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Minimal spanning trees at the percolation threshold: A numerical calculation
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The fractal dimension of minimal spanning trees on percolation clusters is estimated for dimensions d up
to d = 5. A robust analysis technique is developed for correlated data, as seen in such trees. This should be a
robust method suitable for analyzing a wide array of randomly generated fractal structures. The trees analyzed
using these techniques are built using a combination of Prim’s and Kruskal’s algorithms for finding minimal
spanning trees. This combination reduces memory usage and allows for simulation of larger systems than would
otherwise be possible. The path length fractal dimension ds of MSTs on critical percolation clusters is found to
be compatible with the predictions of the perturbation expansion developed by T. S. Jackson and N. Read [Phys.
Rev. E 81, 021131 (2010)].
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I. INTRODUCTION TO THE PROBLEM

The statistical physics and dynamics of disordered physical
systems naturally leads to the study of fractal geometric
objects. Physical systems with quenched disorder, i.e., those
with fixed random heterogeneities, often have power-law
correlations at large scales or interfaces that are fractal or
self-affine. These structures can result from some global
optimization problem that has connections with graph theory.
For example, Dijkstra’s shortest path algorithm [1,2] can
be used to find the lowest energy path of a vortex line
in a disordered superconductor [3,4], and these paths are
self-affine. Excitations in a disordered XY model in two
dimensions [5,6], domain walls in spin glasses [7], and
boundaries between drainage basins [8] are examples of
physical objects with fractal dimension that are found by global
optimization.

A structure with fractal scaling that arises in physical
contexts is the minimal spanning tree (MST). One such context
is a highly disordered Ising spin glass. Newman and Stein
showed that for the strongly disordered limit, the problem of
finding a ground state can be directly mapped to finding an
MST [9]. This mapping can be used to investigate the multi-
plicity of ground states in the thermodynamic limit. Minimal
spanning trees have other applications such as in transportation
networks connecting cities [10], telecommunications networks
connecting remote computer terminals [11], efficient circuit
design [12], taxonomic reconstruction of evolutionary trees
[13], and pattern recognition in image analysis [14].

A minimal spanning tree is a structure that connects a set
of nodes with minimum total cost. This structure is defined for
a weighted graph G = (V,E,w), where V is a set of vertices
(or nodes), E is a set of edges that connect vertices, and w is a
weight function, with each edge e ∈ E having weight w(e). A
spanning tree is a loopless connected set of edges that includes
all the vertices in V . The minimal spanning tree is the spanning
tree T that minimizes the total weight

w(T ) =
∑
e∈T

w(e) . (1)

This is a well-known problem in computer science and
combinatorics. See Ref. [15] for a general overview of MSTs
and MST-finding algorithms.

A notable fact about the MST is that the minimal tree is
determined only by the numerical ordering of the weights,
i.e., it is otherwise independent of their value. So there is
a large invariance or universality for these structures; their
geometry is independent of the disorder distributions. As
long as the weights w(e) are independently drawn from the
same distribution (independent identically distributed or i.i.d.
weights), the edges can be sorted in order of increasing
weight. This ordering alone determines the tree. Two physical
problems with wholly different distributions of quenched
disorder have MSTs with equivalent statistics.

Recently, Jackson and Read carried out an analytical
calculation for the fractal dimension ds of paths in MSTs
[16,17]. They developed a perturbation expansion for ds

for MSTs on critical percolation clusters in d dimensions,
obtaining the result

ds = 2 − ε

7
+ O(ε2) , (2)

where ε = 6 − d and d = 6 is the upper critical dimension
[17]. In general, disordered systems are difficult to analyze
and rarely yield quantitative analytic results. This prediction
therefore provides a strong motivation for more precise com-
putation of fractal dimensions in spanning trees, in particular,
dimensions of the trees on spanning percolation clusters. We
note that it is unclear whether the fractal dimension of these
trees is affected by being constructed on spanning percolation
clusters as opposed to a whole lattice. The work presented in
this paper seeks to numerically compute ds in dimensions 2 �
d � 5 for comparison with Eq. (2). This calculation employs
a combination of memory-saving techniques to simulate large
systems as well as careful data fitting procedures to obtain
precise estimates for ds in the limit of infinite system size.

Our final calculations for ds yield values of 1.216(1) for
d = 2, 1.46(1) for d = 3, 1.65(2) for d = 4, and 1.86(4) for
d = 5 (refer to Table I). We develop and utilize a χ2 test
that accounts for the scale-invariant correlations found in
the data, allowing for an improved χ2 measure and robust
estimates of the uncertainty in the effective exponent at scale
L, ds(L). We then use linear and nonlinear least squares
fitting to extrapolate to the infinite system size limit. We
find the numerical results to be of higher precision than
previous calculations and compatible with Eq. (2), though
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TABLE I. ds calculated using MST algorithms.

Dimension d Two-step Prim’s (no trimming)

2 1.216(1) 1.216(1)
3 1.46(1) 1.46(1)
4 1.65(2) 1.66(2)
5 1.86(4) 1.86(4)

more conclusive confirmation requires improved numerical
statistics and higher order analytic work. We emphasize that
the analysis procedure used here is generalizable and could be
useful for other work dealing with disordered systems.

II. MODEL AND ALGORITHMS

To model MSTs on percolation clusters, we simulated hy-
percubic lattices with L vertices per side with periodic bound-
ary conditions, giving Ld total vertices and dLd total edges.
Edges are independently given a weight randomly distributed
on the interval (0,1), where w(e) is represented by a double
precision number. Very rarely two edges are assigned the same
weight. In this case, a new random weight is generated for one
of these edges until a weight is generated that does not match
any previously assigned weight. An important distinction to
note is that rather than seeking to find a tree that spans all of the
vertices in these hypercubic lattices, we seek to find the MST
on a percolation cluster that wraps around the periodic lattice
(in any of the d directions) at the threshold of percolation. Thus
the MST-finding algorithms are stopped when the tree contains
a subset of vertices that wraps around the system instead of
including all Ld vertices of the graph. The final object of
interest, the MST on a critical percolation cluster, contains
only a small subset of the set of vertices V in the lattice.

In order to avoid confusion, we first note a dual usage of
the term spanning. For an MST, spanning means that the tree
includes all vertices in the graph for which the MST is found. In
the context of percolation theory, the term refers to a cluster that
is spanning or percolating around the lattice. We use spanning
in both senses, with the correct sense implied by the context.

One naive approach to finding the MST on a graph is
to iterate through the list of all spanning trees and select
the tree with the lowest total weight. This approach might
work on a small finite graph, but the number of trees grows
exponentially with Ld . In order to analyze properties of MSTs
in the thermodynamic limit of infinite system size, a more
efficient MST-finding algorithm (both in terms of running time
and maximum memory requirements) is needed.

As background for the algorithms used to find MSTs, it
might be helpful to briefly review the relationship between
invasion percolation and Bernoulli percolation. In Bernoulli
(bond) percolation [18,19], edges in a random graph have a
probability p to be occupied, and a probability 1 − p to be
unoccupied. After determining the occupation of each edge
independently, one inspects the graph to check for long-range
connectivity in the form of a cluster of connected vertices that
percolates, i.e., spans the graph. On a periodic hypercubic
lattice, one definition of a percolating or spanning cluster
is a cluster that wraps around the lattice along one or more
of the d spatial dimension axes. Such a cluster contains a

loop that cannot be contracted to a point. Note that Bernoulli
percolation is equivalent to assigning weights w(e) on the
interval (0,1) and occupying only those edges with weights
w(e) � p. We will refer to this as the alternative definition of
Bernoulli percolation.

Examining larger and larger systems on a macroscopic
scale, this percolation transition becomes clear; below some
critical percolation probability pc only small clusters are seen,
but at p = pc large clusters that span the system begin to
emerge. Aizenman refers to these large critical clusters as
incipient spanning clusters (ISCs), a term which is closely
related to, but distinct from, the incipient infinite cluster (IIC)
[20,21]. In the exploration of Bernoulli percolation, this
occupation probability p is finely tuned in order to observe this
critical transition and the clusters that are formed at criticality.

An alternate approach to percolation is invasion percolation
[22]. Invasion percolation is a procedure that greedily occupies
edges of low weight w and has a termination condition.
Invasion percolation consists of a growing cluster C that is
a subset of E. This cluster has a set of adjacent edges ∂C.
The cluster C begins as a single occupied seed site. Additional
sites are “invaded” by choosing from ∂C the lowest weight
edge, el(∂C), and expanding the invaded region to include this
edge, by adding el(∂C) to C. This invasion percolation process
can be repeated until long-range connectivity is observed (i.e.,
until the invaded region percolates across the system).

There has been much discussion [23–25] on how to relate
the clusters of invasion percolation to those of ordinary
Bernoulli percolation. There seems to be a strong reason
to believe that in the limit of infinite system size, infinite
connected clusters created using both of these percolation
methods should obey the same scaling relations, meaning
that the fractal path length dimension ds should be the same
for both methods. Invasion percolation is extremely useful
because it allows for the simulation of critical percolation
systems without having any knowledge of what the value of
pc is for a particular system. Thus invasion percolation is an
example of self-organized criticality [23,24].

In our particular case, we’re interested in analyzing the
MSTs that lie on an ISC. In other words, we want to find
the MST for the ISC. We’ll refer to this final object as
the MTISC (minimal tree for an incipient spanning cluster).
Here we use two algorithms, Kruskal’s algorithm [26] and
Prim’s algorithm [10]. While Prim’s algorithm is similar
to the invasion percolation process described above [27],
Kruskal’s algorithm is related to Bernoulli percolation due to
the global nature of the algorithm. However, neither algorithm
actually requires the choice of an occupation probability
p as a parameter, and consequently both processes exhibit
self-organized critical behavior, as the growth is stopped when
a tree is found that wraps [28]. For a more precise definition
of these algorithms, refer to Appendix A. We next present less
formal descriptions of these algorithms.

A. Kruskal’s algorithm

Kruskal’s algorithm is an MST-finding algorithm that
considers all edges of a graph. In Kruskal’s algorithm, we
grow a forest of many small trees, merging small groups of
trees into larger trees and eventually identifying one of these
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FIG. 1. A sample iteration of Kruskal’s algorithm on an eight by
eight periodic square lattice (d = 2). At a given step, the state is a
forest of trees, which includes isolated sites (open circles) and larger
trees (connected solid circles). During each step of the algorithm, the
edge with the lowest weight is selected from the remaining unselected
edges. For example, if edge A is selected, the trees containing either
endpoint of edge A are merged into a single tree. If edge B is selected,
its addition would form a nonwrapping loop (forbidden cycle), so edge
B is not added to any tree and is removed from future consideration.
If edge C is selected, its addition would form a wrapping loop
(allowed cycle), so the algorithm is terminated. The tree containing
the endpoints of edge C is then the Kruskal’s MTISC, TK .

large trees as the MTISC, terminating the algorithm. At the
start of Kruskal’s algorithm, each vertex is its own isolated
tree. All of the edges that are not yet part of a tree are sorted,
and the edge with minimal weight is selected, excluding edges
that would form nonwrapping loops. When an edge is selected,
the trees containing each of its vertices are joined into a single
tree. This process continues until a tree grows big enough
that it wraps around the periodic lattice. At this time, this
tree is identified as the Kruskal’s MTISC, TK . This process is
illustrated in Fig. 1.

Kruskal’s algorithm bears similarity to Bernoulli percola-
tion in that it is a nonlocal algorithm that requires information
about all edges of the graph. If we consider a graph with
edges whose weights are distributed evenly on (0,1) and
run Kruskal’s algorithm until we first examine an edge with
weight w > pc, the sites of TK are identical to those obtained
from performing Bernoulli percolation on the same graph
with occupation probability pc. Thus TK is the MST on the
Bernoulli percolation cluster. Given the Bernoulli percolation
cluster, this MST is that formed by using the weights w(e) in
the alternative definition of Bernoulli percolation.

B. Prim’s algorithm

Prim’s algorithm is equivalent to algorithms for loopless
invasion percolation [27]. At the start of the algorithm, the
MST consists of a single seed site. This tree grows outward
from this vertex through the examination and conditional
addition of adjacent edges, as edges adjacent to the growing
tree are examined. At any given iteration, the minimal weight
adjacent edge is selected and incorporated into the tree,
excluding edges that would lead to nonwrapping loops. The
check for which edges form a loop is simple: if both ends

FIG. 2. A sample iteration of Prim’s algorithm on an eight by
eight periodic square lattice (d = 2). The tree is represented by
connected solid circles and lines, while unoccupied sites are shown
as open circles. The diamond-shaped vertex at the bottom left of the
lattice is the initial seed site v0. During each step of the algorithm,
the edge adjacent to the current Prim’s tree with the lowest weight
is selected. If edge A is selected, it is added to the Prim’s tree,
along with the endpoint of A that is not already in the Prim’s tree.
If edge B is selected, its addition to the Prim’s tree would form a
nonwrapping loop (forbidden cycle), so edge B is not added to the
tree and is removed from future consideration. If edge C has the
lowest weight and is selected, its addition would cause the Prim’s
tree to wrap around the periodic lattice (adding an allowed cycle),
so the algorithm is terminated, leaving the current Prim’s tree as the
Prim’s MTISC, TP .

of the edge are in the current tree, a loop would be formed.
To check whether a loop is wrapping or nonwrapping, the
algorithm assigns to each vertex a a displacement �ra from the
origin. This displacement is found for a newly added vertex b

by adding a vector displacement �eab for the edge to the vector
displacement of the end of the edge (site) that is already in the
tree �ra . Thus for a newly added site b we have �rb = �ra + �eab.
When a loop is encountered, this new site b will already have
a vector displacement �r ′

b defined, since this site is already in
the tree. If the relative displacement |�rb − �r ′

b| between these
two labelings is greater than L, the loop formed is a wrapping
loop. When this wrapping edge is examined, the algorithm
is terminated, and this final tree is identified as the Prim’s
MTISC, TP , as shown in Fig. 2. TP is thus the MST on the
invasion percolation cluster, given an initial seed site. Note
that this MST or invasion cluster may depend on the seed site.

To increase efficiency when generating MTISCs, Kruskal’s,
and Prim’s algorithms can be engineered to save memory by
creating edges and weights only as needed during the execution
of the growth algorithm rather than at the start [29,30]. The
memory saved in the Prim’s method is much larger and leads
to an overall more memory efficient method because Prim’s
algorithm only requires the growing of a single tree rather than
a large forest of trees. Due to this decreased memory usage,
it is possible to simulate larger systems with Prim’s algorithm
than with Kruskal’s algorithm.

C. Two-step method

We used a two-step method, combining Prim’s and
Kruskal’s algorithms in order to take advantage of the in-
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(a) (b)

FIG. 3. Illustration of the two-step method. This method grows
a candidate MTISC using the Prim’s method and then trims the tree
using Kruskal’s algorithm. (a) depicts TP (plus the final wrapping
edge) which is given as input to Kruskal’s algorithm. During
construction of this tree, only edges adjacent to the tree are tested.
The potential connectivity of the unoccupied sites is explicitly shown
using open circles and thin lines, and for reference the Prim’s seed
site v0 at the bottom left of the lattice is represented by a diamond.
(b) shows the state of the graph after running 23 steps of Kruskal’s
algorithm on TP , with trees being represented by connected solid
circles. If edge B is selected before edge A, i.e., w(B) < w(A), the
Prim’s seed site v0 will not be part of TK , and the disconnected portion
of the graph containing the Prim’s seed site v0 will be trimmed off.

creased efficiency afforded by Prim’s algorithm when selecting
a typical MTISC. We first generate a tree TP using Prim’s
algorithm and then apply Kruskal’s algorithm to this tree,
ensuring that the MTISC obtained has the same scaling as the
MTISC that would be obtained by increasing p large enough
to form a forest, one of whose trees is the final tree TK . The
data presented in this paper comes from analysis of MTISCs
generated by the two-step method, as well as comparisons with
the intermediate data from TP , before Kruskal’s algorithm is
applied to TP .

While Prim’s algorithm in general takes less time and
memory to find an MTISC than Kruskal’s algorithm, the two
algorithms do not find exactly the same MTISC [31]. TK and
TP are not completely equivalent because TK is an MST on
the Bernoulli percolation cluster, while TP is an MST on an
invasion percolation cluster. As shown in detail in Appendix B,
either TK is a subset of TP , or they do not intersect. We are
interested in constructing an MTISC that is either identical
to TK or scales the same as TK . The nonlocal greedy edge
selection of Kruskal’s algorithm guarantees TK to have the
same sites as a Bernoulli percolation cluster.

A technical detail to note about the two-step method is that
in the final stage of Prim’s algorithm when a wrapping edge is
selected, we add this edge to the final Prim’s tree TP . This is
done so that when Kruskal’s algorithm is applied to TP , there
will be a wrapping edge to satisfy the termination condition
of Kruskal’s algorithm. While the inclusion of this edge
temporarily destroys the tree-like nature of TP , its inclusion is
essential.

Because Prim’s growth begins at a random seed site that
does not necessarily belong to TK , often the TK is a subset
of TP . This of course depends which vertex v0 is used as
the seed site for Prim’s growth, as the Prim’s MTISC is a
function of its seed site, TP (v0). Executing Kruskal’s algorithm
in the second step of this method serves to “trim off” the
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FIG. 4. (Color online) Scaling collapse for d = 2 with
ds = 1.215, which appears to be moderately close to the true value
of ds judging by eye from the goodness of the collapse. Note that
error bars are smaller than the symbol size for all points except the
right-most point.

part of TP (v0) that includes the seed site v0 and that does
not belong to TK . The tree derived from this procedure is
termed the two-step MTISC, T2. This method is illustrated in
Fig. 3.

We show in Appendix B that this two-step procedure yields
the Kruskal’s MTISC, i.e., T2 = TK , in all cases except when
there naturally arise multiple disjoint ISCs on the lattice at
criticality. By direct simulation of these systems, we observed
that T2 �= TK about 0.2% of the time in two dimensions,
1% in three dimensions, and 5% in four dimensions. Five
dimensional samples were not compared due to the large
memory demands of simulating minimal spanning forests in
five dimensions.

We suppose by standard scaling that in the case where
T2 �= TK , T2 and TK should have the same path length fractal
dimension ds . We simulated samples in this case for systems
up to size 5122, 643, and 324. Examining scaling collapses
as in Fig. 4, we observed similar values of ds for T2 and
TK in two, three, and four dimensions. Data for TK in five
dimensions was not obtained due to the large memory demands
of simulating minimal spanning forests in five dimensions.
The memory requirements for the two-step method allowed
us to simulate systems of size 20482 within roughly 2 GB
of memory, 2563 within 1.5 GB, 644 within 1 GB, and 485

within 2 GB.

III. ANALYSIS/METHODS

A. Methods for scaling analysis

To find the fractal dimension of the minimal trees on span-
ning percolation clusters, we compute the Euclidean distance r

and path length s between some origin on the MTISC and other
points on the MTISC. Accurately determining the scaling in
the limit of large clusters requires taking into account lattice
effects, finite size effects, and statistical uncertainties. Given
any two points on a tree, there is a unique path between the
two points, so that the path length is easily defined. The choice
of endpoints for the paths is chosen in a natural fashion for
each tree.

For trees constructed using Prim’s algorithm, the origin is
taken to be the seed site where cluster growth begins. The set
of paths connecting the origin to all other points in the tree
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FIG. 5. (Color online) A sample collapse for two systems of size L = 32 and L = 64 in dimension d = 2. (a) Shows the comparison of the
two systems at interpolated points ω0

k for a value of ds = 1.2. Comparing the value of ρk(L1 = 32) indicated by the blue (dark gray) triangles
and ρk(L2 = 64) indicated by the green (light gray) circles at each of these points allows for the calculation of χ2(ds ; L1,L2). (b) Shows χ 2

compared with an expected estimate χ 2
p as a function of the fitting parameter ds for the same pair of systems. Though we determine final error

bars by resampling, the χ 2 model is shown for comparison.

is used in the statistics. For each tree TP , we find nP (s), the
number of paths of length s that start at the origin. We use
rP (s) to indicate the average over all paths of length s of the
Euclidean distance |�r|.

After then running Kruskal’s algorithm on the Prim’s tree
to find the trimmed MTISC T2, a random origin is chosen on
the trimmed tree. All paths from this new origin are used to
find both r(s) and n(s), the averaged Euclidean distance and
number of paths. In order to reduce the amount of data stored,
the full set of N samples is grouped into sets of Nb batches of
uniform size N/Nb. Thebatch-averaged quantities of r(s) and
n(s) for these trimmed trees are calculated and stored. Here
we use r(s) and n(s) to refer to data generated by the two-step
algorithm. As a comparison, we also looked at the averages
for Prim’s trees, before trimming.

We assume that the paths on the tree are well described
as fractal. The scaling of the sample-averaged r(s) will then
follow the relation

r(s) ∼ s1/ds . (3)

If we write L as the length of one side of a hypercubic system,
then s/Lds is a natural scaling parameter, and we expect to
see finite size effects near s/Lds = 1, as paths of this length
approach the size of the system. The standard one parameter
finite size scaling assumption is then that r(s) will scale like
s1/ds multiplied by some unknown function of the argument
s1/ds L−1. The form of the scaling hypothesis is that

r(s) ≈ s1/ds f

(
s1/ds

L

)
≈ s1/ds g

(
s

Lds

)
, (4)

where the scaling functions f (ω) and g(ω) behave as f (ω) ≈
c1 for some constant c1 for ω � 1, f (ω) ≈ 0 as ω → ∞,
g(ω) ≈ c2 for some constant c2 for ω � 1, g(ω) ≈ 0 as
ω → ∞. For more compact formulas, we define the scaled
dimensionless variables

ρ = r(s)

s1/ds
, (5)

ω = s

Lds
. (6)

Using this scaling hypothesis, we can make estimates for
ds by plotting data for multiple system sizes on the scaled

axes of ρ vs. ω. If we tune the parameter ds , we see that the
curves for various sizes Li can be made to collapse well near
an estimated best value of ds (see Fig. 4). While this method
allows us to get a fair idea of this exponent ds , it relies on
subjective estimations of curve collapse and for that reason is
not ideal when attempting precise estimates.

To have a better estimate for ds and to estimate the uncer-
tainty in this estimate, we have implemented an automated
fitting procedure. This procedure determines an effective
exponent ds(L) derived from data for samples of size L and
of larger size 2L by minimizing a “goodness of fit” parameter
χ2 at each scale L. The only input to this procedure is an
estimate of sl , the small path data cutoff, which is discussed
in Appendix C. We then extrapolate ds(L) for L → ∞ to get
our best estimate for ds .

The key part of this calculation is to choose a robust
and reliable measure for χ2. This allows us to quantitatively
measure how well the data for a given pair of system sizes
collapses as a function of the parameter ds . We seek a value
of ds for which this χ2 is minimized (Fig. 5), though the
magnitude of our final error bars are determined by resampling.
Our definition of χ2 must allow for nonuniform correlations
in fluctuations of r(s) between different values of s, discrete
lattice effects (small s lower data cutoff), and statistical
uncertainties (large s upper data cutoff).

B. Correlations in r(s)

In order to define a useful χ2 statistic, we first focus on
the correlations we observed in the r(s) data for the spanning
trees. In summary, we find that these correlations have a range
in s that grows linearly with increasing path length s, in
dimensions d = 2,3,4,5. We then modify the standard χ2 test
for uncorrelated data to account for these correlations.

To describe correlations in the averaged r(s) data, it will be
helpful to first define how our data is averaged over samples,
since we use multiple groupings of data for calculating
averages. Let ri(s) denote an average of Euclidean distance
r = |�r| over all points on tree i that are at a chemical (path
length) distance s from the origin for each tree i = 1, . . . ,N in
the N samples. For faster analysis, the N samples are organized
into Nb batches. The batch index α ranges over 1 � α � Nb.
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FIG. 6. (Color online) Variations from the mean for a typical
batch α of data for a system of size L = 64 in dimension d = 2. The
difference between the mean Euclidean distances δrα(s) = rα(s) −
r(s) is plotted vs. path length s.

We will use rα(s) to denote an average over the m = N/Nb

samples in batch α:

rα(s) = 1

m

∑
i∈α

ri(s) . (7)

The global average over all N samples will be represented by

r(s) = 1

Nb

Nb∑
α=1

rα(s) = 1

N

N∑
i=1

ri(s) . (8)

To initially examine correlations over s of ri(s) within a
single tree, we plot the fluctuations of the batch averages rα(s)
about the global average r(s). That is, we plot the variations
of the average δrα(s), where

δrα(s) = rα(s) − r(s) , (9)

vs. path length s. Fig. 6 displays these correlations for a typical
batch of data in a system of size 642.

Note that the form of the correlations should be independent
of batch size, up to a multiplicative scaling factor. We can see
this explicitly by examining δrα(s)δrα(t) for path length values
s and t . For i �= j , i and j are independent samples, so we can
use the relation

δri(s)δrj (t) = δri(s) δrj (t) (10)

and of course

δri(s) = ri(s) − r(s) = 0 . (11)

By standard computation all of the i �= j cross terms are zero,
and we are left with

δrα(s)δrα(t) = 1

m
δri(s)δri(t) , (12)

showing that the choice of grouping the data into batches
should not affect the form of the correlations in r(s).

To quantitatively examine these correlations we compute
the correlation matrix cs,t defined as

cs,t = 1

Nb

Nb∑
α=1

δrα(s)δrα(t)

γ (s)γ (t)
. (13)

Here γ (s) is the root mean square fluctuation in δrα(s)
computed over the Nb batches of data and is used to normalize
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FIG. 7. (Color online) Correlation matrix cs,t averaged over all
data for systems of size L = 64 in dimension d = 2. Selected
contours are shown.

the entries cs,t of the correlation matrix:

γ 2(s) = 1

Nb

Nb∑
α=1

δr2
α(s) . (14)

A sample correlation matrix for L = 64 is plotted in Fig. 7.
The data suggest that the correlation length increases with
increasing s. To construct a model for the scaled correlation
length, we measured the width along the diagonal of the
peak in the correlation matrix for various values of s. We
used different measures for measuring this width, including a
measure of the full width at half maximum (how many “steps”
away from the diagonal before cs,t falls to a value of 1/2),
a measure of one decay length (how many steps from the
diagonal until cs,t drops to a value of 1/e), and a measure using
an exponential decay model cs,t = exp(−|s − t |/
′) assuming
an unscaled correlation length 
′. We calculate 
′ using the
zeroth moment (integral) of cs,t , allowing us to then obtain the
scaled correlation length 
 = 
′/Lds , given a rough estimate
for ds .

We plot in Fig. 8 the scaled correlation length 
 vs. ω for
multiple system sizes for dimension d = 2, using the zeroth
moment of cs,t to estimate the unscaled correlation length
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�
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d = 2, ds = 1.215

L = 16
L = 64
L = 256
L = 2048

FIG. 8. (Color online) Scaled correlation length 
 vs. ω in
dimension d = 2 with ds = 1.215 for systems L = 16,64,256,2048
(red solid, green dashed, blue dotted, and magenta dash-dotted lines,
respectively). In this case 
 was measured assuming exponential decay
cs,t = exp (−|s − t |/
′) and integrating cs,t to obtain the unscaled
correlation length 
′, with the relation to the scaled correlation length

 being 
 = 
′/Lds .
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FIG. 9. (Color online) Scaled correlation length 
 vs. ω in
dimension d = 4 with ds = 1.65 for systems L = 16,32,64 (red
solid, green dashed, and blue dotted lines, respectively). In this case
the unscaled correlation length 
′ was measured using the full width
at half maximum (how many “steps” in s away from the diagonal
before cs,t falls to a value of 1/2). To obtain the scaled correlation
length 
, we use the relation 
 = 
′/Lds .


′. We see that 
 increases linearly with ω up until roughly
ω = 1, at which point the scaled correlation length levels off
to a constant value. An alternate example of a measure of
correlation length 
′ for d = 4 is displayed in Fig. 9. Here we
used the full width at half maximum to measure correlation
length. There are larger fluctuations in the curve. Although the
proportionality constant differs depending on which method
is used to measure the correlation length, we observed a
relationship between 
 and ω consistent with linear behavior
for ω up to about 1 in all cases for dimensions 2 � d � 5.
The crossover generally appears broader when measuring
correlation length with the full width at half maximum than
when measuring using the integral of cs,t . The broadness of
this crossover does not seem to depend on dimensionality.

Based on this empirical observation, as well as recent results
[32] showing that invasion percolation has strong mixing over
geometrically separated scales, we choose an ansatz for the
scaled correlation length:


(ω) ∝
{

ω : ω � 1

1 : ω > 1.
(15)

The ω = 1 cutoff for the linear regime in this model is a rough
estimate based on the empirical data as seen in Figs. 8 and 9,
and we find this model to work well with our data. Furthermore,
this cutoff is unimportant to some extent since high ω (large
path length) data points are weighted less overall, as long paths
are less frequent. For the exponential decay model used in
Fig. 8, the proportionality is 
 ≈ 0.24ω. Physically, this means
that on average, for any given growing path in a spanning tree,
the path must grow about 24% longer than its current length
before the correlations in the r(s) data for this path decay,
using the exponential decay model cs,t = exp(−|s − t |/
′) for
the unscaled correlation length 
′.

Now that we have a consistent model for the correlation
length, we incorporate this model into a χ2 goodness of fit
measure. We use subscripts 1 and 2 to indicate data sets for
systems of size L1 and L2 being compared. We use L2 = 2L1.
A general goodness of fit measure for quantifying how well
two curves collapse in variables ρ vs. ω starts with choosing a
set of independent points ωk and at each point calculating the

difference between ρ1(ωk) and ρ2(ωk), �12(ωk) = ρ1(ωk) −
ρ2(ωk).

For a χ2 test with uncorrelated data this difference �12(ω0
k)

at the point ω0
k would then be squared and normalized by the

sum of the variances, σ 2
1 (ω0

k) for the system of size L1 and
σ 2

2 (ω0
k) for the system of size L2. This gives

χ2
0 (ds ; L1,L2) =

∑
k

�2
12

(
ω0

k

)
σ 2

1

(
ω0

k

) + σ 2
2

(
ω0

k

) , (16)

where we would sum over discrete points ω0
k chosen with

uniform spacing [33].
To incorporate the observed structure of the correlations

into our definition of χ2, we compare the spacing of data points
with the correlation length. First consider grouping the data
points into bins with a representative point ωk at the center of
each bin, with the ωk points spaced out in such a way that they
are effectively independent. To this end, we consider centering
bins around the terms of the sequence ω,qω,q2ω, . . . ,1, where
q is some constant factor. Our assumption is that data points
in bins centered at ω and qω are correlated to the same extent
as data points in bins centered at qkω and qk+1ω. So the
correlation length is effectively constant if we choose bins
logarithmically spaced, i.e., ωk+1 = qωk , for ωk � 1 and for
some constant factor q. Furthermore, changing the value of q

will change the value of this correlation length, and there will
be some choice of q for which this correlation length is equal
to 1, allowing us to use the form of Eq. (16):

χ2 =
∑

k

�2
12(ωk)

σ 2
1 (ωk) + σ 2

2 (ωk)
. (17)

If we consider taking the continuum limit of this equation, we
see that

χ2 =
∫

�2
12

σ 2
1 + σ 2

2

d(logq ω) =
∫

�2
12

σ 2
1 + σ 2

2

(
1

ln(q)ω

)
dω

∝
∫

�2
12


q

(
σ 2

1 + σ 2
2

) dω , (18)

where we have defined 
q = ln(q)ω. If we revert back to the
discrete form, we see that our generalized goodness of fit
measure becomes

χ2 =
∑

k

�2
12

(
ω0

k

)


(
ω0

k

)[
σ 2

1

(
ω0

k

) + σ 2
2

(
ω0

k

)] , (19)

where 
(ω0
k) ∝ 
q is the scaled correlation length at point ω0

k

[34]. Dividing by the scaled correlation length 
 will effectively
weight each “box” or bin of data points (whose width is equal
to 
) as one independent data point in the χ2 sum. We use
the form of 
 given by Eq. (15). The proportionality constant
in Eq. (15) affects the scale of χ2 but not the fitted ds . See
Appendix C for details.

For our analysis, all runs (N = 4 × 106 samples per system
size) were split into Nb = 400 uniform batches (histograms)
of N/Nb = 104 samples apiece. This was done in part because
storing data for all 4 × 106 samples was impractical and
running the bootstrap analysis over samples individually would
be too time consuming to be feasible. To determine a useful
batch size, we ran some preliminary tests by varying the
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batch size and plotting scaling collapses like Fig. 4. We
saw similar estimated values of ds based on these collapses,
independent of batch size. A batch size of 400 seemed balanced
because it allowed for error bars of order 1/

√
Nb ≈ 5%. As

we have shown in Eq. (12), the form of correlations should be
independent of batch size chosen.

C. Extrapolation to L = ∞
Next we must consider exactly what region in s of the

data we want to fit. We address lattice effects by examining
a lower (small s) data cutoff. The upper (large s) cutoff is
also considered due to low statistics (large uncertainties) for
s  Lds , though in the end we find that no upper cutoff is
necessary. To determine reasonable cutoffs, we examine how
the measured χ2 and ds respond to changes in these cutoffs.
A more detailed discussion is included in Appendix C. Once
we’ve decided upon fair cutoffs, this collapse procedure is run
Nb times (once for each batch of data for each pair of sizes
L1, L2 with L2 = 2L1). Each time, the value of ds for which
χ2 is minimized is found, giving Nb independent estimates
ds(α,L1,L2) for a given pair of systems L1 and L2. The final
estimate of ds for this pair of systems is the average of the Nb

independent estimates:

ds(L1,L2) = 1

Nb

Nb∑
α=1

ds(α,L1,L2) . (20)

Then the sample variance S2(L1,L2) in these Nb estimates is
used to estimate the statistical error bars in the final estimate,

σds
(L1,L2) = S(L1,L2)√

Nb − 1
. (21)

At this point we have obtained a single estimate of ds (with
error bars) for each consecutive pair of systems simulated.

Next we look to see if this ds(L1,L2) converges to some
value as L1 and L2 tend to infinity. We extrapolate the
infinite system size limit using a variety of least squares
fitting routines adapted from the GNU Scientific Library [35].
Standard scaling suggests that ds as a function of system size L

will exhibit power law scaling behavior. But since we have no
knowledge of the expected value for the exponent in this power
law, we can allow this exponent to vary as a parameter in our
fit, plotting ds vs. L−λ, where we take L to be the geometric
mean L = √

L1L2. Allowing λ to vary, fitting the data gives an
estimate for ds as well as the correction to scaling exponent λ.
See Fig. 10 for an example of one extrapolation attempt, where
λ is seen to be roughly 0.5 and linear least squares fitting for
ds vs. L−λ is used for the four largest system sizes in d = 2
dimensions.

D. Blind test for analysis method

To test this data analysis procedure, we applied the
procedure to the similar problem of the uniform spanning tree
(UST) in dimension d = 2. Whereas a minimal spanning tree
seeks to minimize the total weight of a tree that spans all the
vertices of the lattice, a uniform spanning tree is simply any
tree that spans the vertices of the lattice, chosen with equal
weight from all possible spanning trees. It can be thought of
as a generalization of the minimal spanning tree problem to

1.212
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1.216

0.00 0.02 0.04 0.06 0.08 0.10

d
s

L−λ

d = 2, λ = 0.5
estimated ds
extrapolated
fit

FIG. 10. (Color online) An illustration of a linear least squares
fitting method being used to extract the value of ds in the infinite
system size limit in dimension d = 2. The fit uses the form ds(L) =
AL−λ + ds(∞) where λ is a correction to scaling exponent and A and
ds(∞) are fitting parameters. Here λ = 0.5, and L = √

L1L2, where
L1 and L2 are the two system sizes used to produce a given data point.
The fit found gives ds(∞) = 1.216(1).

a system where all edges have the exact same weight. The
reason for using this system as a test case for the analysis
method is that one can examine r(s) data to look at ds for
paths on the UST, just as one would examine such paths on
an MST. The analysis should be completely analogous, and
we observed directly that the correlations in the r(s) data for
the UST have a similar structure to that of the MST, allowing
us to use the form of Eq. (15) for 
. To ensure no bias in this
test, one of us was not made aware of the nature of the system
at the time of this test but was only given the prepared r(s)
data on which to blindly run the analysis. The final result from
this blind test, using a range of systems of size 1282 to 10242,
was ds = 1.2499(4) for the UST, which agrees well with the
known exact result ds = 5/4 in two dimensions [36,37]. This
provides confidence in the data analysis method.

IV. RESULTS

Table I displays our final numerical estimates for ds . The
values in dimensions d = 2 and d = 3 agree with previous
results [38–41] and have error bars that are similar or smaller.
Our result for ds in dimension d = 4 is a bit higher than the
result 1.59(2) by Cieplak, Maritan, and Banavar [38]. The
fractal dimensions computed from the two-step MTISC agree
with those of the intermediate, untrimmed Prim’s MTISC, to
within our error estimates.

Our results for the path length dimension ds can be directly
compared with the O(ε = 6 − d) expansion of Jackson and
Read. A graphical comparison of the data is shown in Fig. 11.
Our results are not in conflict with the first order perturbation
theory calculations. Some previous comparisons of O(ε)
calculations with numerical results for disordered materials
show differences of similar magnitude [42].

We investigate possible O(ε2) calculations using nonlinear
fitting routines adapted from the GNU Scientific Library [35]
to fit ds vs. ε. Using a two parameter fit,

ds = 2 + aε + bε2 , (22)

and allowing a,b to vary, we find a chi-squared of 3.8 for
two degrees of freedom (d.o.f.), suggesting consistency with
a quadratic fit to within our errors. For this fit, we find
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FIG. 11. (Color online) A plot comparing numerical results for
ds using the two-step method (blue points) against predictions from
the O(ε) perturbation expansion theorized by Jackson and Read
(red dashed line). Also included is an example of a compatible
O(ε2) fit (purple dotted line), ds = 2 − ε

7 + bε2, with a best fit value
b = −0.0133.

a = −0.142(8), which is near to the −1/7 suggested by
Jackson and Read. We find for this fit the value b = −0.014(2)
for the second order prefactor.

Fixing a = −1/7, a one parameter fit,

ds = 2 − ε

7
+ bε2 , (23)

gives b = −0.0133(1) with a chi-squared of 3.8 for three d.o.f.
Presuming that the Jackson and Read result is correct to first
order, this gives us a more precise numerical prediction for the
second order term. This fit, Eq. (23), is plotted in Fig. 11.

V. SUMMARY

The intention of the two-step method was to allow the
simulation of larger systems than were previously possible,
reducing memory requirements of MST-finding algorithms
by combining Prim’s algorithm with Kruskal’s algorithm.
In this regard the work was successful, allowing for precise
calculations of ds . The trimming of the Prim’s algorithm tree
to possibly improve scaling of MTISCs constructed appears to
have been unnecessary. Calculations using Prim’s algorithm
alone yielded almost identical results to those that used the
two-step method.

We developed a data analysis method that allowed taking
nonuniform correlations into account in order to obtain more
accurate estimates for ds . This analysis method should be
applicable to a wide array of disordered systems with scale
invariance and may be useful for future work.

The results for ds calculated in this work are compatible
with the perturbation expansion result proposed by Jackson
and Read. Fitting ds = 2 + aε + bε2, we find a = −0.142(8),
compatible with the predicted a = −1/7 [17]. Fixing the first
order result to the Jackson and Read result, we used an O(ε2)
fit, ds = 2 − ε

7 + bε2, yielding b = −0.0133(1). This could
be checked if a higher order analytic calculation could be
computed.
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APPENDIX A: DEFINITIONS AND ALGORITHMS

In these appendices, we present more precise definitions of
the algorithms used to generate MTISCs, as well as details of
the connection between TP , TK , and T2. We also discuss the
region in s used for the χ2 fitting procedure to estimate the
fractal dimension ds .

Here we present a more detailed discussion of Kruskal’s and
Prim’s algorithms. We consider these MST-finding algorithms
in the context of an undirected weighted graph G = (V,E,w),
where V is a set of vertices, E is a set of edges connecting
these vertices, and we define a weight function w : E �→ R,
with each edge e ∈ E having weight w(e). We consider the
case of unique weights; no two edges in E have exactly the
same weight.

In order to precisely describe the algorithms, it will be
helpful to define some terms. A cycle or loop is a closed
path such that the removal of any single edge from this path
will result in the path becoming an open path, a connected
set of edges with no vertex shared by more than two edges.
When constructing trees, the notion of allowed and forbidden
cycles is useful. Every cycle in the finite set C, the set of all
possible cycles for graph G, is chosen to belong to CF (the set
of forbidden cycles) or CA (the set of allowed cycles), where
CF ∪ CA = C and CF ∩ CA = ∅. In a typical application on a
periodic lattice, the allowed cycles correspond to loops that
wrap around the lattice, while forbidden cycles correspond
to nonwrapping loops that can be deformed, plaquette by
plaquette, to a point. A set of two or more edges is considered
connected if every edge in the set shares a vertex with at least
one other edge in the set. A cluster T is set of connected
edges and the vertices that these edges connect. A cluster may
contain cycles, whereas a tree is an acyclic cluster. TE denotes
the set of edges in the cluster and TV denotes the set of vertices
in the cluster.

Consider edge e = (u,v) where e ∈ E and u,v ∈ V . Adding
e to a cluster T means that the edge set for the cluster, TE ,
becomes TE ∪ {e}, and the set of vertices in the cluster, TV ,
becomes TV ∪ {u,v}. A forbidden edge for a cluster T is an
edge that, if added to T , would cause T to gain a forbidden
cycle. An edge that is not a forbidden edge is an allowed edge.
An allowed terminating edge for a cluster T is an allowed edge
that, if added to T , would cause T to gain an allowed cycle
(a wrapping loop). The addition of this allowed cycle will be
used as the termination condition for both Kruskal’s and Prim’s
algorithms, which are described below. ∂T is the set of adjacent
edges for a cluster T , consisting of all edges that have one (but
not both) endpoints in cluster T . As this set of edges forms a
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border or frontier on the outer regions of the cluster, we call ∂T

the frontier of cluster T . The forbidden frontier of this cluster,
∂F T , is the subset of the adjacent edges that are forbidden
edges for T . The allowed frontier of this cluster, ∂AT , is the
subset of the adjacent edges that are allowed edges for T .

To examine an edge in Kruskal’s or Prim’s algorithm is
to select this edge during a step of the algorithm and decide
whether to accept or reject this edge into a cluster based on the
conditions of the algorithm (usually dealing with the weight
of the edge and whether this edge is allowed or forbidden for
a particular cluster).

Next we will present Kruskal’s and Prim’s algorithms, step
by step, using the notation we have outlined above.

Kruskal’s Algorithm:
(1) Sort E by increasing weight w to form a list of edges L.
(2) Initialize each vertex in the graph to be its own tree, not

connected to any other vertices and containing no edges.
(3) Select the first (lowest weight) edge e = (u,v) ∈ L.

Remove this edge from L. If e is a allowed edge, join into
a single tree the tree containing u with the tree containing v,
adding edge e. If e is a forbidden edge (that is, adding edge e to
to the tree(s) containing its endpoints u and v would introduce
a forbidden cycle), edge e is disregarded and not added to any
trees. Edge e has now been examined.

(4) Repeat step (3) until a allowed terminating edge, i.e.,
one that introduces an allowed (wrapping) cycle, is selected.
The tree that contains both the vertices of this edge is identified
as the Kruskal’s MTISC TK , and the allowed terminating edge
that is examined in this final step is the Kruskal’s wrapping
edge, eK ∈ E.

Prim’s Algorithm:
(1) Initialize the growing Prim’s tree Tg to have one site,

called the Prim’s origin, v0 ∈ V . Note that Tg is both a function
of the v0 and time (number of iterations of Prim’s algorithm),
since Tg “grows” from the origin v0 by adding edges and
vertices as Prim’s algorithm proceeds.

(2) Sort the frontier of the current Prim’s tree, ∂Tg , by
increasing edge weight w to form the Prim’s queue (a function
of Tg), excluding any edges that have already been examined.

(3) Select the first (lowest weight) edge e = (u,v) in the
Prim’s queue. If e is a allowed edge, add it to Tg , and if either
u or v is not already in Tg , add it to Tg as well. Otherwise, if
e is a forbidden edge, disregard the edge and do not add it to
Tg . Edge e has now been examined.

(4) Repeat steps (2) and (3) until a allowed terminating
edge, i.e., one that introduces an allowed (wrapping) cycle, is
selected. At this time, the growing Prim’s tree Tg is identified
as the Prim’s MTISC TP , and the allowed terminating edge
examined in this final step is the Prim’s wrapping edge,
eP (v0) ∈ E. Note that TP and eP are both functions of the
Prim’s origin v0.

APPENDIX B: PROOF OF VALIDITY
FOR TWO-STEP METHOD

The two-step method first applies Prim’s algorithm to find
TP ∪ eP . Kruskal’s algorithm is then executed using the edges
in TP ∪ eP , serving as a trimming procedure for TP and
yielding what we will term the two-step MTISC, T2. Here
we will prove that the two-step method for MTISC generation

yields T2 = TK in all cases except in the case of multiple
disjoint ISCs. All results of this method can be divided into
three cases. The first is the case where TP is exactly equal to
TK and no trimming is needed, yielding TP = T2 = TK . In the
second case, TK is a subset of TP , and the trimming procedure
of the two-step method yields T2 = TK . In the third case, there
are multiple disjoint ISCs, and TP and TK share no common
edges or vertices, meaning that T2 �= TK . In other words, we
will prove that

(TP ⊇ TK ) ∨ (TP ∩ TK = ∅) (B1)

and subsequently that T2 = TK in all cases except when the
Prim’s MTISC and the Kruskal’s MTISC do not intersect. Here
it will be useful to establish a few lemmas to aid in verifying
these three cases we have outlined.

Lemma 1. Edges in the allowed frontier of TK have higher
weight than edges in TK .

Proof. Because Kruskal’s algorithm examines edges that are
monotonically increasing in weight as the algorithm proceeds,
at the time Kruskal’s algorithm terminates, the edges that are
not examined must be higher weight than edges that have been
examined. Since edges in the allowed frontier ∂ATK cannot
be in TK , this means that edges in TK have been examined at
the time of Kruskal’s algorithm termination, whereas edges in
∂ATK have not. Thus edges in ∂ATK must be higher weight
than edges in TK .

Lemma 2. For any given cycle c ∈ C for which all edges of
c are examined in Kruskal’s algorithm, the edge in this cycle
that is examined last must be the highest weight edge in this
cycle.

Proof. Because Kruskal’s algorithm examines edges that
are monotonically increasing in weight as the algorithm
proceeds, for the finite set of edges in c, the highest weight
edge in this set will be examined last in Kruskal’s algorithm.

Corollary 3. As a corollary, the Kruskal’s wrapping edge
eK ∈ E has higher weight than any edge in the Kruskal’s
MTISC TK .

Proof. Because eK is the last edge examined during the
running of Kruskal’s algorithm, it must have a weight higher
than every other edge that is examined during the running of
the algorithm, including every edge in TK .

Lemma 4. From lemma 2, for any edge e in the forbid-
den frontier of TK , where adding e to TK would form a
forbidden cycle ce, e must be the highest weight edge in the
forbidden cycle ce.

Proof. The criteria for an edge e to be in the forbidden
frontier ∂F TK is that adding e to TK would form a forbidden
cycle ce. This means that every edge in ce\{e} is in TK and
is examined before edge e during Kruskal’s algorithm. Thus,
edge e will have higher weight than any other edge in cycle ce.

Using these lemmas that we have established, we will show
that each realization of the two-step method can be categorized
into one of three distinct cases, with cases 1 and 2 yielding
T2 = TK . In the third case, we see that there are no common
edges or vertices between TP and TK , so T2 �= TK in this case.

Case 1. If the Prim’s origin v0 is a vertex in the Kruskal’s
MTISC TK , then the Prim’s MTISC TP will be identical to the
Kruskal’s MTISC; TP = TK .

Proof. Since Prim’s algorithm grows a tree Tg by examining
and adding edges adjacent to Tg , it will be crucial for us to pay
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close attention to the frontier of Tg , ∂Tg . This frontier is sorted
to form the Prim’s queue from which edges are selected and
considered for addition to Tg . In this first case, as long as we
are only adding to Tg vertices that are also in TK , the Prim’s
queue will consist entirely of edges that are either in TK or
∂TK . The fulfillment of this condition,

∂Tg ⊆ TK ∪ ∂TK , (B2)

will be shown in the remainder of the proof.
From lemma 1, when the frontier of the Prim’s tree is sorted

in Prim’s algorithm to form the Prim’s queue, any edges that
are also in TK will be placed before (having lower weight
than) those edges in the allowed frontier of TK . This means
that all edges in TK will be examined and added to Tg earlier
in Prim’s algorithm than edges in the allowed frontier of TK .
As the Prim’s origin v0 is in TK , we are guaranteed to have at
least one edge from TK added to the Prim’s queue at the start
of the Prim’s growth. Furthermore, since TK is connected, as
edges from TK are added to Tg through the Prim’s growth,
more edges from TK and its frontier ∂TK will be added to the
Prim’s queue, ensuring that Tg has more edges from TK to
add during further steps of Prim’s algorithm. Tg begins as a
single vertex v0 and grows to include more and more edges
and vertices from TK as Prim’s algorithm proceeds.

Though we have shown that edges in TK will be examined
during Prim’s algorithm before any edges in the allowed
frontier of TK , we cannot say the same about edges in its
forbidden frontier, ∂F TK , which may also be in the Prim’s
queue and in consideration for selection during the Prim’s
growth. If edge x = (ux,vx) ∈ ∂F TK is in the Prim’s queue,
from lemma 4 we know that both vertices ux and vx are in TK .
If we call cx the forbidden cycle that would be created in TK

by adding edge x to TK , we also know from lemma 4 that x has
higher weight than every other edge in the forbidden cycle cx .

Thus, all edges in cx\{x} will be examined in Prim’s
algorithm and added to Tg before x is examined. So when x

is finally examined in Prim’s algorithm, x will be a forbidden
edge for Tg and will not be added to Tg . This ensures that
any forbidden cycles for TK will be handled in the same
manner in both Kruskal’s and Prim’s algorithms; no edges
in the forbidden frontier of TK will be added to Tg .

Using corollary 3, we can see that until the Kruskal’s
wrapping edge eK is examined in Prim’s algorithm, Eq. (B2)
will remain satisfied and all of the edges and vertices in TK

will be added to Tg before eK is examined. Furthermore, as
we have shown, none of the edges (allowed or forbidden) in
the frontier of TK will be added to the growing Prim’s tree Tg

before the Kruskal’s wrapping edge eK is examined. In this
case, eK will also serve as the Prim’s wrapping edge eP . Since
the condition (B2) is satisfied at the time eK = eP is examined
in Prim’s algorithm (terminating the algorithm by adding an
allowed cycle), TP = TK . In this case, the Kruskal’s trimming
step of the two-step method is unnecessary, and the two-step
method will yield T2 = TK .

Case 2. If the Prim’s origin v0 is not in the Kruskal’s MTISC
TK but the Prim’s tree Tg “grows” to include any vertices of
TK , then the Prim’s MTISC TP will include all of the Kruskal’s
MTISC TK , i.e., TP ⊃ TK .

Proof. If we start Prim’s algorithm from an origin v0 that is
not a vertex in the Kruskal’s MTISC TK , we can define bridge

edge b = (ub,vb) as the first edge added to the growing Prim’s
tree Tg that introduces a vertex of TK into Tg . So b = (ub,vb)
is the first edge added to Tg for which either ub or vb are
in TK .

At the point in Prim’s algorithm when b is added to Tg , b has
a weight lower than any edge in the Prim’s queue. Otherwise,
edge b would not have been selected for addition to the Prim’s
tree at that time.

Examining edge b in the frame of the Kruskal’s MTISC TK ,
we know that edge b is in the allowed frontier of TK since only
one of ub or vb is in TK . This means that b cannot be in TK

itself, nor can b be in the forbidden frontier of TK . Because b

is in the allowed frontier of TK , it has a weight higher than any
edge in TK , by lemma 1. Thus, Prim’s algorithm will continue
as in case 1, with growth continuing from this first vertex of TK

(either ub or vb) that is introduced to Tg . Any edges from TK

that are added to the Prim’s queue will be added to the front
(lower weight end) since these edges will all have a weight
lower than w(b), whereas every edge in the Prim’s queue thus
far has weight higher than w(b).

Prim’s algorithm will add edges from the Kruskal’s MTISC
TK until reaching termination with the examination of the
Kruskal’s wrapping edge eK , which in this case will also be
the Prim’s wrapping edge eP . At this point TP ⊃ TK . In this
case, the Kruskal’s algorithm portion of the two-step method
will serve to trim from the Prim’s tree the region near the origin
v0 up to the bridge b, leaving T2 = TK .

Case 3. If the Prim’s origin v0 is not in the Kruskal’s MTISC
TK and the growing Prim’s tree Tg does not “grow” to include
any vertices of TK before Prim’s algorithm terminates, then the
Prim’s MTISC and the Kruskal’s MTISC will not intersect. In
other words, TP ∩ TK = ∅.

Proof. In this case, during Prim’s algorithm, the Prim’s
wrapping edge eP is examined before any vertices of the
Kruskal’s MTISC TK are examined or added to the Prim’s
tree. The algorithm terminates with TP ∩ TK = ∅. In this case,
the two-step method will yield T2 �= TK . However, this case is
uncommon, and it is seen by direct observation that T2 and TK

have similar scaling properties.
Taking all three cases for the two-step method, we can say

that either the Prim’s MTISC TP contains or is equal to the
Kruskal’s MTISC TK , or the Prim’s and Kruskal’s MTISCs do
not intersect. Symbolically, (TP ⊇ TK ) ∨ (TP ∩ TK = ∅). In
cases 1 and 2, where TP and TK do overlap, the two-step
MTISC T2 will be equal to the Kruskal’s MTISC TK . So
in these cases the two-step method yields the same result as
that obtained from running Kruskal’s algorithm on the entire
graph G. We see that T2 = TK in all cases except the case of
multiple disjoint ISCs, where the Prim’s MTISC TP (and by
construction the two-step MTISC T2 as well) does not intersect
with the Kruskal’s MTISC TK .

APPENDIX C: FITTING REGION FOR χ2

Here we will discuss the data cutoffs we impose in order to
restrict exactly what region in s of data we want to fit. These
data cutoffs allow us to reduce overfitting errors in our χ2

fitting routine [Eq. (19)] for estimating the fractal dimension
ds . We consider a small s (lower) cutoff by implementing sl

as the minimum s value allowed into the fitted data. We also
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consider a large s (upper) data cutoff by enforcing an ωu as
the maximum allowed value for any of the scaled data in the
fit. Introducing an ωu cutoff seemed natural because ω  1
corresponds to paths that are much longer than Lds and are
rare. Since these long paths are less frequent, data points with
a large ω value have higher statistical uncertainties than those
with smaller ω values. For small s we consider lattice effects.
It made sense to use sl as a low cutoff since we have small
discrete s values (steps) in the paths. Using ωl would also have
been a viable option, but it is easier to interpret the physical
meaning of sl , since one unit of s corresponds to the lattice
spacing for all system sizes.

To determine reasonable values to use for the upper and
lower data cutoffs, we tested our χ2 fitting routine with various
values of these cutoffs and assessed how well the minimum
value of χ2 agreed with a predicted estimate χ2

p. To estimate
χ2

p, it is instructive to envision comparing data sets from two
different system sizes on scaled axes ρ vs. ω, as in Fig. 5(a).
We use a discrete set {ω0

k}, consisting of n uniformly spaced
values of ω, to calculate a set of ρ(ω0

k) values for each of the
two data sets. The comparison between these ρ values goes
into the calculation of χ2, as outlined in Eq. (19).

One can imagine breaking the ω axis up into b segments
or “boxes” of length equal to the scaled correlation length 
.
Each box will contain some number nb of data points from the
set of n points in the {ω0

k} discrete points we use to calculate
the goodness of the collapse. In this way, we can estimate χ2

p

piece by piece, calculating separately the contribution χ2
b from

each of the b boxes:

χ2
p = χ2

b b . (C1)

Further, we can estimate nb, the number of data points that fall
in each of these boxes. This allows us to subdivide the χ2

b into
contributions from each individual data point, χ2

1 :

χ2
p = χ2

1 nbb . (C2)

Now that we have partitioned χ2
p by this relation, we can

calculate χ2
1 , nb, and b individually. First, we can estimate χ2

1 ,
the χ2 contribution from a single data point in the set of {ω0

k}
values, by its expectation value E(χ2

1 ). We can write, using the
form of Eq. (19),

χ2
1 ≈ E

(
χ2

1

) ≈ E([ρ1 − ρ2]2)



[
σ 2

1 + σ 2
2

] ≈ E
(
ρ2

1

) + E
(
ρ2

2

)


[
σ 2

1 + σ 2
2

]

≈ σ 2
1 + σ 2

2



[
σ 2

1 + σ 2
2

] ≈ 1



, (C3)

where ρ1(ρ2) is the ρ value taken from data set 1(2), and σ 2
1 (σ 2

2 )
is the variance at this point for data set 1(2).

Next we can write an expression for the number of data
points per box, nb, by multiplying the length of each box, 
,
by the density of data points to obtain

nb = 


(
n

ωu − ωl

)
, (C4)

where again n is the total number of data points in the set {ω0
k}

being used for the χ2 calculation and ωu − ωl gives the full
allowed range of ω0

k values.
Finally, we compute the total number of boxes, b, by

dividing the range ωu − ωl into two regions, ω < 1 and ω > 1.
This allows us to separately compute the number of boxes in
each of these regions, b< and b>, respectively. Of course,
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FIG. 12. (Color online) Examining the effects of the lower and upper data cutoffs on a collapse of two systems of sizes L = 512 and
L = 1024 in dimension d = 2. (a) and (b) display χ2

p/χ 2 and ds as functions of the lower (small s) data cutoff sl , while (c) and (d) show χ 2
p/χ 2

and ds as functions of the upper (large s) data cutoff ωu for sl = 100. Both χ 2
p and χ 2 are measured at the value of ds for which χ 2 is minimized.
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b = b< + b>. Expressing b> is trivial, since in this region the
scaled correlation length is constant at 
 = A [as given by our
model in Eq. (15)], where A is the proportionality constant
relating 
 and ω by 
 = Aω. Thus we write

b> = ωu − 1

A
. (C5)

Writing b< is not quite as simple. It may help to begin at
ω = 1 and think of stepping left toward lower values of ω

and eventually to ωl , counting up the number of boxes we step
across. The boundary of the first box will occur at ω = (1 − A),
since the scaled correlation length 
 is equal to A around
ω = 1. Likewise, the edge of the second box we approach will
fall at ω = (1 − A)2, the ith box will reach to ω = (1 − A)i ,
and the final bth

< box will fall at the lowest allowed ω value, ωl .
So we can write

ωl = (1 − A)b< , (C6)

from which is follows that

b< = ln (ωl)

ln (1 − A)
≈ ln (1/ωl)

A
. (C7)

Here an approximation is made in the denominator since A is
small.

Combining Eqs. (C2), (C3), (C4), (C5), and (C7), we can
write an expression for χ2

p by adding the contributions from

both of the two regions we examined, ω < 1 and ω > 1:

χ2
p = 1




[



(
n

ωu − ωl

)] [
ln (1/ωl)

A

]

+ 1




[



(
n

ωu − ωl

)][
ωu − 1

A

]

= 1

A

[
n

ωu − ωl

] [
ln

(
1

ωl

)
+ ωu − 1

]
. (C8)

In general, this proportionality constant A will depend on what
method is used to measure correlation length. For this reason,
we look at the ratio χ2

p/χ2. Since both χ2
p and χ2 have a 1/A

dependence, the ratio of the two is independent of A.
We use this ratio χ2

p/χ2 to get an idea of the effect various
upper and lower data cutoffs have on our fit. We plot an
example case of this analysis for systems of size L = 512
and L = 1024 in dimension d = 2. In Figs. 12(a) and 12(b)
it is apparent that below a certain sl threshold, lattice effects
skew the value of χ2 as well as the value of ds . Meanwhile,
Figs. 12(c) and 12(d) indicate that we need not impose an upper
cutoff on the data. The high variance of points in the large ω

region of the data already appropriately weights these points.
For our final analysis, we chose sl = 425 for two dimensions,
sl = 375 for three dimensions, and sl = 100 for four and five
dimensions.
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