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Crossover behavior in driven cascades
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We propose a model which explains how power-law crossover behavior can arise in a system which is capable
of experiencing cascading failure. In our model the susceptibility of the system to cascades is described by a
single number, the propagation power, which measures the ease with which cascades propagate. Physically,
such a number could represent the density of unstable material in a system, its internal connectivity, or the
mean susceptibility of its component parts to failure. We assume that the propagation power follows an upward
drifting Brownian motion between cascades, and drops discontinuously each time a cascade occurs. Cascades
are described by a continuous state branching process with distributional properties determined by the value of
the propagation power when they occur. In common with many cascading models, pure power-law behavior is
exhibited at a critical level of propagation power, and the mean cascade size diverges. This divergence constrains
large systems to the subcritical region. We show that as a result, crossover behavior appears in the cascade
distribution when an average is performed over the distribution of propagation power. We are able to analytically
determine the exponents before and after the crossover.
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I. INTRODUCTION

There are many examples, both manmade and naturally
occurring, of phenomena that begin with a small disturbance
and end in a catastrophe. Such events include electrical
network failures [1], forest fires [2], avalanches [3], nuclear
chain reactions [4], snapping ropes [5], and landslides [6–8].
A common feature of the distribution of the sizes of such
events, and the mathematical property which links the very
small to the very big, is power-law scaling. Such scaling
often appears over a number of orders of magnitude with
the end of the power-law region marked by an exponentially
decaying probability density, referred to as an “exponential
cut-off” [2,9]. The values of the power-law exponent, and
the cut-off point will depend on the nature of the system,
but often not on its fine details—a phenomenon known as
universality [2,9]. The physical origin of the cutoff may be the
physical size of the system or its inherent ability propagate
the cascade. For infinite systems, there exists a critical level
of instability at which the distribution is a pure power-law. As
the system approaches this critical point, the cut–off moves
increasingly rapidly toward infinity, and the expected cascade
size diverges.

In this work it is our aim to investigate the phenomenon of
power-law crossover in cascade size distributions. Crossover
occurs when the distribution of large cascades follows a
different power-law to that of small cascades. This type of
behavior was discovered [5] in the distribution of bursts of
snapping events in bundles of fibres under tension and close
to complete breakdown. It is our aim to show that similar
behavior may be exhibited by a system in which cascades
occur repeatedly over an extended period. Each cascade has
the effect of increasing the stability of the system so that
subsequent cascades propagate less freely. Such a stabilizing
effect is seen, for example, in regions prone to forest fires
where the extent and frequency of large fires has been reduced
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by planned burning of limited areas [10]. Another example is
where the spread of disease through a population is reduced
by the presence of recovered (or vaccinated) individuals,
who act as firewalls preventing transmission [11]. We might
also expect to see a similar effect in terrain susceptible
to landslides. In fact, there is some evidence of crossover
behavior in landslide size distributions [12]. However, our
model is not tied to one particular physical system, but
rather it puts forward a generic explanation of how crossover
behavior might arise. Our approach is to produce the simplest
possible model (and explanation) of driven cascades, that is
mathematically tractable, and that preserves some key features
of real cascading phenomena.

The fundamental quantity of interest to us will be the ability
of the system to propagate a cascade, which will be described
by a single number, p, the propagation power. In physical
terms, this quantity might be determined by the connectivity
of a network of unstable nodes, the density of unstable material
in a system, or the average proximity of the components of a
system to failure. Because we view the propagation power as
a measure of how easily cascades propagate between parts
of system it will not depend on the absolute volume of the
system—it is an intensive property. The dynamical properties
of p will be determined by two processes. First, p will tend
to increase over time, but with an element of unpredictability,
described by Brownian noise [13] so that in the absence of
cascades:

dp(t) = μdt + σdW (t), (1)

where μ > 0 is the mean rate of increase of p, W (t) is
a standard Wiener process [13], and σ > 0 controls the
magnitude of the noise. The physical origin of such a process
in, for example, a forest fire model might be the drying out
of vegetation due to unpredictable weather, or in a landslide
model, the natural variability of pore water pressure. We
assume that the magnitude of the noise is independent of
system size, and therefore it represents an external driving
process.
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The second influence on p arises from the cascades
themselves, which act to stabilize the system. To capture this
stabilizing effect, we suppose that if the size of the kth cascade
since an arbitrary reference time is given by the continuous
random variable Jk , then in response p changes by −εJk .
The parameter ε measures the sensitivity of p to cascades,
and will depend on the size of the system, and the stabilizing
effect on those parts of it that are involved in the cascade.
For convenience, we will refer to ε as the “inverse system
size”. Note that the distribution of Jk will itself depend on p.
We define J (t) to be the sum of all cascade sizes that have
occurred since t = 0 and let Nt count the number that have
occurred. We then have that

J (t) =
Nt∑

k=1

Jk. (2)

Together with the driving dynamics (1) we have a complete
stochastic differential equation for p(t):

dp(t) = μdt + σdW (t) − ε dJ (t). (3)

We will assume that cascades begin when a small part of the
system spontaneously fails. Because a larger system will have
more potentially unstable material, the rate at which cascades
begin should scale in proportion to the system size ε−1.
Assuming that the cascade rate is constant and independent
of the cascade history, then the times between cascades will
be exponentially distributed and Nt will be a Poisson process
with intensity λε−1, where λ is a constant of proportionality,
independent of system size. Without loss of generality in the
model we can set λ = 1 by rescaling time and adjusting μ

and σ .
As we mentioned above, the distribution from which

individual cascades sizes, Jk , are drawn will depend on the
value of p when they occur. We write the probability density
function of this distribution ψp(z). In Sec. II we introduce a
continuous state branching process to describe cascades, which
we cap at size p/ε (this cap is proportional to system size, and
ensures that the propagation power cannot become negative).
We find that

ψp(z) ∝ z− 3
2 e−κ(p)z for z <

p

ε
, (4)

where κ(p) → 0 as p approaches a “critical value” pc. At this
critical point, ψp(z) is a pure power-law and the mean cascade
size diverges. For p < pc, κ(p) > 0 so the power-law region
is “cut-off” at approximately z ≈ κ(p)−1. When p > pc,
the mean cascade size increases further still and is infinite in
the limit ε → 0. The divergence of the mean cascade size
as the critical point is approached from below will create a
self-stabilizing effect which pushes the system away from pc.
The combination of this automatic stabilization and the upward
drift of the driving process means that the propagation power
will fluctuate about a mean value lying in the subcritical region.
We will find that the magnitude of fluctuations is controlled
largely by σ for large systems.

Of central interest to us is the long term cumulative record
of cascade sizes in the system, which we describe with a
probability density function ψ̄(z). This will be an average
of ψp(z) over the values of p at which cascades take place.
We define f (p,t) to be the probability density function for the

value of the propagation power at time t . The “steady state”
density function for p is then f (p) := limt→∞ f (p,t). We
then have that

ψ̄(z) =
∫

f (p)ψp(z)dp. (5)

This expression may also be thought of as the probability
density function for the size of the next cascade observed after
some arbitrary (but large) time. One of our main results is
to show analytically that fluctuations in p about its typical
subcritical value, causing it to approach temporarily closer
to criticality, are what generates crossover behavior in the
“averaged” cascade distribution ψ̄(z).

From the above arguments it is clear that typical value of
p, corresponding to the peak of f (p), will be increased by
increasing the driving rate μ. In the limit of infinite system
size we will find that the stabilizing effect of diverging mean
cascade size near pc means that it is always the case that p <

pc. Therefore, in the limit μ → ∞ the system will sit at the
critical point. Similar behavior is exhibited by the Forest Fire
model [14], where the equivalent of μ is the rate of tree growth.
Because there are a wide range of parameter values for which
both our model and the Forest Fire model are near critical,
both may be seen as examples of “Self Organised Criticality”
(S.O.C.) [15]. The requirement that μ be sufficiently large
in order for the system to be near criticality means that our
model does not exhibit S.O.C. in its purest form, as seen in the
Sandpile [16]. However, we can still draw analogy between
the steady increase in p and the addition of energy or particles
in truly self organising models.

II. THE CASCADE DISTRIBUTION ψ p(z)

Suppose that each cascade begins when a small volume
of the system experiences a “failure” event (for example
it may catch fire, explode, get infected or begin motion).
This may induce further parts to fail and so on, forming
a sequence of failures whose volumes X0,X1,X2, . . . are
referred to as generations. We assume that the generations
follow a continuous state branching process [3,4,9,17]. The
relationship between the sizes of the successive generations is
encoded by an offspring distribution, G. This is the probability
distribution for the amount of failed material that each unit of
the current generation triggers in the next. We assume that G

remains the same throughout the cascade.
Suppose that the zeroth generation of the process, X0, is an

integer, then the size, X1, of the first generation is the sum of
X0 independent copies of a G-distributed random variable. In
this case the distribution of X1 is simply the convolution of
G with itself X0 times, written G∗X0 . If X0 is not an integer,
we extend the idea of n-fold convolution, following Seneta
and Vere–Jones [18], as follows. Suppose that Y is a random
variable drawn from the distribution G. The function

�(s) := E(e−sY ) (6)

is the Laplace transform of G. Given this definition, �(s)n

is the Laplace transform of G∗n where n ∈ {0,1,2,3, . . .}. By
relaxing the constraint that n be an integer, we may define the
Laplace transform of X1, conditional on X0, to be E(e−sX1 |
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X0) = �(s)X0 , and then extend this rule to later generations:

E(e−sXn+1 | Xn) = �(s)Xn−1 . (7)

This recursive equation defines the relationships between the
distributions of successive generations, giving a complete
characterisation of the process once G is defined.

We will take G to be the � distribution [1,19,20] �(k,θ )
which has density function

g(x) = xk−1e− x
θ

�(k)θk
, (8)

defined for x � 0, where the variables k > 0 and θ > 0 are
referred to as the shape and scale parameters. Our choice of
G is motivated by the requirement that it have a physically
plausible shape (not bimodal), have defined moments, lead to
mathematical tractability, and that Xn ∈ [0,∞] for all n � 0.
In fact, the asymptotic behavior of the distribution of the total
size of the cascade

Z =
∞∑
i=0

Xi (9)

will depend only on the mean and variance of the offspring
distribution so we expect our crossover predictions would hold
for other forms of G. A significant advantage of our particular
choice is that for all real n > 0, �(k,θ )∗n ≡ �(nk,θ ), from
which we see, via equation (7), that our � branching process
is defined by the relationship

Xn ∼ �(kXn−1,θ ), (10)

where X0 is the volume of the first generation of the cascade.
In Eq. (10) the symbol ∼ means “is distributed as”. Using this
recursive definition of the cascade, it is possible to compute
the distribution of the total cascade size Z. However, we first
fix the relationship between the offspring distribution and p.
We will allow this dependence to enter through the mean,
kθ , of the offspring distribution, so that the average volume
contributed to each successive generation of the cascade per
unit volume of the previous generation is proportional to p.
We choose to let θ = p and leave k as a free parameter which
controls the variance and shape of G.

We will write the probability density function for Z as ψp(z)
and consider first the case where there is no limit on how large
cascades can become. We may calculate ψp(z) by interpreting
Z as the first passage time of a random walk. However, the
details of this calculation are somewhat technical, and are not
part of our main story, so we confine them to the Appendix.
The resulting probability density function for Z is

ψp(z) = X0p
−kz (z − X0) kz−1e

X0−z

p

z�(kz)
(11)

∼
[√

k

2π
X0e

−kX0+ X0
p

]
e−κz

z3/2
as z → ∞, (12)

where

κ = k ln(kp) + 1 − kp

p
. (13)

In the context of Eq. (12) the symbol ∼ means “tends
asymptotically to”. To the author’s knowledge, Eq. (11) is

a new result in the theory of continuous state branching
processes [21]. Considering Eq. (12), when the mean of
the offspring distribution is one (kp = 1), then κ = 0, so
the distribution is asymptotically a pure − 3

2 power-law with
infinite moments. The value of propagation power pc = 1

k

at which this behavior occurs is referred to as the critical
point. When p < pc the quantity κ−1 gives the location of the
exponential cutoff.

Provided kp < 1, the distribution ψp(z) is normalized and
its moments are defined. It is useful to have explicit expressions
for the first two moments of ψp(z) in this case. In the Appendix
we show that, provided the cascade size is not limited by finite
system size, then

E(Z) = X0

1 − kp
, (14)

E(Z2) = X2
0(1 − kp) + X0kp

2

(1 − kp)3
. (15)

When kp > 1 the distribution (11) is not normalized. This
is referred to as the “supercritical” regime where infinitely
large cascades become possible. The total probability weight
is equal to P{Z < ∞}. In the Appendix we show that∫ ∞

X0

ψp(x)dx = eχ(k,p)X0 , (16)

where

χ (k,p) =
(

kW−1

(
−e

− 1
kp

kp

)
+ 1

p

)
1[ 1

k
,∞](p) (17)

and W−1 is one of the two real branches of the Lambert W

function [22], the other being W0.
We will cap cascades at a maximum size

Zmax = p

ε
(18)

so that they cannot cause the propagation power to take
negative values. This cap scales in proportion with the system
size. Assuming that cascades will stop abruptly once Z >

Zmax, then the tail of ψp(z) will replaced with a δ function
ω(Zmax)δ(z − Zmax) where ω(Zmax) is the total probability
weight in the tail, plus the probability of an infinite cascade:

ω(Zmax) =
∫ ∞

Zmax

ψp(z)dz + (1 − eχ(k,p)X0 ). (19)

The capped cascade distribution is therefore

ψp(z; Zmax) := 1[X0,Zmax](z)ψp(z) + ω(Zmax)δ(z − Zmax),
(20)

and the nth cascade moment in a finite system is

E(Zn) :=
∫ Zmax

X0

znψp(z)dz + ω(Zmax)Zn
max, (21)

where the second term arises from integration over the δ

function in the capped cascade density. For simplicity, for
the remainder of the paper we will begin all cascades with a
failure of volume X0 = 1.
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III. THE DISTRIBUTION OF PROPAGATION POWER

For arbitrary ε, the steady state distribution of the propa-
gation power equation (3) cannot be found analytically, but
may be determined by simulation. However, for small ε,
jumps which are not small with respect to the system size
become increasingly rare, and the dynamics of p may be
approximated by diffusion with drift, giving rise to a pure
diffusion equation which is analytically tractable. In the limit
ε → 0, this approximation becomes exact. To illustrate the
rarity of large jumps, Fig. 1 shows a simulation of p(t) when
ε = 10−5, μ = 10, σ = 0.5, and k = 1.0. In this case out of
5 × 106 cascades only six exceeded 10% of the system size,
and the system reached criticality only once out of all recorded
times.

To derive our diffusion approximation we view p as evolv-
ing in discrete steps, with its value being recorded immediately
before each cascade. Each change in p is therefore comprised
of a cascade, followed by a period of diffusion until the next
cascade occurs. This defines a discrete time stochastic process
p1,p2,p3 . . . where pn is the propagation power immediately
before the nth cascade. We let fn(p) be the probability density
function for pn. We then define Wy(r) to be the probability
density function for the size, r , of the next single step of the
process given that the current value of propagation power is
y. Note that Wy(r) is independent of n. The master equation
governing the evolution of fn(p) is then

fn+1(p) =
∫

Wp−r (r)fn(p − r)dr. (22)

Our aim is to find the steady state distribution: limn→∞ fn(p).
Before we continue our analysis of the master equation

we will make clear the link between the distributions of the
discrete time process, and the underlying continuous time
process (3). In Sec. I, we defined f (p) to be the steady
state probability density function for the continuous process,
p(t), which may intuitively be thought of as the density
function for the value of p observed at an arbitrary time
T , large enough so that the influence of initial conditions
is insignificant. Due to the properties of exponential waiting
times [23], the time interval, �T , between T and the last
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FIG. 1. Simulation of p(t) using parameter values ε = 10−5, μ =
10, σ = 0.5 and k = 1 giving a critical p value of pc = 1.0. Values
of p(t) were recorded when the jump which preceded them exceeded
1% of the system size.

cascade before T will be exponentially distributed. Letting p∗
be the value of p immediately after this last cascade, we see
that p(T ) = p∗ + μ�T + σW (�T ). Now let T ′ be another
large time, but restricted to the set of cascade times so that we
are making an observation of the discrete time process. Again
using the properties of exponential waiting times, the time �T ′
since the previous cascade will have the same distribution as
�T (intuitively this arises because T is likely to lie in a larger
than average waiting interval). Because the value of p just after
the previous cascade will be drawn from the same distribution
as p∗, we have that p(T ) =d p(T ′) where =d denotes equality
in distribution. As a result, observations of the discrete time
and the continuous time process have the same distribution at
large times:

lim
n→∞ fn(p) = f (p). (23)

If the times between cascades were not exponentially dis-
tributed then the probability distribution of the state of the
system immediately preceding a cascade would not, in general,
be the same as the distribution at a randomly selected time. In
that case Eq. (5) would be incorrect because ψp(z) must be
averaged over the distribution of p immediately preceding a
cascade.

To approximate the steady state solution to Eq. (22) we
derive the corresponding Kramers–Moyal equation [24] by
expanding the integrand of Eq. (22) in powers of r:

Wp−r (r)fn(p − r) ≈ Wp(r)fn(p) − r∂p{Wp(r)fn(p)}

+ r2

2
∂pp{Wp(r)fn(p)} + . . . .

Substituting this approximation back into the master equation
we find that

fn+1(p) = fn(p) − ∂p

(
fn(p)

∫
rWp(r)dr

)

+ 1

2
∂pp

(
fn(p)

∫
r2Wp(r)dr

)
+ . . . ,

where we have made use of the normalization of the step size
distribution to simplify the first term. We now define the first
two moments of step size to be

A(p) :=
∫

rWp(r)dr, (24)

B(p) :=
∫

r2Wp(r)dr. (25)

As ε → 0, both the time between cascades and their effect
on p decline so the step distribution becomes increasingly
sharply peaked about r = 0. We therefore ignore moments of
higher order than two and obtain a discrete time analog of the
Fokker–Planck equation for pure diffusion:

fn+1(p) − fn(p) = −∂p{A(p)fn(p)} + 1
2∂pp{B(p)fn(p)}.

(26)

We are interested in the steady state behavior of the process,
where fn+1(p) = fn(p) ≡ f (p), and in particular we require
the function f (p), which from Eq. (26), satisfies

∂p[A(p)f (p)] = 1
2∂pp[B(p)f (p)]. (27)
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The first integral of this equation, the probability current
A(p)f (p) − 1

2∂p(B(p)f (p)), will be zero.
In the limit of large system size, for p < pc, the probability

of cascades which engulf the entire system is zero, and the
system can never access the region p � pc because the mean
cascade size diverges in the neighborhood of p = pc. We
therefore expect our diffusion approximation to become exact.
As this limit is approached our expressions for A(p) and B(p)
take the asymptotic form:

A(p) ∼ ε[μ − E(Z)], (28)

B(p) ∼ εσ 2 + ε2[E(Z2) − 2μE(Z) + 2μ2]. (29)

In Eq. (29) we have retained the ε2 term because the moments
of the cascade distribution become very large as p → pc. For
any finite system we expect our approximation to break down
near this critical point, and to breakdown globally if there is
sufficient probability weight in the supercritical region where
infinite cascades have nonzero probability. We will explore this
breakdown using simulations. The first moment of the cascade
distribution has asymptotic behavior:

E(Z) ∼ 1

1 − kp
as ε → 0 (30)

which diverges near p = pc = 1
k
, creating an infinite negative

drift. The probability weight at the critical point therefore
declines to zero as ε → 0 and the divergence in B(p) will
never be realized. We may therefore drop the ε2 term for
infinite systems. Making use of A(p) and the simplified B(p)
we see from Eq. (27) that the limiting form of f (p) satisfies(

μ − 1

1 − kp

)
f (p) = σ 2

2
f ′(p). (31)

Although the cascade distribution ψp(z) is not defined for
p < 0, in the interests of tractability, we will take equation
(31) as valid over the interval [−∞,0], yielding the following
expression for f (p):

f (p) =
kμ

(
2μ

kσ 2

) 2
kσ2

�
[

2
kσ 2

] (1 − kp)
2

kσ2 exp

[
− 2μ

kσ 2
(1 − kp)

]
.

(32)

For all parameter values of interest to us, the probability weight
in the invalid region p ∈ [−∞,0] is less than 10−12. Note that
this solution is independent of ε, but we expect it to become an
increasingly good approximation to the true solution as ε → 0
for values of p < pc.

IV. THE STEADY STATE CASCADE SIZE
DISTRIBUTION ψ̄(z)

By making use of the large system size approximation
to the propagation power probability density, f (p), together
with the asymptotic form of the cascade distribution (12), it is
possible to investigate the (z → ∞) asymptotic behavior of the
mean cascade distribution in the limit ε → 0. Throughout this
section all asymptotic formulas hold as z → ∞. To simplify

our expressions we define a new parameter:

α := 2

kσ 2
. (33)

The mean cascade distribution may then be written

ψ̄(z) =
∫

f (p)ψp(z)dp (34)

∼ k
3
2 e−kC√

2
z− 3

2

∫ pc

−∞
e

1
p
−κz(1 − kp)αe−αμ(1−kp)dp,

(35)

where

C = μ(αμ)α√
π�(α)

. (36)

We have extended the lower limit of integration to −∞
for tractability, since the integrand will be negligible when
p < 0. The integral (35) is not tractable. However, as z →
∞, the weight of the integrand becomes concentrated in a
shrinking neighborhood of the critical point. We may therefore
approximate the integral asymptotically by replacing the
first exponent in the integrand with its Taylor expansion to
quadratic order about pc = 1

k
:

1

p
− κz ≈ k

(
1 + (1 − kp) − 1

2
(z − 2)(1 − kp)2

)
. (37)

Making the change of variables s = 1 − kp, our approxima-
tion becomes

ψ̄(z) ∼ C
√

k

2
z− 3

2

∫ ∞

0
sαe−(αμ−k)s− k

2 (z−2)s2
ds. (38)

We now make a second change of variables:

k

2
(z − 2)s2 = t2, (39)

which gives

ψ̄(z) ∼ C
√

k

2
z− 3

2

(
2

k(z − 2)

) 1+α
2

×
∫ ∞

0
tαe−t2

exp

[
−

(
2

k(z − 2)

) 1
2

(αμ − k)t

]
dt.

(40)

We may extract the asymptotic behavior of this integral by
noting that, for finite t , as z → ∞ the z dependent exponential
term tends to one. We now note that provided α > 1:∫ ∞

0
tαe−t2

dt = 1

2
�

[
1 + α

2

]
. (41)

The asymptotic behavior of the mean cascade distribution is
therefore a pure power-law:

ψ̄(z) ∼ Az
−2− 1

kσ2 , (42)

where

A = 1

2

(
2

k

) α
2

�

[
1 + α

2

]
C. (43)

So, in the limit of large system size, the tail of the mean
cascade distribution, rather than being exponential, follows a
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FIG. 2. Log-log plot of the mean cascade distributions (dashed
lines) ψ̄(z) in the limit ε → 0 when k = 2, σ = 0.5, and μ takes
the values 10 and 60. The larger μ value produces a crossover point
at a higher value of z. Also shown are the asymptotic power-law
predictions (42) (solid lines) and the function z− 3

2 as a dotted line.

power-law with an exponent which is an increasing function
of the variance of the destabilisation process. For smaller z,
when most of the probability weight in f (p) corresponds to
cutoffs at larger z values, we see z− 3

2 behavior preserved.
Together with our asymptotic predictions this gives rise to a
power-law crossover. The theoretical distribution ψ̄(z), in the
limit ε → 0, is illustrated in Figs. 2 and 3 together with the
asymptotic result (42).

V. SIMULATION RESULTS

Using simulations we will now test the validity of our large
system crossover predictions, explore the influence of ε and
the effect of the model parameters on the averaged cascade
distribution, ψ̄(z).

FIG. 3. Log-log plot of the mean cascade distributions (dashed
lines) ψ̄(z) in the limit ε → 0 when k = 2, μ = 40, and σ takes the
values 0.5 and 0.8. The larger σ value produces a shallower tail in
the cascade distribution. Also shown are the asymptotic power-law
predictions (42) (solid lines) and the function z− 3

2 as a dotted line.

FIG. 4. The circles show the simulated cascade distribution ψ̄(z)
when ε = 10−6, μ = 10, σ = 1.5, and k = 0.1. The results were
obtained by simulating the propagation power process over 109

cascades. The black line shows the theoretical cascade distribution in
the limit ε → 0.

A. Techniques of simulation

We make use of two simulation methods; a “naive” tech-
nique where every cascade is simulated, and an “accelerated”
technique which uses a diffusion approximation when the
probability of jumps of significant size in comparison to ε−1

is sufficiently small.

1. Naive simulation

The simplest method to determine the averaged cascade
distribution is to simulate the stochastic process described by
equation (22). The results (shown in Fig. 4) were obtained
by simulating 109 cascades, and recording their sizes in bins
of increasing width. It is clear from the figure that to fully
examine the tail behavior of the distribution would require
us to simulate significantly more cascades. This would be
prohibitively time consuming so we adopt an accelerated
scheme for the remainder of our results.

2. Accelerated simulation

For the parameters used in Fig. 4 we see that our theoretical
cascade distribution in the limit ε → 0 was accurate for
cascades up to at least one-hundredth of the system size. Due to
the exponential cutoff in ψp(z), large cascades are only likely
when p is in the vicinity of the critical point. The behavior of
the distribution of p in this region determines the tail behavior
of the average cascade distribution. Given that the diffusion
approximation works well for smaller p values, we may speed
up our simulation by explicitly simulating cascades only once
we are close to pc. For lower p values we approximate the
process as pure diffusion, which is much faster to simulate.
We determine the switch point ps by requiring that for p < ps ,
the probability of observing at least one cascade that is larger
than one-hundredth the system size over the simulation must
be effectively zero (taken to be 10−12). For p < ps we advance
p(t) using a fixed time step δt . For p > ps we simulate every
cascade, where the times between them are exponentially
distributed with mean ε. Typically, δt may be taken to be
orders of magnitude larger than ε, but must be small enough
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FIG. 5. The circles show the simulated cascade distribution ψ̄(z)
when ε = 10−9, μ = 10, σ = 1.5, and k = 0.1. The results were
obtained by simulating the propagation power process using the
accelerated technique over 109 time steps. The black line shows the
theoretical cascade distribution in the limit ε → 0. The dashed lines
are pure power-laws. The shallow gradient line has exponent − 3

2 ,
whereas the steep gradient line is our asymptotic prediction (42). The
dotted line shows ψp(z) when p is equal to its mean value. Note the
presence of the exponential cutoff.

so that the process does not significantly “overshoot” ps into
the region where the quality of the diffusion approximation is
uncertain. We refer to the sum total of long (δt) and short (mean
length ε) time steps to be the number of steps in the simulation.
Provided δt � ε, then, because the system spends most of its
time in the region p < ps , we can effectively simulate p(t)
over a much larger time interval than with the naive method.
Rather then generating a catalog of cascades, this technique
produces an approximate density function for p. We average
the cascade distribution over this approximate density function
in order to find ψ̄(p).

In Fig. 5 we have used this accelerated method to investigate
the cascade distribution for a larger system than in Fig. 4
but with otherwise identical parameter values. Also plotted is
our asymptotic prediction (42), and the cascade density ψp(z)
when p is equal to its mean value. This serves to highlight
the difference between crossover behavior and exponential
cutoff. We note that the analytic predictions are well matched
in this case; the diffusion approximation remained valid some
distance beyond the switch point ps .

B. Validity of large system crossover predictions

We now investigate the breakdown of our crossover
predications by simulating smaller systems. In Fig. 6 we have
simulated two different sized systems that are both smaller
than in Fig. 5. We note that when k > 1 the distribution
of the first generation of the cascade possesses a maximum
located away from zero and the cascade distribution inherits
this characteristic. For the smaller system, the crossover fails
to fully develop, and the exponent begins to increase again.
This occurs because the distribution of propagation power
does not decay to zero at the critical point, so the averaged
cascade distribution includes significant contributions from
values of p for which ψp(z) is approximately a pure power law
for z < ε−5. The breakdown of the diffusion approximation

FIG. 6. The open circles show the simulated cascade distribution
ψ̄(z) when ε = 10−5, μ = 15, σ = 0.35, and k = 1.5. The filled
circles show the simulated cascade distribution when ε = 10−7 and
all other parameters are the same. The results were obtained by
simulating the propagation power process using the accelerated
technique over 109 time steps. The solid line shows the theoretical
cascade distribution in the limit ε → 0.

occurs in part because the frequency of cascades is insufficient
to realize their divergent mean size on short time scales. In
the larger system where ε = 10−7 we see that the crossover
develops more fully. Because cascades occur with greater
frequency, fluctuations in the short term average of the cascade
size are reduced.

C. The influence of μ and σ

In Figs. 2 and 3, we illustrate the role of the parameters μ

and σ in determining the behavior of the cascade distribution
ψ̄(z) in the limit of large system size. Figure 2 shows that for
fixed σ , the driving rate μ, which determines the location of
the maximum of f (p), fixes the location of the crossover. At
larger driving rates, the crossover point shifts to larger cascade
sizes. This is because, for larger μ, the peak of f (p) is nearer
to the critical point. Therefore the typical exponential cut-off
scale is larger and the − 3

2 scaling region is extended.
In Fig. 3 we see that a noisier driving process reduces the

magnitude of the tail exponent, but the size of the − 3
2 region

remains unaffected. Increased variability in the driving process
means that although the typical distance from the critical point
is unchanged, the system spends more time in close proximity
to it and therefore large cutoffs are more heavily weighted.

In both figures the asymptotic power-law predictions (42)
for the cascade distribution give an indication of the size of
the region over which the crossover occurs.

VI. CONCLUSIONS

We have presented a driven cascade model which, in
the limit of large system size, exhibits power-law crossover
behavior in its cascade size distribution. For smaller systems,
the crossover partially develops, but the distribution moves
back toward the initial − 3

2 power-law at larger cascade sizes,
because the system is able to reach and exceed the critical
value of propagation power.
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The mechanism which generates the crossover is a com-
petition between the driving process, which increases the
instability of the system, and the cascade process, which
reduces it. As the propagation power nears the critical point,
pc, the mean cascade size diverges, so that in the limit of large
system size, pc is not accessible for finite μ. The upper tail of
the distribution of propagation power, f (p), therefore decays
to zero at pc. The asymptotic behavior of the averaged cascade
distribution, ψ̄(z), is determined by averaging the asymptotic
behavior of the cascade distribution for fixed propagation
power, ψp(z), over the upper tail of f (p). The result is a power–
law with exponent lower than − 3

2 , producing a crossover.
We suggest that the presence of a crossover in a cascade

size distribution may indicate that the system is able to self
stabilize through frequent but noncatastrophic cascades, and
that the mechanism which drives the instability of the system to
cascading failure is inherently noisy. The stabilizing cascades
act to prevent the system from reaching a fully critical state
where very large cascades can occur. Because our system will
be near critical for a wide range of parameter values (large
enough μ), it may be considered to exhibit “Self Organised
Criticality”. However, the crossover is more obvious if the
typical value of propagation power is not too close to criticality,
and it has been our focus to explore crossover. It should also
be noted that an infinite system will only become fully critical
in the limit μ → ∞, whereas a finite system may become
critical or supercritical through fluctuations. The location of
the crossover indicates how close to criticality the system will
typically be found, because it is determined by the peak of
f (p). It remains to adapt the ideas contained in our simple
model to investigate real physical systems such as forest fires
and landslides.
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APPENDIX: CASCADE DISTRIBUTION FOR �

BRANCHING PROCESS

The purpose of this appendix is to derive the probability
density function for the total cascade size in the continuous
state branching process defined by relationship (10), and also
to determine the probability of an infinite size cascade.

a. Mapping to a first passage problem

We begin by showing that the total cascade size may be
interpreted as a first passage time. Consider the branching
process X0,X1,X2, . . . defined by the relationship Xn ∼
�(kXn−1,θ ) with X0 given. In order to calculate the distribu-
tion of Z = ∑∞

k=0 Xk , we show that Z may be viewed as the
first passage time of a stochastic process through the origin. We
first give the definition of the “Gamma process” [21], which
takes place in continuous time on [0,∞]. If St is a � process
with parameters k and θ then

(1) S0 = 0;

(2) It has independent increments, in the sense that for any
0 � t0 < t1 < · · · < tn the random variables St1 − St0 ,St2 −
St1 , · · · , Stn − Stn−1 are independent and;

(3) Ss+t − Ss ∼ �(kt,θ ).
We now define a new stochastic process Qt = X0 + St − t ,

where X0 is the size of the first generation of our branching
process. By defining Zn := ∑n

k=0 Xk to be the cumulative
cascade size up to the nth step, we may show that the processes
Qt and Xn have the following relationship:

Xn+1 =d QZn
(A1)

provided that the cascade has not ended for some k < n.
Here =d denotes equality in distribution. We may deduce that
this relationship holds inductively. We note first that from the
defining properties of the � process:

SZn
− SZn−1 ∼ �(kXn,θ ) ∼ Xn+1. (A2)

Assuming that relationship (A1) holds for all n < k then

QZk
= QZk−1 + (SZk

− SZk−1 ) − (Zk − Zk−1) (A3)

=d Xk + Xk+1 − Xk (A4)

= Xk+1. (A5)

Since QZ0 = X0 + SX0 − X0 =d X1 then Eq. (A1) holds when
n = 0 and therefore for all n by induction. The cascade ends at
the first generation for which Xn = 0, at which point QZn−1 =
0, so the total size of the cascade is equal to the first time that the
process Qt meets the origin. In order to find the cascade size
distribution we need to solve this first passage time problem.

b. Gamma process as the limit of a discrete process

Our first passage time problem is most easily solved by
viewing the stochastic process Qt as the limit of a discrete
state random walk. Here we show how the appropriate random
walk is constructed.

We begin by noting that the negative binomial distribution,
which has probability mass function:

b(n,r,q) = �(n + r)

n!�(r)
(1 − q)rqn, (A6)

provides an arbitrarily close discrete approximation to the �

distribution for appropriate choice of the parameters r and q.
The approximation is set up in the following way. We divide
[0,∞] into a discrete lattice of constant spacing δ, and let Xδ be
a discrete random variable which approximates X ∼ �(k,θ ).
Let Xδ have the probability mass function:

P(Xδ = nδ) = b(n,r,q). (A7)

The mean and variance of Xδ are then E(Xδ) = δqr

1−q
and

Var(Xδ) = δ2qr

(1−q)2 . Letting r∗ and q∗ be the values of r and
q for which the mean and variance of X and Xδ are equal, we
find that

r∗ = kθ

θ − δ
, (A8)

q∗ = 1 − δ

θ
. (A9)
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With these choices of r and q, in the limit δ → 0 the discrete
distribution converges to �(k,θ ) in the following sense:

lim
δ→0

1

δ
b[
x/δ�,r∗,q∗] = xk−1e− x

θ

�(k)θk
, (A10)

where the notation 
a� represents the integer part of the
real number a. As well as providing an arbitrarily good
approximation to the � distribution, the negative binomial
distribution also has the property that if Y ∼ NB(r,q) is a
negative binomial variable, then the sum of m independent
copies of Y has distribution NB(mr,q). This allows us to set
up a discrete approximation to the � process as follows. We
divide each unit of time into δ−1 subunits and let the random
variable A have distribution

A ∼ NB(δr∗,q∗). (A11)

We will refer to this as the “atomic” random variable with
“atomic distribution”. We may approximate the � process as
a sum of a sequence, A1,A2, . . . of independent copies of A:

St ≈ δ


t/δ�∑
k=1

Ak. (A12)

In other words, we are viewing St as a scaled random walk
with step sizes given by the atomic distribution. We may
approximate the process Qt in a similar way to St :

Qt ≈ δ

(

X0/δ� +


t/δ�∑
k=1

Ak − 
t/δ�
)

. (A13)

c. First passage time of the discrete process

Having shown how to construct the discrete state random
walk, we now solve the first passage problem using generating
functions [4] and the Lagrange inversion formula [25].

Let m = 
X0/δ� and Zδ(m) be the first passage time of the
walk (A13), starting from position m, with time and position
expressed in units of δ. Considering the first step, which will
have size A − 1, we have that

Zδ(m) = 1 + Zδ(m + A − 1). (A14)

Since the time for the walk to get from position m to the
origin is equal to the time it takes to get to position 1 plus
the time to get from position 1 to the origin, then Zδ(m) =d

Zδ(m − 1) + Zδ(1). The quantity Zδ(m) is therefore the sum
of m independent copies of Zδ(1). We have from Eq. (A14)
that

Zδ(1) = 1 + Zδ(A). (A15)

If H (s) and F (s) are the probability generating functions for
Zδ(1) and A, then from Eq. (A15) we have

H (s) = E(s1+Zδ (A)) (A16)

= sE[E(sZδ(A) | A)] (A17)

= sE[(H (s))A] (A18)

= sF (H (s)). (A19)

From the negative binomial mass function we have that

F (s) =
∞∑

n=0

snb(n,δr∗,q∗) =
(

1 − q∗

1 − q∗s

)δr∗

. (A20)

We are interested in the probability generating function of
Zδ(m), which is just Hm(s). The coefficient of sn in this
function may be determined using the Lagrange inversion
formula [25]:

[sn]Hm(s) = 1

n
[Hn−1]

{(
d

dH
Hm

)
Fn(H )

}
(A21)

= m

n
[Hn−m]Fn(H ) (A22)

= m

n

�(n(1 + δr∗) − m)

�(nδr∗)�(n − m + 1)
(1 − q∗)δr

∗n(q∗)n−m

(A23)

= P{Zδ(m) = n}, (A24)

where the notation [xn]f (x) stands for the coefficient of xn

in the Taylor series of f (x). We now have the probability
mass function for the cascade size in the discrete branching
process which approximates the continuum process that we
are interested in.

d. Continuum limit of the discrete process

Now that we have the solution to the discrete problem we
solve the continuous problem by taking the continuum limit.
We find expressions for the moments of the cascade size using
a similar method. Using a martingale method we determine the
probability that the cascade is of finite size in the supercritical
case.

We obtain the continuum cascade density function, which
we will call ψ(z), by setting n = z/δ and m = X0/δ and then
taking the limit δ → 0 of P{Zδ(m) = n}:

ψ(z) = lim
δ→0

1

δ
P{Zδ(m) = n} (A25)

= X0θ
−kz (z − X0) kz−1e

X0−z

θ

z�(kz)
. (A26)

The asymptotic properties of ψ(z) may be determined by
making use of Stirling’s approximation [26]: �(z + 1) ∼√

2πz
(

z
e

)z
. The result is

ψ(z) ∼
[√

k

2π
X0e

−kX0+ X0
θ

]
e−κz

z3/2
as z → ∞, (A27)

where

κ = k ln(kθ ) + 1 − kθ

θ
. (A28)

Provided kθ < 1, the distribution ψ(z) is normalised and its
moments are defined. It is useful to have explicit expressions
for the first two moments of ψ(z) in this case. We may
compute the moments of the (discrete) distribution of Zδ(1)
by differentiating the generating function relationship: H (s) =
sF (H (s)), and then solving for H ′(s) and H ′′(s). Using the
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expression for F (s), together with the fact that when kθ < 1,
H (1) = F (1) = 1, we find that

E(δZδ(1)) = δ

1 − kθ
, (A29)

Var(δZδ(1)) = δkθ2

(1 − kθ )3
. (A30)

The total cascade size, Z, has the same distribution as the sum
of X0δ

−1 copies of δZδ(1), so E(Z) = X0δ
−1E(δZδ(1)) and

Var(Z) = X0δ
−1Var(δZδ(1)), yielding the first two moments

of the cascade distribution in exact form:

E(Z) = X0

1 − kθ
, (A31)

E(Z2) = X2
0(1 − kθ ) + X0kθ2

(1 − kθ )3
. (A32)

Numerical integration of the exact distribution (A26) reveals
that it is not normalized when kθ > 1. This is the “supercrit-
ical” regime. In general the total probability weight is equal
to P{Z < ∞}, which is less than one in the supercritical case

because there is a nonzero probability of seeing an infinite
cascade. We may deduce this probability by considering the
stochastic process:

Mt = e−qQt . (A33)

Taking the expectation value of this process, conditional on its
value at t = 0 we find that

E(Mt ) = e−qX0+t(q−k ln(1+qθ)). (A34)

If we let q be the solution to the equation q − k ln(1 + qθ ) = 0
then this expectation will be independent of time. The value
of q which solves this equation is

q∗ = −1

θ
− kW−1

(
− 1

kθ
e− 1

kθ

)
� 0. (A35)

Letting Z be the first time at which the process meets the
origin, then we have that

E(MZ) = P(Z < ∞) = e−q∗X0 . (A36)

This gives the result presented in Eq. (16).
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