficients Bab
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and Cab, which corresponds to the trivial case of the lack of
a solution to the EPR problem in the event of not measuring
any of the spin projections (i.e., no EPR-Bohm experiment is
occurring). Thus, for the physical nontrivial solution for the
EPR-Bohm problem, we obtain

C ≡ C+− = C− + �= 0, (95)

where the equality of the coefficients follows from Eq. (90). Let
us notice that because of Eq. (93), the condition (95), which is
the condition of the existence of the nontrivial solution, means
that

B ≡ B++ = B− − �= 0, (96)

where again the condition (89) is used in the equality. Finally,
in accordance with Eqs. (93), (95), and (96) it follows that

B2 = C2 �= 0. (97)

Additionally, as was mentioned in Sec. III, the regularity
condition that resulted in relation (92) enables the Fisher
information to pass from the analytical form (38) to the metric
form (41). Let us notice that the conditions (93) and (94) also
saturate the equality: ∂

∂ϑ

∑
ab P (Sab|ϑ) = 0.

[Frieden’s quantum amplitudes. In order to obtain condi-
tion (94), Frieden used another approach [3]. He introduced
the “quantum amplitude” ψab(ϑ) ∝ qab(ϑ) of the bipartite
system, where q2

ab(ϑ) = P (Sa|Sb,ϑ) (see [33]). Then, by
the Bayes’ rule, it follows that ψ2

ab(ϑ) ≡ ψ2
ab(ϑ |Sab) ≡

p(ϑ |Sab) = P (Sa |Sb,ϑ)P (Sb)r(ϑ)
P (Sa |Sb)P (Sb) [3]. This equality means that

with the appearance of the joint configuration of spins Sab,
the probability amplitude ψab(ϑ) which says that the value
of the angle is equal to ϑ is proportional to the probability
amplitude qab(ϑ) = √

P (Sa|Sb,ϑ) [3] of observing the spin
projection Sa of the particle 1 under the requirement that the
spin projection of the particle 2 amounts to Sb and the angle is
equal to ϑ . In quantum mechanics we would say that ψab(ϑ)
signifies the probability amplitude of the event that the value
of the angle is equal to ϑ under the condition that a joint
configuration Sab of spins appears. Then, Frieden required the
orthogonality of quantum amplitudesψ+ +(ϑ) and ψ+ −(ϑ) on
〈0,2 π ), from where the orthogonality of the amplitudes q+ +
and q+ − follows automatically. From this in [3] the zeroing of
B+− and B−+ that is seen in Eq. (94) follows].

3. Analysis of the Rao-Fisher metric

Below we convince ourselves that the determination of
the constants Bab and Cab that were obtained in Secs. V B1
and V B2 leads to the constancy of the Rao-Fisher metric on
the statistical (sub)space S. The probability distribution of the
EPR-Bohm problem (that we are looking for) is the discrete
one (4). It is determined on the joint space �ab of the possible
results SaSb ≡ Sab ∈ �ab = {+ + , − −, + −, − +}, (3),
and normalized to unity in accordance with (5). Let us express
the double index ab in a compact form, i.e.,

ab = + + , − −, + −, − +
corresponds to j − 1 ≡ ab = 0,1,2,3, (98)

respectively. The order of ab can be different than + + ,

− −, + −, − +.

The probability amplitudes related to the distribution (4)
have the following form in accordance with Eq. (36):

q̃ab
≡ qab(ϑ) = ±

√
4 P (Sab|ϑ). (99)

Note on the Rao-Fisher metric of the statistical (sub)space
S. For ℵ results, the general relation that determines the
induced Rao-Fisher metric on the submanifold of the ℵ − 1-
dimensional probability simplex, which is coordinatized by
a set of coordinates (θα), is as follows [30] [see Sec. VII,
Eq. (A5)]:

gαβ =
ℵ∑

j=1

∂qj

∂θα

∂qj

∂θβ
. (100)

Using Eq. (86) we see that the amplitudes qab(ϑ) have the
following derivatives:

∂qab

∂ϑ
= nab

2

[
Bab cos

(
nab ϑ

2

)
− Cab sin

(
nab ϑ

2

)]
. (101)

Thus, for the statistical (sub)space S, (6), coordinatized by ϑ

and after making use of Eq. (99) and the above EPI result (101),
the following form of the induced metric gϑ ϑ on the statistical
(sub)space S is obtained (see IF (ϑ), (41), which, in fact,
defines gϑ ϑ on S [14]):

gϑ ϑ (ϑ) =
3∑

ab=0

∂q̃ab

∂ϑ

∂q̃ab

∂ϑ
=

∑
ab

∂qab

∂ϑ

∂qab

∂ϑ

= 1

4

∑
ab

n2
ab

[
B2

ab − Bab Cab sin(nab ϑ)

+ (
C2

ab − B2
ab

)
sin2

(
nab ϑ

2

) ]
,

where nab = ±1 or ± 2 for every Sab ∈ �ab.

(102)

After using the conditions (88)–(90), which follow from
the boundary conditions (i.e., without using the regularity
condition as in Sec. V B2), the above equation reads

gϑ ϑ (ϑ) = n2
ab

[
1

2
(B2

++ + B2
+−) − 1

2
(B+− C+−) sin(nab ϑ)

+ 1

2
( C2

+− − B2
+ + − B2

+−) sin2

(
nab ϑ

2

)]
,

where nab = ±1 or ± 2 for every Sab ∈ �ab.

(103)

Now, using the relations (93) and (94), which follow from
the condition of regularity of the probability distribution, we
obtain

gϑ ϑ (ϑ) = 1
2 n2

ab B2, where nab = ±1 or ± 2

for every Sab ∈ �ab, (104)

where the notation from Eq. (96) is used.
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4. The normalization condition to unity

Inserting the results for the coefficients Bab and Cab that
were obtained in Secs. V B1 and V B2 into Eq. (86), we obtain

q+ +(ϑ) = B sin(n+ + ϑ/2), q− −(ϑ) = B sin(n−− ϑ/2),

q− +(ϑ) = C cos(n− + ϑ/2), q+ −(ϑ) = C cos(n+ − ϑ/2),

where nab = ±1 or ± 2 for every Sab ∈ �ab, (105)

with the condition B2 = C2 given in Eq. (97). From Eq. (105),
it can noticed that the equality of the coefficients in rela-
tions (95) and (96) is a reflection of the equality of the
corresponding amplitudes that follows from the symmetry of
the space reflection quantified by Eq. (17) and from using
Eq. (36). Let us observe the visible orthogonality of the
amplitudes q+ +(ϑ) and q+ −(ϑ). It has arisen as the result
of the EPI method analysis and from the condition of the
regularity of the probability distribution. It can also be noted
from the resulting property of the constancy of Rao-Fisher
metric on the statistical (sub)space S of the EPR-Bohm
problem discussed in Sec. V B3.

However, we still have to determine the constants B and C.
From the condition of the probability P (SaSb|ϑ) normalization
to unity, (5), and using Eq. (36), we obtain the equation

1
4 [q2

+ +(ϑ) + q2
− −(ϑ) + q2

− +(ϑ) + q2
+ −(ϑ)] = 1. (106)

Using Eq. (105) in Eq. (106) gives

2(C2 − B2) cos2 (nab ϑ/2) + 2 B2 = 4,

where nab = ±1 or ± 2 for every Sab ∈ �ab. (107)

Comparing the coefficients that stand beside the appropriate
functions of ϑ on the left- and right-hand-sides of the above
expression, we obtain

B2 = C2 = 2, (108)

which, after putting it into Eq. (105), gives the final solution
of the EPI method for the amplitudes of the bipartite system
in the EPR-Bohm problem (compare [3]):

q+ +(ϑ) = ±
√

2 sin (n+ + ϑ/2) ,

q− −(ϑ) = ±
√

2 sin (n− − ϑ/2) ,

q− +(ϑ) = ±
√

2 cos (n− + ϑ/2) , (109)

q+ −(ϑ) = ±
√

2 cos (n+ − ϑ/2) ,

where nab = ±1 or ± 2 for every Sab ∈ �ab.

It is well known (see, e.g., [16]) that each of the EPR-Bohm
solutions (109) can be uniquely decomposed into the inner
products for either the antisymmetric or symmetric tensor
product only of two one-particle states (final and initial of
the detected particles), which are the electronic ones that
are given by spinors or photonic ones given by vectors,
respectively. What we have obtained is that the quantization
of the spin projection on the particular direction in space,
which was introduced as the boundary condition in Sec. II B1,
results in the rediscovery of the dimension of the rotation
group representation to which the particles belong, which
is consistent with the EPI solution obtained for the bipartite
system of two spin- 1

2 particles (Secs. V A1 for nab = ±1) or
for the bipartite system of two spin-1 photons (Sec. V A2 for
nab = ±2). Each of the amplitudes of the EPR-Bohm problem

is a point on the 3-sphere S3 of radius 2 [see Eq. (106) and
Sec. VII].

After the transformation qab → qS3

ab ≡ qab

2 of the ampli-
tudes, the sphere S3 becomes the one of the radius 1. The
isometry group of the invariant metric on this sphere is
SO(4), which is isomorphic to the coset of the group product
SU(2) × SU(2)/Z2, where Z2 = {1, − 1} is the cyclic group
of the order 2 [30].

Let us recall that the amplitudes (109) were obtained as the
solution of the generating equation Eq. (69), which after using
Eqs. (71) and (74) has the following form:

q ′′
ab(ϑ) = − n2

ab

4
qab(ϑ), where nab = ±1 or ± 2

for every Sab ∈ �ab and ϑ ∈ Vϑ. (110)

Some comments on the possible connection of Eq. (110) with
other physical equations are given in the Conclusion.

The result on the probability in the EPR-Bohm experiment.
Putting the amplitudes (109) into the relation P (Sab|ϑ) =
1
4 q2

ab(ϑ), (36), gives the joint probability of getting a particular
combination of spins projections at a fixed value of the angle ϑ :

P (+ + |ϑ) = 1
2 sin2(n+ + ϑ/2),

P (− − |ϑ) = 1
2 sin2(n− − ϑ/2),

P (− + |ϑ) = 1
2 cos2(n−+ ϑ/2), (111)

P (+ − |ϑ) = 1
2 cos2(n+− ϑ/2),

where nab = ±1 or ± 2 for every Sab ∈ �ab,

which is also the prediction of quantum mechanics [16] both
for the system of two spin- 1

2 particles (nab = ±1) and also for
the system of two spin-1 photons (nab = ±2).

5. The consistence of the Rao-Fisher metric on S
and the one of the EPI method

By inserting Eq. (108) into Eq. (104), the precise form of
the Rao-Fisher metric gϑϑ is obtained:

gϑ ϑ (ϑ) = gϑ ϑ = n2
ab = const. for ϑ ∈ Vϑ,

where nab = ±1 or ± 2 for every Sab ∈ �ab.

(112)

As the statistical (sub)space S is one-dimensional, the only
gϑ ϑ component is the Fisher information IF (ϑ) on the
parameter ϑ [14]. Now, the equality of IF (ϑ), (41), and
gϑϑ given by (the first line in) (102) is by no means
trivial. This equality means that the Rao-Fisher metric gϑϑ =
IF (ϑ) on S was obtained dynamically by the EPI method,
which uses the information principles: the modified observed
structural one (57) and the variational one (65) described
in Sec. IV B [4]. From the above description of the EPI
method for the EPR-Bohm problem [3], we know that the
Fisher information IF (ϑ), (41), is connected with the intrinsic,
N = 1-dimensional sampling performed by the system alone.
It enters into the information channel capacity I [compare
Eq. (37)], which (i.e., primarily, its analytical form) is then
itself or by means of its density used in the EPI statistical
nonparametric estimation. Thus, let us write the final form of
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the Fisher information on the parameter ϑ that is inherent for
the EPI method and calculated in accordance with Eq. (42) with
the amplitudes (109) that are the solution to the EPR-Bohm
problem:

IF (ϑ) = −
∑
ab

qab(ϑ)q ′′
ab(ϑ) = n2

ab,

where nab = ±1 or ± 2 for every Sab ∈ �ab.

(113)

The result (113) follows from the EPI analysis of the
(inner) N = 1-dimensional sampling of the particles spins
in the devices a and b by the bipartite system alone. The
obtained amplitudes qab given by Eq. (109) describe the whole
configuration of the system; i.e., P (Sab|ϑ) = 1

4 q2
ab(ϑ) given

by Eq. (111) is the true probability distribution from which,
in the further analysis described below, the data are taken
by an experimentalist. Thus, Eq. (111) gives the theoretical
distribution from which the data are generated during the
sampling of the system by the experimentalist from outside,
i.e., when the (outer) M-dimensional sample is taken, e.g.,
by two of them from devices a and b. We discuss the outer
experiment in Sec. VI. The Rao-Fisher metric (112), which
originates in Eq. (102) [and is the particular case of Eq. (100)],
is openly related to the ℵ = 4 outcomes that can occur in
devices a and b that are observed by, this time, the outer
observer.

The equivalence of the analytical and metric models. Using
Eq. (111), it can be checked that the analytical form IF (ϑ)
calculated from Eq. (38) is equal to the metric one calculated
from Eq. (41) and to the EPI method form (42) [given in
Eq. (113)]. Thus, on the expected level, the analytical and
metric models are equivalent under the integral due to the
regularity condition (40), although it is the full analytical
model that is solved.

6. The generic property of the EPI solutions

Finally, let us notice that in the EPR-Bohm problem
condition (112) means the constancy of the Rao-Fisher metric
gϑ ϑ (ϑ), i.e., the independence of gϑ ϑ on the statistical
(sub)space S on the value of the parameter ϑ (see Comment
at the end of this section). Its constancy follows, first, from
the boundary conditions discussed in Sec. V B1 and, second,
from the regularity condition used in Sec. V B2. However,
strictly speaking, for the constancy of gϑ ϑ (ϑ) on S, the
normalization to unity used in Eq. (106) is not necessary. Thus,
using Eq. (105) in Eq. (106), but relaxing the condition of the
normalization to unity on the RHS of Eq. (106) (and leaving
the normalization to a finite value instead) and using Eq. (97),
we obtain

2 B2 sin2 (nab ϑ/2) + 2 C2 cos2 (nab ϑ/2) = 2 B2,

where nab = ±1 or ± 2 for every Sab ∈ �ab, (114)

instead of Eq. (107). Thus, the normalization to unity in
Eq. (91) would have the form

∑
ab P̃ (Sab|ϑ) = 1

2 B2 instead
and would also produce the results (104) and (105) although
without value 2 established in Eq. (108). Nevertheless, the

ratio of gϑ ϑ (ϑ) given by Eq. (104) to
∑

ab P̃ (Sab|ϑ),

gϑ ϑ (ϑ)∑
ab P̃ (Sab|ϑ)

=
1
2 n2

ab B2

1
2 B2

= n2
ab,

where nab = ±1 or ± 2 for every Sab ∈ �ab, (115)

is equal to the Fisher information (112), that was obtained with
the normalization to unity. Now, the point is that this ratio is a
generic property of the solutions [36] of the pair of differential
equations (57) and (65), which are two information principles.
This means that the ratio in Eq. (115) is conserved for any
disturbance of B2 > 0 from the value 2 (with the boundary
conditions kept unchanged), where B2 = C2 (97).

In Secs. V A1 and V A2 we noticed that the EPI method
analysis for �ab given by Eq. (3) allows nab = ±1 or
nab = ±2 only for the bipartite system, which transform
according to the two- or three-dimensional representation
of the rotation operator, respectively. This means that the
statistical (sub)space S splits into two stable subspaces and
each of these is the solution of the generating equation (110),
or more precisely, the self-consistent solution of the pair of
information principles, whose particular forms are determined
by the observed structural information q̃F

ab(qab), (68), and as
a consequence by its expected value given by Eq. (77):

Q = −2π, nab = ±1 for spin 1
2 , (116)

Q = −8 π, nab = ±2 for spin 1. (117)

Comment. It is also easy to check that the statistical modelS
is Amari α = 0 affine flat, where the α = 0 Amari connection
[14] is the Riemannian one with respect to the Rao-Fisher
metric.

C. Discussion of the EPI result on the probabilities

In quantum mechanics the relations (111) for the bipartite
system of two spin- 1

2 particles (here electrons) are obtained
[16] from the conservation of total spin (the orbital term is
assumed to be zero) and the indistinguishability of the par-
ticles obeying the Fermi-Dirac statistics, which are therefore
described by an antisymmetric state under their exchange. In
the calculation of the amplitude for the process [which in [16]
is the same as the one on Fig. 1(a)], the opposite spins of
the initial particles of the bipartite system was taken also into
account [16]. In the EPI formalism, relations (111) result from
the self-consistent solution of the modified observed structural
information principle (57) and the variational one (65). Thus,
the Fermi-Dirac statistics seems to be a reminiscence of these
information principles, that is, of their solution, which is the
generating equation (110), and the precisely defined boundary
conditions. Similarly, the relation (111) for two spin-1 photons
in the final state of the process [see Fig. 1(b)] in quantum
mechanics is obtained [16] due to the indistinguishability of the
particles that obey the Bose-Einstein statistics. The opposite
momenta of final photons also have to be taken into account.
Thus, in the case of the spin-1 photons, the Bose-Einstein
statistics (and not the Maxwell-Boltzmann one) also seems to
be a reminiscence of the generating equation (110) (and thus of
the modified observed structural and variational information
principles) and the precise boundary conditions.
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The EPI result (111) for the EPR-Bohm problem signifies
that the effect of the dependance of the spins projections
changes strongly with the value of ϑ . A comparison of
Eq. (111) with Eqs. (15) and (26), in general, gives the
inequality [3]

P (Sab|ϑ) �= P (Sa|ϑ)P (Sb|ϑ) for every Sab ∈ �ab, (118)

which proceeds when the estimation of the probability distri-
bution with the EPI method that uses the differential equa-
tions (57) and (65), occurs. That is, the inequality (118) arises
in a situation in which the averaging over ϑ is not performed [3]
and instead the final forms of the observed (microscopic)
information principles are self-consistently solved. From the
analysis in this paper, we see that the EPI method coverage of
quantum mechanics is due to the analytical form (38) of the
Fisher information on the parameter ϑ .

When the averaging over ϑ is performed instead, then the
factorization appears. Indeed, in Eq. (24) the joint probability
P (Sab) = 1/4 is determined. On the other hand, from Eq. (16)
we see that P (Sb) = 1/2 [and analogously from Eq. (26)
P (Sa) = 1/2] and thus the relation follows:

P (Sab) = P (Sa) P (Sb) for every Sab ∈ �ab. (119)

This condition means the independence of the spin projection
variables Sa and Sb after the averaging over ϑ is performed [3],
i.e., when the “third” (nonrandom) variable, which is ϑ , is
under control and therefore its effect is eliminated.

The Ehrenfest analog. The above conclusion is in agreement
with the Ehrenfest theorem from which it follows that in the
case of averaging over angle ϑ , the entangled EPR-Bohm
states again undergo the classical mechanics separation and
therefore the relation (119) appears [3].

1. The hidden variables and the EPI result

Factorization (119) with probabilities depending addition-
ally on a set ς of random hidden variables with values in a
set � is used when the Bell inequalities [16] are derived. The
local hidden variables (LHV) theories are put to the test with
them.

However, due to the Fisher information properties, the
theories fall into two classes because of the value of the
dimension N of the sample [9]. For quantum mechanics,
and also for classical field theory, N is finite (and the Fisher
information is finite), whereas for classical mechanics (for
pointlike particles), N is infinite (and the Fisher information
is infinite), which means that quantum mechanics cannot be
derived from classical mechanics [9]. Therefore, if hidden
variables ς have the classical mechanical meaning then the
possibility of deriving quantum mechanical probabilities from
them is excluded and the factorization rule (119) that is used in
the Bell tests could result from classical field theory. However,
if classical theory, i.e., its equations of motion follow from the
self-consistent (differential) information principles, then the
probabilities that are obtained fulfill the relation (118) instead
and the Bell-like inequalities cannot be constructed. Thus, it
is possible that quantum mechanics can be covered by the EPI
method modeling (see also Sec. II B1).

VI. THE UNCERTAINTY OF THE
ESTIMATION OF THE ANGLE

Below, the uncertainty of the estimation of the angle ϑ for
the bipartite system of two spin- 1

2 particles [3] or two spin-1
photons is analyzed. The statistical analysis, which led to the
EPR-Bohm result (111), was performed in accordance with the
EPI postulates [2,3] outlined in the Introduction (unless it takes
into account also the influence of the measuring devices [3]).

The basic one is the assumption that the system by itself
performs the “inner” sampling of the configuration space and
then, in accordance with the information principles, performs
the estimation of the generation equation whose solutions,
after taking into account the boundary conditions, are the
amplitudes of the probability distributions. The dimension
of the “inner” sample was chosen as equal to N = 1 [see
Eq. (34)]. Four pairs (3) of the spin projection SaSb ≡ Sab ∈
�ab are possible and the probability distribution P (Sab|ϑ) of
the random variable Sab was summarized by Eq. (111).

A. The likelihood of the outer sample

As mentioned earlier, there is also the “outer” sample of the
dimension M, which is taken by the researcher. The distribution
P (Sab|ϑ) distinguished by ϑ ∈ Vϑ forms the statistical model
S, (6), which is displayed above by the EPI method [3]. For the
established ϑ , the probabilities λab

≡ P (Sab|ϑ), Sab ∈ �ab,
can be perceived as four parameters of the probability distri-
bution on the space of events �ab. [Since

∑
ab P (Sab|ϑ) = 1,

three of them are independent.] Below, we use the renaming
of the double index ab = + + , − −, + −, − + to ab =
0,1,2,3, respectively [in accordance with Eqs. (3) and (98)
and the text just below Eq. (98)].

Let us denote the values of Sab as Sab
and let the “new”

random variable S take the values Sab
. The lower index in

Sab
signifies the abth value of S. The probability distribution

P (S; λ) of this random variable is as follows:

P (Sab
; λ) = λab

for S = S = Sab
, where 0 � ab � 3.

(120)

Now, a statistical space S� can be constructed:

S� =
{

P (S; λ)|λ ≡ (λab
)3
ab=0 ∈ � ⊂ R4,

λab
� 0 (∀ ab),

3∑
ab=0

λab
= 1

}
. (121)

Note on gϑ ϑ
� . The Rao-Fisher metric gϑ ϑ

� on the submanifold
(coordinatized by ϑ) of the statistical space S� is equal to the
Rao-Fisher metric (102) on the submanifold of the simplex
of probabilities (111) coordinatized by ϑ , which is the model
S given by Eq. (6) (see the Appendix); that is, it has one
component that is equal in accordance with Eq. (112) [and
Eq. (A9) in the Appendix] to gϑ ϑ = n2

ab = const.
The experimental distribution. In an experiment, the re-

searcher obtains the M-dimensional sample with the fre-
quencies λ̂ab

of appearances of pairs of the spin projections
Sab (3). The frequencies λ̂ab

are the unbiased and consistent
estimators of the probabilities λab

≡ P (Sab|ϑ) from Eq. (111),
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i.e., Eλab
[λ̂ab

] = λab
and (for all ε > 0) limM→∞ Prλab

(|λ̂ab
−

λab
| > ε) = 0, respectively.
In the above notation, the characteristics of the distributions

of the estimators λ̂ab
of the parameters λab

(ab = 0,1,2,3) for
the M-dimensional sample,

S̃(M) ≡ (S1, . . . ,Si, . . . ,SM), (122)

are calculated with the joint probability distribution,

P ( S̃(M); λ) =
M∏
i=1

P (Si ; λ), (123)

where the random variables Si , i = 1,2, . . . ,M, are indepen-
dent. The upper index in Si signifies the ith data point in the
sample S̃(M) ≡ (S1, . . . ,Si , . . . ,SM). The distribution P (Si ; λ)
of the variable Si for each single data point i = 1,2, . . . ,M

is the same as the distribution P (S; λ) of S that is given
by Eq. (120). The asymptotic local unbiasedness of four
estimators ϑ̂ of the parameter ϑ in the limit M → ∞ is proven
below.

B. The estimator ϑ̂

Usually in an experiment the angle ϑ is fixed. The
frequencies λ̂ab

are measured and only then are relations (111)
tested (as, e.g., the signature of their supposed quantum
mechanical origin). We saw that EPR-Bohm relations (111)
appear as the result of the self-consistent solution of two, in
their origin classical, statistical information principles with the
conditions of regularity, (92), and normalization to unity, (106)
(see Secs. V B2–V B4).

The statistical approach to the EPR-Bohm problem enables
the implementation of all statistical techniques of the investi-
gation of the properties of the estimators. Thus, let us discuss
the inverse problem, i.e., the quality of the ϑ estimation via
the frequencies λ̂ab

of events Sab ∈ �ab. The inverse of every
function of the four given by Eq. (111) allows the angle ϑ

to be expressed as depending on one probability λab
, i.e.,

ϑ = ϑ(λab
). We see that four estimators ϑ̂ of ϑ ∈ Vϑ can

be built, one for each event Sab ∈ �ab:

ϑ̂(λ̂ab
) = 2

nab

arcsin
(√

2 λ̂ab

)
, ab = + + or − −,

ϑ̂(λ̂ab
) = 2

nab

arccos
(√

2 λ̂ab

)
, ab = + − or − +,

where nab = ±1 or ± 2 for every Sab ∈ �ab. (124)

It will be proven below that each of these four estimators ϑ̂ of
the angle ϑ is asymptotically locally unbiased [14]; i.e.,

Eϑ+ϑ (ϑ̂) = ϑ + ϑ + õ(ϑ) (125)

at every ϑ , where õ (ϑ) is a small number of higher order in
ϑ . (The proof is the same for every estimator.)

To determine whether relation (125) really holds, let us
Taylor expand the estimator ϑ̂ , which is treated as a function
of the frequency λ̂ab

for each fixed Sab∈ �ab around the

corresponding point λab
, respectively,

ϑ̂(λ̂ab
) = ϑ̂(λab

) + ∂ϑ̂(λ̂ab
)

∂λ̂ab

∣∣∣∣
λab

( λ̂ab
− λab

) + o(λ̂ab
)

= ϑ − ∂ϑ̂(λ̂ab
)

∂λ̂ab

∣∣∣∣
λab

λab
+ ∂ϑ̂(λ̂ab

)

∂λ̂ab

∣∣∣∣
λab

λ̂ab
+ o(λ̂ab

),

(126)

where ϑ̂(λab
) = ϑ and o(λ̂ab

) consists of the higher terms
of the expansion, where λ̂ab

≡ (λ̂ab
− λab

). Up to the first
order, only the statistic λ̂ab

is present. Because λ̂ab
is an

unbiased estimator of λab
, its expectation value at the parameter

ϑ̃ = ϑ + ϑ is equal to λab|ϑ+ϑ ≡ P (Sab|ϑ + ϑ) and the
Taylor expansion of Eϑ+ϑ (λ̂ab

) around ϑ gives

Eϑ+ϑ (λ̂ab
) = λab|ϑ+ϑ = λab

+ ∂λab|ϑ̃
∂ϑ̃

∣∣∣∣
ϑ

ϑ + o(ϑ),

(127)

where o (ϑ) are the higher terms of the expansion.
Now, the lowest order term of the expectation value

Eϑ+ϑ (o(λ̂ab
)) of the last term o(λ̂ab

) in Eq. (126) is equal
to

Eϑ+ϑ

[
1

2

∂2ϑ̂(λ̂ab
)

∂λ̂2
ab

∣∣∣∣
λab

(λ̂ab
)2

]

= 1

2

∂2ϑ̂(λ̂ab
)

∂λ̂2
ab

∣∣∣∣
λab

σ 2
ϑ+ϑ (λ̂ab

)
M→∞−→ 0, (128)

where in the last line the asymptotic property of the variance
of the frequency λ̂ab

(in the four-nomial distribution) is used.
Let us take the expectations on both sides of Eq. (126):

Eϑ+ϑ (ϑ̂(λ̂ab
)) = ϑ − ∂ϑ̂(λ̂ab

)

∂λ̂ab

∣∣∣∣∣
λab

λab
+ ∂ϑ̂(λ̂ab

)

∂λ̂ab

∣∣∣∣
λab

×Eϑ+ϑ (λ̂ab
) + Eϑ+ϑ (o(λ̂ab

)). (129)

After using Eqs. (127) and (128) in Eq. (129) and noticing

that
∂λab |ϑ̃

∂ϑ̃

∣∣∣
ϑ

= ∂λab

∂ϑ
and

∂ϑ̂(λ̂ab
)

∂λ̂ab

∣∣∣
λab

= ∂ϑ
∂λab

, we obtain that,

asymptotically,

Eϑ+ϑ (ϑ̂(λ̂ab
))

= ϑ + ∂ϑ̂(λ̂ab
)

∂λ̂ab

∣∣∣∣
λab

∂λab

∂ϑ
ϑ + ∂ϑ̂(λ̂ab

)

∂λ̂ab

∣∣∣∣
λab

o(ϑ)

= ϑ + ϑ + õ(ϑ), (130)

where õ (ϑ) = ∂ϑ̂(λ̂ab
)

∂λ̂ab

|λab
o (ϑ). Thus, the asymptotic local

unbiasedness (125) of each estimator ϑ̂ , (124), of the angle
ϑ ∈ Vϑ is proven. Therefore, the Rao-Cramér inequality for
each ϑ̂ ∈ Vϑ = 〈0,2 π ) can be asymptotically used.

C. The intrinsic error of the estimation of the parameter
ϑ in the EPI method

The frequency λ̂ab
has the normal distribution asymptoti-

cally for some unknown (but arbitrary) value of ϑ . It follows
that using one of the functions given by Eq. (124), a form of the
asymptotic distribution of ϑ̂ can be obtained. Therefore, the
confidence interval for the parameter ϑ can also be numerically
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calculated. The question is: What is the minimal error of ϑ

estimation?
From the point of view of the experimentalist, the value

Sab
of the random variable S (Sec. VI A) of pair of spin

projections of the particles 1 and 2, respectively, is observed
in a single measurement. The Rao-Cramér inequality, which
gives the bound on the accuracy of the estimation of the
parameters, which in our case is the angle ϑ , uses the Fisher
information on the parameters confined in the M-dimensional
sample (122) that is taken by the experimentalist. It is
equal to M gϑ ϑ (ϑ) [14], where gϑ ϑ (ϑ) = gϑ ϑ = n2

ab, (112),
is the Fisher information (see Note in Sec. VI A) for the
M = 1-dimensional sample. This situation has the following
consequences.

The Rao-Cramér inequality for the variance of each of the
four estimators ϑ̂ of the angle ϑ given by Eq. (124) has the
form [32]

σ 2(ϑ̂) � 1

M gϑ ϑ (ϑ)
. (131)

Even if we do not know the form of the estimator ϑ̂ , the
Rao-Cramér inequality (131) gives a lower Rao-Cramér
bound (LRCB) for its variance, only if the estimator is
unbiased. In our case, it is asymptotically unbiased. Inserting
the value of gϑ ϑ (ϑ) into the inequality (131), we obtain

σ 2(ϑ̂) � 1

M n2
ab

rad 2, nab = ±1, ± 2. (132)

In the case of the bipartite system of two spin- 1
2 particles,

nab = ±1, and from the relation (132), it follows that

σ 2(ϑ̂) � 1

M
rad 2, (133)

whereas for the bipartite system of two spin-1 photons,
nab = ±2 and the relation (132) gives

σ 2(ϑ̂) � 1

4 M
rad 2. (134)

Conclusion. The inequality (132) states that the observation
of one pair of spin projections Sab

(in the light of the complete
ignorance about the angle ϑ) [see Eq. (10)] gives finite
information on ϑ . The lowest Rao-Cramér bound on the error
of the angle ϑ estimation 1/(

√
M |nab|) rad, nab = ±1, ± 2

is quite large for M = 1, which is connected with the flat
“ignorance” function r(ϑ) given in Eq. (10) [3]. We can also
notice that with an increase of |nab| from 1 to 2 and, thus,
with an increase of the spin of each particle in the bipartite
system, this estimation error decreases. This means that if,
e.g., the photons are observed, then the EPI method estimates
ϑ more precisely than in the case of the detection of electrons.
As usual, the error decreases with an increase of

√
M.

D. The Rao-Cramér-Frieden inequality

In the measurement of the state of a system by an outer
observer, we obtain the data that are influenced by the
measuring apparatus. The general EPI analysis in the presence
of the measurement and its noisy influence on the internal
technical data (here ϑ) could be the topic of the separate
study [3].

In the analysis of the EPR-Bohm experiment [15], the
measurement data of the spin projection (let us, e.g., denote
them by S̄a for the particle 1) are generated by the true
values of the quantities Sa,Sb,ϑ with the noisy presence of
the measuring apparatus. In fact, this noise arises in the
Stern-Gerlach devices (or polarizers) a and b, but for other
reasons than the (assumed as equal to zero) fluctuations of the
spin projection (see Sec. II B1).

The Fisher information that takes into account the noise.
The Fisher information Inoise on the parameter ϑ obtained
from the data, which takes into account the noise of the
measurement, fulfills the relation

gϑϑ (ϑ) � Inoise(ϑ). (135)

Because Inoise(ϑ) enters into (131) in place of IF (ϑ), this
condition means the deterioration of the quality of the
estimation in comparison with the one that follows from the
Rao-Cramér inequality (132).

The information inequality. The information channel capac-
ity I is the sum (43) over the channels with the corresponding
Fisher information IF (ϑ), (113) [equal also to gϑ ϑ (ϑ) in
Eq. (112)]; therefore,

I(min) = 2π > IF (ϑ) = gϑ ϑ (ϑ) = 1 for nab = ±1,
(136)

I(s.min) = 8π > IF (ϑ) = gϑ ϑ (ϑ) = 4 for nab = ±2,

where I(min) and I(s. min) are the first and second minimal values
of I given by Eq. (80) for nab = ±1 and by Eq. (84) for
nab = ±2, respectively. From Eqs. (136), (131), and (135), we
asymptotically obtain for an M-dimensional sample

σ 2(ϑ̂) � 1

M Inoise(ϑ)
� 1

M gϑ ϑ (ϑ)

= 1

M IF (ϑ)
>

1

M I
, (137)

where I is equal to I(min) or I(s. min) for nab = ±1 or nab = ±2,
respectively.

[In the lack of noise, it is 1/[Mgϑ ϑ (ϑ)] and not 1/(MI ),
which is the proper lower bound on the variance of the
estimator ϑ̂ of ϑ].

Without the anticipating contribution of the system [de-
scribed here by IF (ϑ) of the EPI method], the measurement
would be absolutely impossible. In this sense the information
Inoise(ϑ) is generated by the Fisher information IF (ϑ), (38),
which as it is obtained by the EPI estimation procedure
is the part of the information that manifests itself in the
measurement. Thus, (with a lack of noise) this composition of
the Rao-Cramér inequality with the result of the EPI method
asymptotically leads to the inequality

σ 2(ϑ̂) IF (ϑ) � 1

M
. (138)

E. The Frieden approach to ϑ

In the original Frieden analysis, the parameter ϑ in four
joint conditional probabilities P (Sab|ϑ), (4), is, in fact, the
expected one, i.e., Eϑ (ϑ̂N=1) = ϑ . Here, the estimator ϑ̂N=1

is an additional random variable that characterizes the inner
property of the system on the same rights as the projections
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Sa and Sb of its component particles 1 and 2, and the index
N = 1 signifies that the analysis concerns the inner sample
that is taken by the system alone. Only under this condition
can the Rao-Cramér inequality be applied directly to the result
of the EPI method on IF (ϑ), giving σ 2(ϑ̂N=1) � 1/IF (ϑ). It
can be rewritten as follows [3]:

σ 2(ϑ̂N=1) IF (ϑ) � 1. (139)

Frieden also analyzed this kind of inequality for the
position-momentum representations and obtained a kind of
Heisenberg-like inequality [3]; therefore, it can be called
the Rao-Cramér-Frieden inequality. The difference between
Eqs. (139) and (138) is such that Eq. (139) characterizes
the inner accuracy of estimating the angle ϑ as a result
of the EPI estimation and by the system alone, whereas
Eq. (138) characterizes the accuracy of estimating ϑ in
the outer experiment in which data are generated by the
theoretical distribution (111) obtained as a result of the EPI
estimation.

VII. CONCLUSION

One of the main intellectual indicators, which seemed to
support the indispensability of quantum mechanics, is the
well-known EPR-Bohm relations [16] that are obtained for
both spin- 1

2 particles (electrons in this paper) and for massless
spin-1 photons. In the quantum mechanical approach, they are
obtained under the indistinguishability property of particles
and Fermi-Dirac (for electrons) and the Bose-Einstein (for
photons) statistics (for other conditions, see [16], which
were also mentioned in Sec. V C). In the EPI method, the
statistical formalism invented by Frieden and Soffer, the
EPR-Bohm result (111) for the probability distribution for
the bipartite system of particles, was originally derived in
[3]; however, the one presented in this paper [4] differs
in a few points. First, the boundary conditions (Sec. II B)
were formulated in a way that is easier to understand [15].
Second, the observed physical information used directly in
the structural information principle was consistently obtained
from the analyticity condition of the log-likelihood function
without any jump from its analytic to its metric form. The
generating equation (69), which is the central output of the
EPI method, was obtained from the observed structural and
variational information principles (57) and (63), respectively.
Third, in [3] the appeal to the orthogonality property of
quantum mechanical amplitude (introduced there) was used,
whose condition as the introductory one we succeeded in
avoiding. Instead, the regularity condition of the probability
distribution (40) (or as a consequence, the condition of the
independence of the Rao-Fisher metric (112) on the statistical
(sub)space S on the value of the parameter ϑ) was used.
This (in addition to the boundary conditions) enabled the
integration constants of the general solution of the generating
equation (69) to be determined, which led to the final
form (109) of EPR-Bohm amplitudes. Then, the well-known
solution (111) for the probability distribution in the EPR-Bohm
problem [3] was obtained.

Frieden’s coverage of quantum mechanics. In the Frieden
approach, instead of using Eq. (92), the quantum mechan-
ical amplitudes ψab(ϑ) ∝ qab(ϑ) are constructed [3] (see

the paragraph Frieden’s quantum amplitudes in Sec. V B2
and [33]). Together with the approach used in this paper
(which does not use the quantum mechanics notions in
the EPI method estimation), the Frieden’s construction of
the quantum mechanical amplitudes means that when (in-
versely) defining quantum amplitudes via the classical ones,
the classical statistics coverage of the quantum mechanical
approach (even without any mention of the hidden variables)
is obtained. We call this the Frieden’s “coverage of quantum
mechanics.”

Fourth, the analysis was made more homogeneous in the
sense that the amplitude of the bipartite system exhibits
either the periodicity that is characteristic for spin- 1

2 particles
or for the spin-1 massless photons [possessing the same
mathematical form (111)]. Thus, it is slightly easier to notice
that the EPI method of the EPR-Bohm problem determines
the wave function representations than in [3]. Fifth, this
approach inevitably connects the EPR-Bohm result (111)
with the frequencies of the events that are registered by the
experimentalist (Sec. VI). Finally (in agreement with the
previous point), the estimation of the angle ϑ is pinned to
the outer M-dimensional sample taken by the experimentalist.
In addition to these, the differences between the Frieden ap-
proach and the one presented in this paper are pointed out in the
text.

Let us note that the generating equation [written, e.g.,
in the form given by Eq. (110)] is the stationary one,
indifferently whether two measuring devices are close to
each other or infinitely far apart. Interestingly, Eq. (110) can
be postulated, e.g., from the stationary telegraphic equation
[37] for the field that is rotating with an infinite velocity
in the ϑ direction (which is formally equivalent to the
Klein-Gordon equation [37] for the tachyon propagating in
the ϑ direction). Thus, the generating equation describes
the instantaneous twist around the propagation axis of the
field of a bipartite system at the moment of detection. The
spatial part of the field of a bipartite system is one of the
amplitudes (109) of the EPR-Bohm problem. The lack of a
finite time component is seen in the boundary conditions and
is in agreement with present-day experiments [38]. However,
this could “gravitate” to the conclusion that the information
principles (57) and (65), which result in the generating
equation (110), describe the physics of the collapse of the
wave function of a bipartite system in the EPR-Bohm problem.
That would provide us with a richer theoretical structure than
the quantum mechanical one, which is based merely on the
definition of the transition amplitude for the problem [16].
When this richer structure is disclosed, it might appear that
the bipartite system is an extended, composed object, which,
when detected, knows about this event in the whole medium
of its entity by the kind of interaction that propagates inside it.
Could it be a gravitational one whose speed of propagation
is experimentally unknown until the present day [39] or
an electromagnetic one whose velocity is experimentally
measured only locally and obviously outside of such compact
systems as discussed in the EPR-Bohm problem? If the
medium is not known, the velocity could, in fact, even be
infinite. This is in agreement with the EPR-Bohm-type exper-
iments [38] (unless one believes in entanglement without any
interaction).
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Next, the EPI method provides the general formalism for
the description of entangled states [2,3,7]. This is particularly
true in the case of the EPR-Bohm problem for which pairs Sab

of spin projections of particles 1 and 2 of the bipartite system
are detected in the experiment with observed frequencies and
the entanglement concerns these frequencies. Indeed, the outer
data, which form the M-dimensional sample, are generated
from the (supposed) probability distribution (111), which this
time is obtained theoretically. They are reflected in the Rao-
Fisher metric gϑϑ of the statistical (sub)space S� and the
statistical model S (see the Appendix) and therefore in the
Fisher information IF (ϑ) and the information channel capacity
I of the EPI method (see Sec. V B5).

[The Rao-Fisher metric gϑϑ is equal to the Fisher infor-
mation IF (ϑ), (41), which enters into the information channel
capacity I , (43), via Eq. (37) (see Sec. V B5)].

Therefore (in the case of the inseparability of I into the sum
of the proper subsystems’ information channel capacities and
Q into the corresponding structural information terms), the
possibility of describing the entangled states follows from the
fact that the structural information principle I = −Q, (45),
describes the relation of the outer data of the M-dimensional
sample (connected with I ) with the unobserved configuration
of the system, which is described by structural information Q.

In this paper, the unobserved configuration of the system
depends on the angle ϑ between the particles spin projections
in two measuring devices. Therefore, in spite of the lack of
any direct insight into the inner properties of the system, we
can (in accordance with Sec. VI) make an inference about
the (inner) angle ϑ by simply observing the frequencies of
the pairs of the spin projections. This can be done with the finite
accuracy that is also discussed in Sec. VI. The mere fact that the
possibility of such an inference exists determines the situation
that is called the entanglement of the states of the particles of
a bipartite system that is perceived in the dependence of the
frequencies of both particle spin projections on the inner angle
ϑ of the system [40]. This is the reason why the experimentalist
is able to estimate the value of ϑ . However, in a more complete
approach to the EPI-method estimation, its maximal accuracy
also has to be discussed [7].

Recently, increasing problems with the experimental vali-
dation of the uncertainty relation (UR) [41,42] in its quantum
mechanical Heisenberg form have been reported. [Unless one
forgets that the intrinsic quantum mechanical uncertainties of
the complementary variables on the quantum state are, for
the purpose of the verification of any Heisenberg uncertainty
principle (as it takes place for any form of UR), always
estimated experimentally.] One of them is connected with
an experiment of the successive projective measurements
of two noncommuting neutron spin components [43]. The
other group is connected with the diffraction-interferometric
experiments for a photon, where both UR and the meaning of
the half-widths of a pair of functions (time and frequency),
which are related by the Fourier transform, are examined [24].
Thus, the quantum mechanical state-dependent formulation of
the simultaneous measurability of the observables (that also
uses the notion of their closer unknown noise operators) was
proposed, which led to a deep theoretical reformulation of
UR in the form of the measurement disturbance relationship
(MDR) [44–46]. However, the proper implementation of the

Rao-Cramér inequality can also be considered [7,14] and
the call to abandon UR on behalf of the more information
oriented inequality has already been sounded. It was discussed
in Secs. VI C–VI E for the EPR-Bohm problem.

Next, the irrelevance of the hidden variable idea for the
construction of Bell-like inequalities in the EPI method was
discussed in Sec. V C1 and, therefore, we conclude that the
Bell-like tests do not put quantum theory on a pedestal
at all. Conversely, the EPI method suggests that although
quantum mechanics is the experimentally reliable one, the
foundation of its underlying method could be of the statistical
information theory background. The introductory steps for the
construction of both the Maxwell and Dirac equations using
the EPI method and the quantization of the helicity of the
free electromagnetic field and spin for the Dirac field were
mentioned in the Introduction and Sec. II B1. In this paper,
using the EPI method, which follows the previous findings,
it was shown (Secs. V A1–V A2) that as a solution of the
generating equation with the constants of integration nab equal
to ±1 or ±2 for every Sab ∈ �ab, the bipartite EPR-Bohm
amplitudes for the rotation group representation of the spin- 1

2
or spin-1 particles, respectively, appear. That is, the Fermi-
Dirac statistics used in the case of electrons for a quantum
mechanical description of the EPR-Bohm problem seems to be
a reminiscence of the statistical information principles. Thus,
the Pauli exclusion principle may also have a statistical infor-
mation theory background. The same statistical information
background is also suggested for the Bose-Einstein statistics
that is used for a description of the EPR-Bohm-like problem
for photons.

Finally, the general mathematical thought that is behind the
results of this paper is the self-consistency of the solution of a
proper set of partial differential equations. After they are solved
self-consistently, all degrees of freedom are removed and what
remains is one particular state of the system. In this paper, this
is a particular solution of the bipartite amplitude of the EPR-
Bohm problem that is obtained by the self-consistent solution
of the pair of (differential) information principles. In the case
of an electronic field fluctuation coupled to its electromagnetic
self-field, the self-consistent treatment of the Dirac equation
and classical Maxwell equations resulted in the (obtained
iteratively) solution for the Lamb shift [47]. In the case of
the self-consistent model of classical field interactions of the
electroweak model that is solved in the presence of nonzero
extended fermionic charge density fluctuations, the solution
obtained in [48] was a spin zero electrically uncharged droplet,
interpreted as the state of mass equal to ∼126.5 GeV, which
was observed recently in an LHC experiment. In [23,49,50]
the dynamical compactification of a six-dimensional model of
the space-time to the four-dimensional, locally Minkowskian
space-time, which resulted from the self-consistent solution
of the coupled Einstein and Klein-Gordon equations, was
presented.

Thus, in this paper it can also be seen that the necessity to
introduce the quantum (mechanical or field theory) approach
is the result of the previous neglect of the self-consistency of
a proper set of partial differential equations, which seems to
be the primary property of physical structures. Finally, each of
the solutions (109) of the EPR-Bohm problem describes the
compound, extended in space, state of a bipartite system.
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APPENDIX: THE RAO-FISHER METRICS ON THE
PROBABILITY SIMPLEX AND ITS SUBMANIFOLDS

Let in the result of an experiment the finite number ℵ of
possible outcomes Sj , j = 1,2, . . . ,ℵ of a random variable
S be obtained. They span a base space of events �. The
probabilities of the outcomes Sj are Pj ≡ P (Sj ) and

Pj ≡ P (Sj ) � 0 and
ℵ∑

j=1

Pj = 1. (A1)

Let us choose λj := Pj as the j th component of the set λ ≡
(λj )ℵj=1 of parameters. Thus, the probability distribution P is
parametrized by λ, i.e., Pj ≡ P (Sj ; λ). Now, let us construct
the statistical space:

S� =
{

P (S; λ)|λ ≡ (λj )ℵj=1 ∈ � ⊂ Rℵ,

λj � 0 (∀ j ) and
ℵ∑

j=1

λj = 1

}
.

In the case of the EPR-Bohm problem the number of events is
equal to ℵ = 4 and the probability distribution P (Sj ; λ), (120),
is determined by Eq. (111), where in Eq. (98) the following
denotation of the index j was introduced: The value j − 1 ≡
ab = 0,1,2,3 corresponds to ab = + + , − −, + −, − +,
respectively.

The (ℵ − 1)-simplex of the probability distributions P , is
defined as follows:

ℵ−1 =
{

(P1,P2, . . . ,Pℵ) ∈ Rℵ;

Pj � 0, j = 1, . . . ,ℵ, for
ℵ∑

j=1

Pj = 1

}
. (A2)

It is the convex set, i.e., each probability vector �P = (Pj )ℵj=1 ∈
ℵ−1 can be expressed as �P = ∑ℵ

j=1 εj Pj , where
∑ℵ

j=1 εj =
1 [30].

The squared infinitesimal distance on the probability
simplex ℵ−1 is equal to

ds2 =
ℵ∑

j=1

gjjdPj dPj =
ℵ∑

j=1

1

Pj

dPj dPj , (A3)

where the diagonality of the Rao-Fisher metric,

(gij ) = diag

(
δij

Pj

)
, (A4)

on the ℵ − 1 simplex ℵ−1 [30] was used.
Let us perform the transformation Pj → qj given by 4 Pj =

q2
j , j = 1, . . . ,ℵ, from probabilities to amplitudes [compare

Eq. (99)]. Thus, on the coordinatized by a set of d parameters
� = (θα)dα=1 statistical (sub)space of the (ℵ − 1)-dimensional

probability simplex ℵ−1, the metric gij induces the Rao-
Fisher metric gαβ , which has the form [30]

gαβ =
ℵ∑

j=1

Pj

∂ ln Pj

∂θα

∂ ln Pj

∂θβ
=

ℵ∑
j=1

1

Pj

∂Pj

∂θα

∂Pj

∂θβ

≡
ℵ∑

i,j=1

gij ∂Pi

∂θα

∂Pj

∂θβ
=

ℵ∑
j=1

∂qj

∂θα

∂qj

∂θβ
, (A5)

where in the second line the diagonality, (A4), of the Rao-
Fisher metric gij on the ℵ − 1 simplex, was emphasized.

Due to the normalization
∑ℵ

j=1 Pj = 1, it follows that
[compare Eqs. (5) and (106)]

ℵ∑
j=1

qjqj = 4. (A6)

Thus, we notice that the amplitudes’ sphere is of the radius 2.
For example, for the EPR-Bohm problem, in this paper

the statistical (sub)space S, (6), with d = 1 parameter ϑ is
investigated:

S = {P (Sab|ϑ)| ϑ ∈ 〈0 2 π ) ≡ Vϑ ⊂ R1}.
The model S is coordinatized by parameter ϑ , one-
dimensional submanifold of ℵ − 1 = 3-dimensional probabil-
ity simplex 3. Thus, the Rao-Fisher metric (A5) on S of the
EPR-Bohm problem, is equal to

gϑ ϑ (ϑ) =
ℵ=4∑
j=1

∂q̃j

∂ϑ

∂q̃j

∂ϑ
,

where q̃j ≡ qab(ϑ) are defined in (99). After the calculations
presented in Sec. V B, the Rao-Fisher metric (112) on S
appeared to be constant, i.e., gϑ ϑ = n2

ab = const., where
nab = ±1 or ±2 for the bipartite state of electrons or photons,
respectively.

Now, let us determine the Rao-Fisher metric gkl
� on the

statistical (sub)space S�, (A2), of the (ℵ − 1)-dimensional
probability simplex. Knowing, in accordance with Eq. (A5),
that it is coordinatized by the set of parameters λ ≡ (λk)d=ℵ

k=1 ,
we obtain

gkl
� =

ℵ∑
i,j=1

gij ∂Pi

∂λk

∂Pj

∂λl

=
ℵ∑

i,j=1

gij ∂Pi

∂Pk

∂Pj

∂Pl

=
ℵ∑

i,j=1

gij δk
i δ

l
j = gkl. (A7)

We see that the components gkl
� , k,l = 1,2, . . . ,ℵ, of the

searched for metric are equal to the corresponding components
gkl of the Rao-Fisher metric on the probability simplex
ℵ−1, i.e., in accord with Eq. (A4), g

ij

� = δij

Pj
. Thus, we can

finally compute the Rao-Fisher metric gϑϑ
� on the submanifold

coordinatized by one parameter ϑ , which is induced by the
metric gkl

� on the statistical space S�:

gϑϑ
� =

ℵ∑
k,l=1

gkl
�

∂Pk

∂ϑ

∂Pl

∂ϑ
=

ℵ∑
l=1

1

Pl

∂Pl

∂ϑ

∂Pl

∂ϑ

=
ℵ∑

l=1

∂ql

∂ϑ

∂ql

∂ϑ
= gϑϑ . (A8)
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In conclusion, the Rao-Fisher metric gϑϑ
� on the submanifold

(coordinatized by ϑ) of the statistical space S� is equal to
the Rao-Fisher metric gϑ ϑ on the submanifold (coordinatized
by ϑ) of the simplex of probabilities ℵ−1. Thus, due to
the Rao-Fisher metric gϑϑ derived on S for the EPR-Bohm

problem, (112), we finally obtain:

gϑ ϑ
� = gϑ ϑ = n2

ab = const.,

where nab = ±1 or ± 2 for every Sab ∈ �ab.
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