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Theta-point polymers in the plane and Schramm-Loewner evolution
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We study the connection between polymers at the θ temperature on the lattice and Schramm-Loewner chains
with constant step length in the continuum. The second of these realize a useful algorithm for the exact sampling of
tricritical polymers, where finite-chain effects are excluded. The driving function computed from the lattice model
via a radial implementation of the zipper method is shown to converge to Brownian motion of diffusivity κ = 6
for large times. The distribution function of an internal portion of walk is well approximated by that obtained
from Schramm-Loewner chains. The exponent of the correlation length ν and the leading correction-to-scaling
exponent �1 measured in the continuum are compatible with ν = 4/7 (predicted for the θ point) and �1 = 72/91
(predicted for percolation). Finally, we compute the shape factor and the asphericity of the chains, finding
surprising accord with the θ -point end-to-end values.
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I. INTRODUCTION

Self-avoiding walks and percolation are the quintessential
geometric critical phenomena. In such systems, either the
statistical ensemble or the properties investigated are of a
geometric nature. For instance, a self-avoiding walk (SAW) is a
nearest-neighbor walk on a lattice such that each site is visited
at most once; the constraint is entirely configurational. One
of the most prominent characteristics of these systems is their
fractal geometry, the ubiquity of which is nowadays a well-
established observation [1]. Mappings exist between ordinary
and geometric critical phenomena, such as the celebrated result
of de Gennes [2] (proved nonperturbatively in [3]) concerning
the N → 0 limit of the O(N ) model. Geometric phenomena
are thus interesting both per se and for their descriptive power,
and also as testing grounds for ideas and tools in statistical
mechanics.

In this perspective, it is perhaps not surprising that certain
properties of percolation can be mapped [4] to those of an
interacting version of SAW (called ISAW), in which adjacent
occupied sites give a negative contribution to the energy,
i.e., they attract each other, thus counteracting the opposite
tendency due to the self avoidance. ISAW are a good model
for polymers in solution, as they provide an additional tunable
parameter that can modulate the strength of the effective
solvent-mediated interaction between monomers, on top of
the repulsive excluded-volume effect. As the temperature is
varied, the long-chain behavior undergoes a phase transition
between an elongated SAW-like phase and a dense globular
one. The transition, called the θ point, is tricritical. In fact,
polymeric behavior in two spatial dimensions is diverse, and
lattice models are being invented or rediscovered that display
as surprising as rich a phenomenology [5,6].

It is decisive, in the study of polymers and geometric critical
phenomena, to have available the most assorted set of tools,
both theoretical and numerical. Efforts and results in both areas
have often proceeded on the same pathway, with enriching
exchanges in both directions [7]. A new tool often comes
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in the form of a new model, perhaps easier to analyze or
to simulate, perhaps providing deeper insight [8]. A strategy
recently proposed stems from the definition of “endless” walks
[9], i.e., lattice walks that can be infinitely concatenated, thus
excluding any finite-chain effects. A similar property holds
for another ensemble [10], based on a suitable discretization
of Schramm-Loewner evolution (SLE), which gives rise to
an exact-sampling algorithm for self-avoiding paths in the
complex plane, in the same universality class of SAW.

Here, with these motivations in mind, we first explore
the connection between SLE and θ -point polymers, showing
how the two models are connected. Then we employ the
aforementioned discretized SLE (such that the Euclidean
length of the steps is approximately constant along the curve)
to explore the connection further and to measure critical
exponents and properties related to the shape of the curves.

SLE (for a nice introduction “for physicists” see [11]) is
a stochastic process taking values on conformal maps in a
domain. Let us fix the domain to be the unit circle D. For each
time t , a random map gt (z) is identified as the solution to the
Loewner equation

∂tgt (z) = gt (z)
exp(iξt ) + gt (z)

exp(iξt ) − gt (z)
, g0(z) = z, (1)

where the driving function ξt is the one-dimensional stochastic
process ξt = √

κBt ; κ is a parameter (playing a crucial role
in the theory) and Bt is standard Brownian motion. The
complement of the domain of gt , or equivalently the set of
points for which (1) does not admit a solution up to time t ,
is a random fractal curve, the properties of which depend
on κ; notably, their fractal dimension is 1 + κ/8. The curves
germinate from the point z = exp(iξ0) and grow towards z = 0
for large times. This geometry is called radial, as opposed to
the chordal one where the curve grows from a boundary point
to a boundary point. By complex inversion, one can then define
curves living in the complement of D in the complex plane,
growing towards z = ∞ (see Sec. II). SLE has been shown
(either rigorously or by numerical and approximate means) to
give the scaling behavior of a large number of critical models
for different values of κ [12–16]. Moreover it is the starting
point for many generalizations and extensions [17–20].
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SLE is a natural candidate for the continuum counterpart
of polymers, as it describes non-self-crossing critical curves.
Its connection with conformal field theory [21] sets a relation
between the central charge c and the parameter κ , namely
c = (8 − 3κ)(κ − 6)/(2κ). The only two values corresponding
to c = 0, which is expected for critical and tricritical polymers,
are κ = 8/3, which is known to describe SAW [22,23], and
κ = 6, which corresponds to percolation [24] and is the
obvious suspect for the θ transition. The fractal dimension,
which has been calculated exactly for the second of these [25],
agrees with the SLE value 7/4.

Curves in SLE, as we already noted, naturally extend to
infinity, and considering the evolution up to a time t equates
to taking a finite portion of the whole curve. Lattice polymers,
on the contrary, are affected by finite-chain effects, due to
their not extending to infinity; these effects are caused by
configurations where the endpoint is “trapped” in a loop,
which can appear at every scale at the critical point, so
that finite-chain behavior persists even when the degree of
polymerization n (i.e., the length of the polymers) is sent
to infinity in the critical limit. When endpoint distribution
functions are considered, for example, the scaling variable is
ρ = |r|/ξ , where r is the position of the endpoint and ξ is
a correlation length; both ξ and r scale as some power of n

(see Sec. III). Moreover, the match between quantities on the
SLE side with the corresponding properties of lattice polymers
requires consideration of whether they are parametrization
independent or not, as counting the number of steps on the
lattice does not in general correspond to measuring time in
the continuum model. As far as SAW are concerned, these
issues have been addressed [10,26]: the radial distribution of a
properly chosen point along an SLE curve at κ = 8/3 matches
that of an internal point in a lattice SAW; in other words, the
polymers are “endless,” in the spirit of [9]. There are two ways
of choosing the right point on the SLE side. First, one can
measure the fractal variation along the curve and stop when it
reaches a given value [27]. Second, one can produce discrete
curves (chains) so that consecutive points lie an approximately
constant distance apart from each other [10]. The last of these
is the strategy we employ here.

The model of interacting self-avoiding walks that we are
going to adopt is the standard ISAW on the square lattice. The
ensemble is that of all self-avoiding nearest-neighbor n-step
walks ω, with the Gibbs measure defined by the following
energy function:

H (ω) = −
n−3∑
i=0

n∑
j=i+3

δ|ωi−ωj |,1, (2)

which simply counts the number of nearest-neighbor contacts
between nonbonded monomers. We will study the model at the
inverse temperature corresponding to the transition between
good and poor solvent βθ . The best estimate on the square
lattice is βθ = 0.6673(5) [28]; we will use this central value in
the following.

II. DRIVING FUNCTION

An approximation to the driving function can be obtained
by the zipper prescription [29]. Schematically, it amounts to

applying iteratively a simple conformal map to all points of
a lattice walk, mapping them in sequence to the boundary. It
is usually done in the half plane, by means of vertical-slit or
tilted-slit mappings, but we will apply the same strategy on the
plane.

Consider the conformal map

φt (z) = 1

2etz
[(z + 1)2 − 2etz

− (z + 1)
√

(z + 1)2 − 4etz], (3)

which is the solution to (1) for a constant ξt = 0. The domain
which gets mapped by φt onto the unit disk is the unit disk
with a radial slit removed; the slit sticks out of z = 1 and is
directed towards z = 0. The length of the slit increases with t

nonlinearly. Let us consider the map

ft (z) = 1

gt (1/z)
; (4)

it sends the exterior of the slitted disk conformally onto the
exterior of the disk. The expansion around infinity of its inverse

f −1
t (w) = etw + 2(et − 1) + O(1/w), (5)

identifies the (logarithmic) capacity of the slitted disk cap(t) =
et , and its conformal center c(t) = 2(et − 1).

Let {ωi}, i = 0, . . . ,n, be a lattice walk. Here, the lattice
is embedded in the complex plane (say, with lattice spacing
a = 1). The zipper algorithm is a prescription to find a
driving function giving rise (via the Loewner equation) to an
approximation of ω. Operatively, at the kth step one applies, to
all points {ωi} with i � k, the radial-slit mapping ϕ that maps
ωk to the unit circle, that is,

ϕ(ωk; z) = ftk (e
−iθk z), (6)

where

θk = arg(ωk) (7)

and the time tk is obtained by solving ftk (|ωk|) = 1, i.e.,

tk = log
(|ωk| + 1)2

4|ωk| . (8)

Now, θk is a compact variable, but since the driving function for
SLE is supposed to be continuous then the interval [0,2π ] can
be unwrapped univocally onto the whole real line to obtain the
approximate driving function ξk . Operatively, we set ξ0 = θ0 =
w0 = 0 and compute δk = θk − θk−1 at each step; whenever
|δk| > π we increase or decrease the winding number wk . The
driving function is then ξk = θk + 2πwk .

We generated θ -point walks in the full plane with increasing
lengths (n = 5000,10 000,20 000,40 000) and obtained 10 000
samples for each n. The method used is the extended reptation
algorithm [30,31]; note that very efficient algorithms are
available for the noninteracting SAW [32,33], but they are
expected to perform much less efficiently for the ISAW. To
reduce the severity of finite-chain effects, we restricted the
analysis of the driving function to the first n/10 steps (we
obtain similar results with n/20 steps; an independent check
that corrections in this regime are small is given in Fig. 3 for
the radial distribution functions, see Sec. III). The function ξt

computed by the zipper algorithm turns out to be compatible
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FIG. 1. (Color online) After an initial transient, the mean square
displacement of the driving function is linear in time, as expected for
Brownian motion (time corresponds to the usual parametrization by
capacity, see text). The slope is compatible with κ = 6 (dashed line).
The four curves correspond to walks of different lengths; in each case
only the first 1/10 of the steps were used in the analysis. The inset
shows the discrete derivative of 〈ξ 2

t 〉 computed from the same data.

with a Brownian motion with the expected diffusivity κ = 6,
after an initial transient where deviations from this behavior
dominate. The plots in Fig. 1 show how 〈ξ 2

t 〉 depends on t (the
average is over all samples generated). The expected behavior
〈ξ 2

t 〉 ∼ κt is recovered for large times, increasingly well in n.
The initial transient displays an effectively higher diffusivity
(around the critical value κ = 8, where curves become space
filling) followed by a lower one, which slowly relaxes towards
κ = 6. We note that in the whole plane (contrary to the
half-plane case) equal-length steps in the walk contribute a
smaller and smaller capacity as they get further away from the
origin. Therefore, although the initial transient is present up
to times t ≈ 2, it really regards only the first few walk steps
(approximately 100). The falloffs at large t are due to the fact
that not all generated walks reach such large capacity; those
that do are then biased to be straighter, and thus their driving
function fluctuates less. Table I shows numerical values of κ

TABLE I. Fit results for the curves in Fig. 1, with several lower
cutoffs on time; the upper cutoffs are fixed by simple considerations
related to biasing (see the text). The closest value to the expected
κ = 6 is obtained for the longest walks and the highest cutoff.

n tmin tmax κ

5000 0 2.7 5.8(1)
10 000 0 3.1 5.7(1)
20 000 0 3.5 5.6(1)
40 000 0 3.9 5.7(1)
5000 2 2.7 5.6(1)
10 000 2 3.1 5.5(1)
20 000 2 3.5 5.6(1)
40 000 2 3.9 5.8(1)
20 000 2.5 3.5 5.67(14)
40 000 2.5 3.9 5.92(10)
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FIG. 2. (Color online) The driving function is Gaussian. Symbols
are histograms of the rescaled variable ξt/

√
κt , where we have fixed

κ = 6. As in Fig. 1, only the first tenth of the walk was considered.
Moreover, for each n, we used only data with 2 < t < tmax(n), where
tmax(n) are the cutoffs in Table I.

obtained by linear fits with several cutoffs; the upper cutoffs
are chosen so as to exclude the aforementioned biased region.

If ξt is Brownian motion, fluctuations with respect to the
average linear behavior must be normally distributed. Taking
into account the diffusivity, which we will fix to κ = 6, we
expect

ξt√
κt

∼ N (0,1), (9)

whereN (0,1) is the normal distribution of mean 0 and variance
1. Since the foregoing analysis shows that deviations from the
expected diffusivity are present for t � 2 we compute ξt/

√
κt

by using only data with t > 2. Figure 2 shows the results,
superimposed on the Gaussian p(x) = exp(−x2/2)/(2π )1/2.
As a quantitative test, we compute the Pearson’s χ2 p values
for several cutoffs in t (Table II); after the transient, the driving
function is solidly Gaussian.

III. DISTRIBUTION FUNCTIONS

The opposite procedure to that of the previous section can
be performed, in such a way as to generate curves γ in the
complex plane. Instead of absorbing the points of the walk

TABLE II. The goodness-of-fit p value obtained by the standard
χ 2 test. All p values for the higher cutoff tmin = 2.5 are above the
stringent significance level 0.05.

n tmin tmax p value

5000 2 2.7 0.67
10 000 2 3.1 0.001
20 000 2 3.5 0.40
40 000 2 3.9 0.004
5000 2.5 2.7 0.90
10 000 2.5 3.1 0.12
20 000 2.5 3.5 0.60
40 000 2.5 3.9 0.06
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into the disk by use of the incremental map ft , one uses
f −1

t to grow them. The driving function here is fixed to (a
suitable discretization of) Brownian motion, and the collection
of points {γi} is what the algorithm produces. As a prescription,
we approximate Bt by a piecewise constant function because
then φ is the solution to (1) in each one of the intervals where
the driving function is constant, as already noted. Hence,
composition of the maps f −1

δt , where δt is the time step,
intertwined with rotations by θ , where θ follows a random
walk, iteratively grows the set {γi}. This is the standard way
that (radial) SLE is simulated, through the so-called backward
evolution; for details, see [26,34].

We need a way of directly comparing distribution functions
of lattice θ -point walks and paths obtained by such a
discretization of (1). To do so, the parametrizations in the
two models must coincide. Schramm-Loewner paths come
with a natural proper time, which is the one imposed by
an exponentially increasing logarithmic capacity (a linearly
increasing half-plane capacity in the chordal geometry), and
lattice walks have their own, induced by the requirement that
consecutive points belong to nearest neighbors. So what we
need is a way of generating continuum walks γ (on the SLE
side) such that the Euclidean lengths of their steps |γi+1 − γi |
be constant along the chain, at least approximately. Such a
task encounters some technical difficulties, which nonetheless
can be overcome. The method we employ, first proposed
in [10], rescales each step in the iterated-map approach by
an appropriate factor, obtained by tracking the evolution of the
Jacobian of the map in an affordable way. We do not describe
the details here, and the reader is referred to the original
article.

Another obstruction to the program of matching the
distribution functions of SLE and tricritical polymers is
related to the fact that the full plane and the exterior of
the disk are not conformally equivalent. When dealing with
self-avoiding walks (corresponding to κ = 8/3) one can take
the position that conformal restriction, a special property
concerning restrictions of the domain, which is valid only
for that value of κ , makes the distinction irrelevant. In fact, no
problem arises for the SAW [26]. But in the case of θ -point
polymers, we are forced to take care of the domain. Given a
lattice walk ω of length n, the subwalk ω̂ = {ωi}, i = 0, . . . ,l,
must be mapped to the unit disk by a conformal map φω̂

(more precisely, the complement in C of the piece-wise linear
curve having vertices in {ωi} is mapped onto the exterior of
the unit disk). Then the distribution functions of {φω̂(ωi)},
i = l + 1, . . . ,m, are expected to match those obtained from
SLE, provided the scaling limit l,m,n → ∞ is performed,
with m 	 n (so as to probe the walk far from the endpoint)
and (m − l) → ∞ (scaling limit of the subwalk). Note that this
entails the evaluation of a random (i.e., realization dependent)
conformal map for each walk.

We do not embark here on such an exploration, and rather
pursue an approximation. Namely, we consider the distribution
functions for the internal subwalk {ωi}, i = l + 1, . . . ,m itself,
without applying the map φω̂. We will suppose that, given
an n-step θ -point walk ω, the probability that the lth and
mth points (with l < m) are such that ωm − ωl = r has the
following scaling form, when n,m,l → ∞, r → ∞, keeping
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FIG. 3. (Color online) The radial distribution functions of lattice
θ -point walks (main panel) and of discrete SLE chains (inset) satisfy
the scaling forms (10) and (11), respectively. Symbols correspond to
different values of the length n for SLE chains, and to different internal
points m and l for lattice walks. The only detectable deviations belong
to the higher values of λ1 = l/n and λ2 = m/n (red crosses, with
λ1 = 0.2, λ2 = 0.4).

l/n = λ1 and m/n = λ2 fixed:

Pn,l,m(r) ∼ 1

ξ 2
l,m

FISAW(ρ,λ1,λ2), (10)

where ρ = |r|/ξl,m and ξ 2
l,m = 〈|ωm − ωl|2〉. (In measuring

FISAW from data, lattice effects have been alleviated by
a suitable averaging procedure that takes into account the
number of lattice points in each annulus [ρ,ρ + �ρ].) After
taking this continuum limit, we want to let λ2 → 0 (and hence
also λ1 → 0) to exclude the finite-chain effects due to the
presence of the endpoint. Such a complicated noncommutative
limit is tricky to analyze numerically, so we give up a detailed
quantitative study, and just show that the distribution functions
for fixed n and several values of l and m, calculated as in
(10), collapse on the same curve, thus confirming the scaling
form (see Fig. 3; deviations from the scaling behavior are
apparent only for the largest values of m and l, i.e., when λ1

and λ2 are significantly different from 0). On the SLE side,
the distribution function is defined on the same lines. The
probability density that the n-th point along the discrete chain
γ is in z, for n → ∞ and z → ∞, behaves as

Pn(z) ∼ 1

ξ 2
n

FSLE(ρ), (11)

where ρ = zz∗/ξn and ξ 2
n = 〈γnγ

∗
n 〉. This scaling form has

been already verified numerically for κ = 8/3 [26], and here
we check it for κ = 6; the inset in Fig. 3 shows the collapse of
FSLE(ρ) on the universal curve for chains of different lengths.

Finally, we compare the distribution functions FSLE(ρ)
and FISAW(ρ,λ1 	 1,λ2 < λ1) by collapsing all data with
n = 5000,10 000,20 000 for SLE and all data with m =
1000,2000,4000 for ISAW. As argued at the beginning of
this section, we do not expect the two functions to be equal.
Nonetheless, effects due to the domain are supposed to be
irrelevant in the large-ρ regime, so FISAW and FSLE should
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dashed line, respectively). For comparison, two other distribution
functions for ISAW are shown with thinner lines, namely endpoint-
to-endpoint (pink dotted line) and internal-to-endpoint (red dashed
line).

agree in this limit. Figure 4 shows qualitatively that this
is the case, and additionally that the distribution functions
only slightly disagree for small ρ. Fits against the ansatz
log F (ρ) = c − Dρδ , inspired by the known large-distance
form for θ -point ISAW [28], yield δ = 3.2(3) in the case of
FISAW (by averaging over windows with different lower cutoffs
on ρ), and δ = 3.1(1) in the case of FSLE; values of c and D

are compatible as well. In contrast, the endpoint distribution
function and that for a single internal point, corresponding to
setting l = 0 in (10), have very different shapes (Fig. 4).

IV. CRITICAL EXPONENTS AND
THE GYRATION TENSOR

A useful quantity in the study of polymers is the end-to-end
distance (or radius), i.e., the distance from the origin to the
endpoint, which measures the elongation of the walk. Here, we
consider the radius for the generic internal point m in an SLE
chain γ , which has the same definition as the correlation length
R2

m = γmγ ∗
m. In our framework R2

m measures the elongation of
an endless θ -point polymer of length m. This quantity has the
usual structure of corrections to scaling:〈
R2

m

〉
m2ν

= a + a1

m
+ a2

m2
+ · · · + b0

m�1
+ b1

m�1+1
+ · · · , (12)

where the first terms are analytical corrections and the others
have noninteger exponents. The asymptotic form (12) defines
the Flory exponent ν and the leading correction-to-scaling
exponent �1. The numerical estimation of �1 is often
complicated by the superposition of different terms (especially
if they have discording signs [35]) and by lattice artifacts. In
the case of self-avoiding walks the SLE approach has proven
interesting [10], as it displays the corrections with �1 = 11/16
that are predicted by conformal field theory [36] but not
detectable for lattice self-avoiding walks [35] (not even in
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FIG. 5. (Color online) The asymptotic behavior of the end-to-end
radius for SLE chains is consistent with that of θ -point polymers.
The effective exponent νeff measured from simulations (red crosses)
is plotted against the chain length m; the dotted blue line is the
asymptotic value corresponding to the θ -point prediction; the dashed
black line includes the fitted corrections to scaling. The inset shows
the end-to-end radius, from which the effective exponent is computed,
together with its asymptotic expression.

their endless formulation [9]). Let us fix an increment δm and
consider 〈R2

m〉 when m varies in steps of length δm. We can
define an effective Flory exponent νeff as

νeff(m) = 1

2
log

〈
R2

m+δm

〉
〈
R2

m

〉
(

log
m + δm

m

)−1

, (13)

which is simply equal to the critical exponent ν if the end-
to-end radius is exactly proportional to m2ν . Its dependence
on m will highlight the corrections to scaling; in particular,
if only the term with exponent �1 in (12) is kept, one has
νeff(m) − ν ∝ m−� asymptotically.

We generated ∼150 000 independent samples of discrete
SLE chains of length n = 10 000 (at κ = 6), and measured
〈R2

m〉 for m = j · δm, with j = 1, . . . ,40 and δm = 250.
Notice that the values obtained for different values of m

are not independent, so our estimates are probably affected
by slight systematic errors that are difficult to quantify (the
uncertainties are probably underestimated as well). Setting the
ansatz 〈R2

m〉 ∝ m2ν(c + m−�1 ) in (13) gives a form against
which data can be compared. Varying both exponents ν

and �1 in the fit is unfeasible, but Fig. 5 shows that the
effective exponent converges to the expected value ν = 4/7 ≈
0.5714. This is confirmed by fits of the form 〈R2

m〉 ∝ m2ν

for the radius, performed in windows m ∈ [mmin,10 000] for
increasing values of the cutoff, which give ν = 0.60 for mmin =
6000, ν = 0.59 for mmin = 7000 and 8000, and ν = 0.58 for
mmin = 9000. Hence we fix ν to its theoretical value and fit the
correction-to-scaling exponent to all available data (setting a
lower cutoff increases sensibly the errors, but the values are
all compatible with the one given below). The results of this
procedure (plotted in Fig. 5) bring to

�1 = 0.76(5). (14)
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This exponent, to our knowledge, has never been computed
for θ -point polymers, and its value in percolation has been
the subject of long debate [37]. Our result (14) is in perfect
agreement with the latest estimates for percolation and with the
theoretical prediction �1 = 72/91 ≈ 0.791 obtained indepen-
dently from calculations in the Potts model [38] and in the O(n)
model [39]. However, caution must be exercised; as already
noted, corrections to scaling are a notoriously slippery ground
since terms with different exponents (and possibly different
signs) can conspire to yield deceptive effective exponents.
Further confirmations of this result, perhaps obtained with
other techniques, are awaited.

Although rotational symmetry forces the distribution func-
tions to be spherically symmetric, the instantaneous shape
of polymers is not spherical on average. A measure of the
deviations from spherical shape is given by the gyration
tensor

Qαβ = 1

2(n + 1)2

n∑
i,j=0

(γi,α − γj,α)(γi,β − γj,β), (15)

where γi,α is either Re(γi) or Im(γi) depending on the value
of α = 0,1 (note that it implicitly depends on n). Qαβ is
symmetric and positive-definite; therefore it has two positive
eigenvalues, q1 and q2, such that q1 � q2. Two quantities
characterizing the shape of the curves can be constructed from
the eigenvalues:

rn = 〈q1〉n
〈q2〉n , An =

〈
(q1 − q2)2

(q1 + q2)2

〉
n

, (16)

called shape factor and asphericity, respectively. For a
spherically symmetric object, r = 1 and A = 0, while in the
extreme case of a rod-like curve the asphericity is 1 and the
shape factor diverges. These quantities are expected to have a
finite limit for large n, and behave as rn ∼ rSLE − a/n�1 and
An ∼ ASLE − b/n�1 to leading order in n.

We analyzed the shape factor and the asphericity for the
SLE chains, by performing independent simulations at n =
1000, 2000, 3500, 5000, 6000, 7500, 8500, 10 000, 15 000,
and 20 000. We remind that the chains are generated in such a
way as to have constant step lengths. Approximately 100 000
samples were produced for each n, except n = 5000,10 000
(200 000 samples) and n = 15 000,20 000 (about 50 000 sam-
ples). The results are presented in Fig. 6. Unexpectedly, we
find that the predicted scaling form is violated considerably for
n � 5000. Therefore we fix a lower cutoff and fit the results
only for n > 5000. From the fits we obtain

rSLE = 4.38(3), ASLE = 0.373(1), (17)

which shows that the curves are strongly elliptical. The
estimated values of �1 are affected by huge errors (�1 =
1.8 ± 1.0 and 2.4 ± 1.6, for r and A, respectively) and are
thus not comparable to theoretical predictions, but they are
compatible with the more precise estimate obtained above
from the end-to-end radius (repeating the fits by keeping �1

fixed to an extreme of its confidence interval yields rSLE =
4.33 ∼ 4.42 and ASLE = 0.370 ∼ 0.377). The asymptotic
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FIG. 6. (Color online) The shape-related characteristics of the
discrete SLE curves are surprisingly close to their θ -point values.
Red symbols are the results of simulations, the black dashed lines
are leading-order scaling forms fitted against data points, and the
shaded regions are the confidence intervals for the best known θ -point
estimates (blue dotted lines).

values are surprisingly close to those of ordinary θ -point
polymers in two dimensions; in fact, they are compatible
within statistical significance. The best estimates for polymers,
depicted by the shaded intervals in Fig. 6, are rθ = 4.46(6) and
Aθ = 0.3726(7) [28]. By comparison, self-avoiding walks in
the plane and discrete SLE curves with constant step lengths
at κ = 8/3 have ASAW ≈ 0.5134 [10], while for true random
walks ARW ≈ 0.3964 [40].

We do not have an explanation for the coincidence of the
asphericity measures. As already noted, the influence of the
finite-chain effects and of the domain (the plane punctured
by a disk) modifies the shape and the distribution functions
(Fig. 4). The asphericity for SAW has already been shown to
have a nontrivial dependence on the position of the internal
point [10]. Therefore the similarity in the overall shape that
we observe for κ = 6 and the θ point is intriguing. Our result
for the exponent �1, instead, fits into the theoretical picture,
and shows the power of the numerical method. As already
noted, the SLE-based numerical strategy applied to the case
κ = 8/3 [10] exposed, for self-avoiding paths, the presence of
leading corrections to scaling with the exponent predicted by
conformal field theory, 11/16, which are surprisingly absent
for square-lattice SAW [35] (where the leading corrections
have exponent 3/2). In this perspective, it would be interesting
to calculate �1 directly for θ -point ISAW, and also for their
endless counterparts on the lattice, as was done in [9] for
noninteracting SAW.
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