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Thermodynamic curvature for attractive and repulsive intermolecular forces
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The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including
vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid,
and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R = 0 dividing
the phase space into regions with effectively attractive (R < 0) or repulsive (R > 0) interactions. Furthermore,
we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by
Weeks-Chandler-Anderson. Our results show clearly a transition from R > 0 (for poorly repulsive interaction)
to R < 0 when loading attraction in the intermolecular potential.
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I. INTRODUCTION

The use of differential geometry in thermodynamics has
a long and successful tradition [1–5]. It has been shown that
fundamentally new results can be obtained when Riemannian
geometry is introduced in equilibrium thermodynamics [6–8].
The Riemannian curvature scalar R is of special interest. R is
calculated from the coefficients gij of the metric tensor given
by derivatives of macroscopic state variables and defining a
thermodynamic line element (see Appendix). This line element
can be considered as a distance between two thermodynamic
state points. R is a measure of interaction strength [9] where
the sign of R specifies whether intermolecular interactions
are effectively attractive (R < 0) or repulsive (R > 0) in the
curvature sign convention of Weinberg [1]. Moreover, the
magnitude |R| of the invariant R can be interpreted as a
measure of the size of mesoscopic organized structures in a
fluid.

In a recent study, Ruppeiner [10] discusses the principal
behavior of R in five different phase space regions: (1) in
the vapor phase, (2) the compact liquid phase, (3) near the
critical point (CP), (4) in the asymptotic CP regime, and (5)
in the solid state. Additionally, Ruppeiner [10] evaluated R

along the vapor-liquid coexisting line from the CP to the
triple point (TP) for numerous pure fluids using data from
the NIST Chemistry WebBook [11]. These calculations mark
an important step in understanding the behavior of R for
pure fluids. However, a verification of the mesoscopic fluid
concept characterized by the thermodynamic curvature R for
the complete phase space including vapor-liquid, liquid-solid,
and vapor-solid equilibria would be desirable. Furthermore, a
detailed analysis of the influence of intermolecular attraction
and repulsion on the curvature R would certainly extend the
understanding of Riemannian geometry of thermodynamics.

Therefore, the aim of our study is to fill this gap. We
apply the ideas of the mesoscopic fluid concept to the very
frequently discussed Lennard-Jones (LJ) system. Based on
realistic multiparameter equations of state (EOS) for a LJ-

system, we analyze the state-point-dependent behavior of R.
We used the modified Benedict-Webb-Rubin (MBWR) EOS of
Johnson et al. [12] to calculate the Helmholtz free energy of the
LJ system in the fluid phase, because this EOS is the basis for
a widely accepted EOS describing the thermodynamics of the
face-centered cubic solid developed from van der Hoef [13,14].
An accuracy discussion for the MBWR EOS is already given
in the original paper of Johnson et al. [12]. But it is not
sufficient to examine the quality of an EOS by comparing
only pressure and energy values; usually these parameters
are fairly well represented by a multiparameter high-quality
EOS. In Ref. [15], a comparison of different high-quality EOS
including the MBWR EOS is given where fluid properties like
thermodynamic response functions are calculated from these
EOS and are compared with NVEPG ensemble simulation
results. This new NVEPG ensemble simulation method allows
a direct calculation of thermodynamic derivatives. In Sec. V
of this paper, we use the original MBWR EOS and a revised
MBWR EOS [8], to calculate the important R = 0 line in order
to check the sensitivity to a change of the EOS. The results for
both EOS are very similar.

In this study, we first investigate the dependence of R on the
intermolecular strength. For this purpose, we use a separation
ansatz proposed by Weeks-Chandler-Anderson (WCA) [16],
where the intermolecular potential is separated into a short-
range repulsive and a long-range attractive component. The
latter is treated as a perturbation. This treatment allows us
to load attraction continuously to the repulsive part of the
potential. Second, we use this separation ansatz to map out
the vapor-liquid coexisting line depending on the strength
of interaction. Here, we apply the R-crossing method [7].
Additionally, we numerically estimate the critical behavior of
R and compare it with a consideration given by Ruppeiner [10].
In the remainder of the paper, we evaluate the behavior of R for
the complete phase space where we concentrate on the full LJ
potential only. We investigate the thermodynamic curvature
scalar R in the solid state by using an EOS developed by
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van der Hoef [13,14] for the face-centered cubic-LJ solid.
In the following part, we study the behavior of R along
liquid-solid and vapor-solid equilibria. Additionally, we locate
the line R = 0 in phase space, which is close to the liquid-solid
first-order phase transition. The line R = 0 indicates a change
in interaction from effectively attractive to repulsive. In the
Appendix, we describe how the thermodynamic curvature
scalar R can be calculated from any EOS given in density-
temperature coordinates.

We add that an early attempt to relate the correlation
function to fluctuating thermodynamic quantities described
by a thermodynamic correlation matrix was by Green [17].

II. DEPENDENCE OF R ON INTERMOLECULAR FORCES
IN THE FLUID PHASE

One of the key statements in Riemannian geometry of
thermodynamics is that the thermodynamic curvature scalar R

measures intermolecular interaction and the sign of R indicates
whether the interaction is effectively attractive or repulsive [9].
It is expected that a fluid with LJ-type interaction is dominated
by attractive forces with negative R and that R diverges to −∞
at the critical point [10].

Nevertheless, for a LJ-type fluid, a region of small positive
R is expected near the fluid-solid transition, indicating a
change to effectively repulsive interaction. However, a sys-
tematic study of the influence of the attractive forces on the
behavior of the thermodynamic curvature R has not been
performed until now. In order to investigate this role, we varied
the intensity of these forces and we used a separation ansatz
of the LJ potential proposed by WCA [16].

The Lennard-Jones potential is

ULJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

. (1)

Here, ε is the LJ well depth, σ is the LJ atomic diameter, and
r is the distance between two particles.

In the following, we use reduced quantities for the distance
r with r∗ = r/σ , the time τ with τ ∗ = τ

√
ε/mσ 2 (m is the

mass of a particle), the temperature T with T ∗ = kBT /ε (kB

is Boltzmann’s constant), the energy E with E∗ = E/ε, the
density ρ with ρ∗ = ρσ 3 (ρ = N/V is the number density for
N particles in the volume V ), and the pressure p with p∗ =
pσ 3/ε. For the Riemannian thermodynamic curvature, we get
R∗ = R/σ 3 (compare Appendix). All quantities quoted in this
work are in these reduced terms and the asterisk superscript
will be omitted in the rest of the paper.

The full intermolecular potential U is decomposed into a
reference part U0 and a perturbation part UP :

U (r) = U0(r) + λ UP (r)

U0(r) =
{

ULJ(r) + 1, r � rm

0, r > rm
(2)

UP (r) =
{−1, r � rm

ULJ(r), r > rm
,

where rm = 21/6. The reference part U0 describes short-range
repulsive forces and the perturbation part UP includes all the
long-range attractive forces. λ is a coupling parameter that
loads the effect of attraction by varying continuously from

FIG. 1. Intermolecular potential U (r) = U0(r) + λUP (r) for λ =
0, 0.5, and 1 (from top to bottom).

λ = 0 (poorly repulsive WCA potential [16]) to λ = 1 (full
LJ potential). In our analysis, we considered three values of λ

(λ = 0, 0.5, and 1; see Fig. 1).
To investigate the Riemannian curvature scalar R according

to the formulas given in the Appendix, the Helmholtz free
energy (HFE) has to be calculated from an EOS. Cuadros
et al. [18] developed a parametric representation for the excess
HFE depending on the thermodynamic state point and the
coupling parameter λ according to Eq. (2). However, these
relatively simple polynomial ansatz functions used there are
not appropriate for calculating the curvature R where higher
order derivatives of the ansatz functions are used. Because of
the lack of one adequate multiparameter EOS for each value
of λ, we used different EOS for each case.

A. The case λ = 0 (poorly repulsive WCA potential-EOS)

A WCA-EOS for λ = 0 is obtained from a variation of the
classical Carnahan-Starling [19] equation of the compressibil-
ity factor Z = p/(ρT ) in terms of the packing fraction of hard
spheres (y = πρσ 3

HS/6):

Z = 1 + y + ay2 − by3

(1 − y)3
. (3)

In the original Carnahan-Starling equation, the adjustable
parameters are a = b = 1. A WCA-EOS is obtained by
substituting the hard-sphere diameter σHS with a temperature-
dependent formula. For this purpose, various approaches exist
[20,21]. We used the equations of Heyes and Okumura [22]
with

σHS = 21/6

(1 + √
T ) 1/6

(4)

and a = 3.597, b = 5.836 in order to calculate the HFE because
the Heyes and Okumura formulas yield good agreement for
the compressibility factors at all temperatures.
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FIG. 2. Density dependence of thermodynamic curvature R at different constant temperatures for coupling parameters λ = 0, 0.5, and 1.
(a) Isotherms of R for λ = 0 and T = 0.3, 0.5, 0.8, 1.2, 1.8, and 3.0 (bottom to top); (b) isotherms of R for λ = 0.5 and T = 0.55, 0.65, 0.8,
1.2, 1.8, and 3.0 (bottom to top); (c) isotherms of R for λ = 1.0 and T = 1.2, 1.4, 1.8, 2.5, 4.0, and 6.0 (bottom to top); (d) isotherms of R

for T = 1.2; (e) for T = 1.4; (f) for T = 2.0. In (d), (e), and (f), curves are shown for λ = 0, 0.5, and 1.0 from top to bottom. All state points
shown in this figure belong to the fluid phase; for λ = 0 compare Ref. [24]. The critical temperatures in reduced units are Tc = 0 for λ = 0,
Tc = 0.598 for λ = 0.5, and Tc = 1.313 for λ = 1.

B. The case λ = 0.5 (MBWR/WCA05-EOS)

To our knowledge, no proper EOS exists in literature for
λ = 0.5. Therefore, we had to develop our own EOS, where an
ansatz of a modified Benedict-Webb-Rubin (MBWR) [12,23]
type expression was used. We will use the abbreviation
MBWR/WCA05-EOS for the case λ = 0.5 in our study. We
performed molecular-dynamics (MD) simulations in a NVE
ensemble on a homogenous fluid of 1024 particles. The
simulations covered densities ranging from ρ = 0.05 to 0.8
and temperatures ranging from T = 0.4 to 3.0 with more
than 300 thermodynamic state points. The equations of motion
were integrated with a time step of τ = 0.003. For each state
point simulation trajectories were run for 5 × 104 time steps
to equilibrate the system. Periods of 4 × 10 5 time steps were
used to accumulate the average values of the thermodynamic
state variables. The cutoff radius for the potential was 4.0 σ .
The MBWR/WCA05-EOS for the pressure p as function
of density ρ and temperature T contains 33 adjustable
parameters, which are fitted with our MD-simulation data. The
fitting procedure is similar to the description elsewhere [8] and
shall therefore not be repeated here.

C. The case λ = 1.0 (MBWR EOS)

For λ = 1.0, the interaction potential is a full LJ potential.
We use the MBWR EOS of Johnson et al. [12] to calculate the
HFE in the fluid phase because this MBWR EOS is the basis
for the analysis at the solid-liquid transition (see Sec. IV).

D. Comparison of the three cases

In Fig. 2, the density dependence of R at constant
temperatures for different coupling parameters λ is shown. In
Fig. 2(a) the curvature R is shown for λ = 0 (poorly repulsive
WCA EOS) for temperatures T = 3.0, 1.8, 1.2, 0.8, 0.5, and
0.3 (from top to bottom). The thermodynamic curvature R

is positive for the densities and temperatures in the fluid
phase shown in the figure and R decreases monotonically
with increasing density and decreasing temperature. This
behavior confirms the physical interpretation [10] that R >

0 indicates effectively repulsive interactions. The behavior
of R changes drastically when attraction is loaded in the
intermolecular potential causing a first-order vapor-liquid
transition associated with a critical point. Figure 2(b) shows the
curvature calculated from the MBWR/WCA05 EOS (λ = 0.5)
for temperatures T = 3.0, 1.8, 1.2, 0.8, 0.65, and 0.55 (from
top to bottom), whereas in Fig. 2(c) the curvature for the
MBWR EOS (λ = 1.0) is shown for temperatures T = 6.0,
4.0, 2.5, 1.8, 1.4, and 1.2 (from top to bottom). The curves are
broken at the intersection of the vapor-liquid coexistence line.

The critical temperatures in reduced units are Tc = 0 for
λ = 0, Tc = 0.598 for λ = 0.5, and Tc = 1.313 for λ = 1.
The critical temperature for λ = 0.5 was calculated from the
fit using the conditions ∂p/∂ρ|ρc,Tc

= 0 and ∂2p/∂ρ2|ρc,Tc
= 0.

For λ = 0.5 and λ = 1 [Figs. 2(b) and 2(c)], the interaction
is effectively attractive causing negative curvature R in the
whole density region shown in Fig. 2. The curvature strongly
decreases toward the critical point and becomes singular at
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the critical point. The influence of λ on R is shown for three
constant temperatures T = 1.2 [Fig. 2(d)], T = 1.4 [Fig. 2(e)],
and T = 2 [Fig. 2(f)]. Each figure shows the curvature R for
λ = 0, 0.5, and 1.0 (from top to bottom). A transition from R >

0 to R < 0 with loading attraction is obvious for each state
point confirming again the physical interpretation of R [10].

We conclude this section with a comment about the
limiting low-density behavior of R shown in Fig. 2. An
exact calculation [3] shows that R = 0 for the ideal gas, a
result which nicely suggests a connection between R and
intermolecular interactions. However, we should be careful
not to over-interpret this result in the context of Fig. 2, where
R does not go to zero in the limit ρ → 0. There are two
points to consider. First, in this paper, R was not worked out
with the ideal gas law, but for a gas with interactions, albeit
weakening as the density gets smaller. Second, Ruppeiner [10]
has articulated a “low |R| limit,” |R| � ρ−1 as indicating
a volume regime where physical interpretations of R come
into question. This limit marks the situation where the volume
defined by |R| is much less than the typical volume in the voids
between adjacent molecules. We expect thermodynamics to
have some difficulties at volumes this small. The ideal gas
corresponds to a special case, since for it any finite R is in the
low |R| limit, and the limiting low-density values for R in Fig. 2
cannot be interpreted strictly in terms of organized structure
sizes. However, the major results in this paper are mostly
above the low |R| limit, and the physical picture developed
for R here should be a good one. Cases where we have come
close to the low |R| limit should be clear.

III. BEHAVIOR AT VAPOR-LIQUID EQUILIBRIA
AND AT THE CRITICAL POINT

For a van der Waals (vdW) fluid, Ruppeiner et al. [7]
showed for the first time how the vapor-liquid coexisting line
can be calculated by the so-called R-crossing method. In the
following, this approach was applied to the more realistic LJ
fluid [8]. The dependence of the course of the vapor-liquid
coexisting line on the intensity of attractive forces has not
been studied until now and is the purpose of this section.

In Fig. 3, we present the vapor-liquid coexistence line in the
(ρ,T ) projection for λ = 0.5 and 1. We constructed the vapor-
liquid coexistence line by using standard thermodynamic
requirements of equality for the pressure and the Gibbs free
energy at a given temperature (continuous lines). Additionally,
we calculated the coexistence line using the R-crossing
method [7,8] where the equality of the thermodynamic scalar
curvature R is required in the two coexisting phases (solid
circles). The overall agreement for both methods is very good,
similar to Ref. [8]. Only for temperatures T < 0.52, the
coexistence lines for λ = 0.5 of the two methods differ on
the vapor site. Obviously, the correlation volume is not large
enough to encompass a number of particles adequate for a
thermodynamic approach, because the length scale at state
points in this region is below the low |R| limit [7,10] where
the R-crossing method loses its applicability. The coexistence
curve for λ = 0.5 is enclosed by the λ = 1 curve. For λ = 0
the critical point moves to T = 0 and the vapor-liquid
coexistence line disappears.

FIG. 3. Vapor-liquid coexistence line in the ρ-T projection for
λ = 0.5 (lower) and λ = 1.0 (upper curve). The coexisting curves are
calculated from the equality for the pressure and Gibbs free energy
at a given temperature (continuous lines) as well as the R-crossing
method (solid circles) in the two phases. The critical point is marked
by a solid square.

As stated before, the thermodynamic curvature diverges to
−∞ at the critical point. In Fig. 4, the asymptotic behavior of
R near the critical point for λ = 0.5 and for λ = 1 is shown.
In this region, the asymptotic behavior of R was analyzed by
Ruppeiner [10]. R, calculated along the coexisting curve, has
the same critical exponent as ξ 3, because the relation |R| ∼ ξ 3

is valid [6] between R and the volume ξ 3 of the correlation
length ξ . It was shown [10] that R diverges with exponent
a = 2 − α, where R can be described by

R = −C

(
Tc

Tc − T

)a

(5)

along the coexistence curve near the critical point. Because
the MBWR EOS is classical [12], the critical exponent of the
specific heat is α = 0. Based on the MBWR EOS, the curvature
R should diverge with a = 2. The same is true for the vdW
EOS. We calculated the exponent for the results shown in
Fig. 4. The value depends on the distance from the critical
point. When fitting the results for λ = 1 between �T = 0.03
and 0.003 (�T is the temperature distance from the critical
point), we found a = 2.01; for �T between 10−5 and 6 ×
10−7, we found a = 2.000005. Something similar is valid for
λ = 0.5. Additionally, we also calculated the exponent using
the vdW EOS with a value of a = 2.0 when reaching the critical
temperature, too.

IV. THE THERMODYNAMIC SCALAR CURVATURE
R IN THE SOLID STATE

For the rest of the paper we concentrate on the full LJ
potential (λ = 1) in order to study the interplay between
repulsive and attractive intermolecular forces for this potential
at different transition lines as well as in the solid state.

The highly organized solid state is held up by the repulsive
part of intermolecular interactions for which we expect R > 0
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(b)(a)

FIG. 4. Thermodynamic curvature R for the coexisting vapor and liquid phases versus (Tc − T )/Tc near the critical temperature Tc for (a)
λ = 0.5 and (b) λ = 1.

[10]. A proof of this expectation was not given so far. A widely
accepted EOS that describes the thermodynamics of the fcc-LJ
solid is the EOS developed from van der Hoef (vdH-EOS) [14].
van der Hoef determined an expression for the absolute HFE
from MD simulation data. The HFE at an arbitrary state point
in the solid phase was obtained by integrating over density
and temperature from the triple point. Therefore, triple point
data and an EOS for the liquid are required in this approach
for which van der Hoef applied the MBWR EOS [12]. It is of
interest to investigate the scalar curvature R in the solid state
obtained from the vdH-EOS in connection with our analysis
in the liquid phase. van der Hoef stated that the fitting data for
densities were ranging from around ρ = 0.94 to 1.2 and the
results were most accurate in the temperature range from T =
0.3 to 2.

In Fig. 5, we present the density and temperature depen-
dence of the curvature R in the solid state starting around
the freezing transition. In Fig. 5(a), we present the density
dependence of R in the vicinity of the liquid-solid transition
for constant temperatures T = 2.0, 1.8, and 1.5 on the liquid
and the solid side. The gradients of R are much higher in the

liquid phase. Figure 5(b) shows the density dependence of the
scalar curvature R along different constant lower temperatures
(T = 0.35, 0.45, 0.55, 0.65, and 0.75). Figure 5(c) shows the
temperature dependence of R along different constant densities
(ρ = 1.0, 1.1, and 1.2). The curves start at T = 0.3 and are
terminated at the melting point, respectively. For ρ = 1, the
line is continued in the liquid region until T = 2. For ρ = 1.1
and 1.2, the liquid region starts at T > 2. The results from
Fig. 5 confirm the prediction that R is positive in the solid
state and they show that R mostly increases with increasing
density.

V. THE LINE R = 0 AND THE BEHAVIOR OF R AT
LIQUID-SOLID AND VAPOR-SOLID EQUILIBRIA

In the previous chapters we have shown that R is mainly
negative in the liquid phase, indicating effectively attractive
interaction, and R is positive everywhere in the solid state,
indicating effectively repulsive interaction. Consequently,
there must exist a line with R = 0, and this line should indicate
a change in interaction.

(a)

(b) (c)

FIG. 5. (a) Density dependence of the scalar curvature R along different constant temperatures (T = 1.5, 1.8, and 2.0) in the vicinity of
the liquid-solid phase transition. The curves on the liquid and the solid site are terminated at the freezing and the melting point, respectively.
(b) Density dependence of the scalar curvature R along different constant lower temperatures (T = 0.35, 0.45, 0.55, 0.65, and 0.75).
(c) Temperature dependence of the scalar curvature R along different constant densities (ρ = 1.0, 1.1, and 1.2). The curves start at T = 0.3
and are terminated at the melting point, respectively. For ρ = 1 the line is continued in the liquid region until T = 2. For ρ = 1.1 and 1.2, the
liquid region starts at T > 2.
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FIG. 6. Surface of thermodynamic curvature scalar R depending
on density and temperature close to the liquid-solid phase transition.

In Fig. 6, we present the surface of curvature R depending
on density (ranging from ρ = 0.9 to 1.2) and temperature
(ranging from T = 1.2 to 2.0) at the liquid-solid transition as
well as in the solid and the liquid phase. In the liquid phase,
R is calculated from the MBWR EOS [12], whereas in the
solid state the vdH EOS [14] was used. It is obvious that the
surface R on the liquid site intersects the plane R = 0 close
to the liquid-solid phase transition. Along the freezing line, R

changes the sign at about T = 1.44 from negative to positive.

In Fig. 7(a), this intersection curve is mapped out in the
density-temperature projection. Additionally, the vapor-liquid
coexisting line (BCT) with its corresponding critical point
(C) and the liquid-solid (TD and FE and continuation for
T > 2) and the vapor-solid (AB and FG) coexisting lines are
shown. These lines are constructed for 0.3 < T < 2 from the
condition that pressure and Gibbs free energy achieve equal
values. Because the MBWR EOS is only valid for T > 0.7,
an equation of state with the second virial coefficient was
used for the vapor phase along AB. For T > 2, the lines are
drawn from analytical expressions ( [14], compare Agrawal
and Kofke [25]).

Because higher-order derivatives have to be calculated
from the EOS for the construction of the thermodynamic
curvature R, the results could be very sensitive to a change
of the EOS [15]. Therefore, it makes sense to compare the
results for different EOS. For the full LJ potential, a new
revised MBWR-EOS was published recently [8]. The new
EOS was developed because newer simulation data of Meier
[26] were used by different researchers. To distinguish between
both equations we will use the abbreviation MBWR/2012
for the new revised EOS. Besides the R = 0 curve for the
MBWR EOS of Johnson et al. (solid line in Fig. 7), we
also show the intersection curve for the MBWR/2012 EOS
(dashed line in Fig. 7). Both calculations show a similar
behavior. The curves run at a roughly constant density of
ρ ≈ 0.95 before a sharp turn toward the solid state occurs
at approximately T ≈ 1.5. Having in mind that liquid Argon
is well represented by LJ-type interactions, it is of interest
to note that no R = 0 point was found along the vapor-
liquid coexisting line according to our results. Nor was such
a point found in real Argon by Ruppeiner [10] done in
the context of fits to fluid data from the NIST Chemistry
WebBook.

(a) (b)

FIG. 7. Phase diagram for λ = 1: (a) Lines where R = 0 in the density-temperature projection as well as the vapor-liquid (BCT) coextisting
line with the corresponding critical point (solid square, C) and the liquid-solid (TD and FE and continuation for T > 2) and the vapor-solid
(AB and FG) coexisting lines. The lines where R = 0 are calculated from the original MBWR-EOS of Johnson et al. [12] (solid line) and from
the MBWR/2012 EOS [8] (dashed line). (b) Phase diagram in the temperature-pressure projection: Here, the R = 0 line only for the MBWR
EOS of Johnson et al. is drawn.
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(a) (b)

FIG. 8. (a) Thermodynamic curvature along the vapor-liquid line (BC and CT) and the low-density vapor-solid line (AB) as a function of
the temperature. The points A, B, C, and T are shown in the (ρ-T ) projection of Fig. 7. (b) Thermodynamic curvature along the vapor-solid
and liquid-solid line as a function of the temperature. The points D, E, F, G, and T are shown in the (ρ-T ) projection of Fig. 7.

In Fig. 7(b), the temperature-pressure projection of the
phase diagram is shown. Here, the curve with R = 0 is drawn
only for the MBWR EOS of Johnson et al. Starting from
the solid-liquid line, the curve corresponds to a decrease in
pressure with temperature increase before passing through a
minimum, then the pressure is increasing with temperature
increase.

It is natural to ask whether the R = 0 curve might coincide
with the well-known Fisher-Widom line [27], because this
curve also marks a transition from attractive to repulsive
interaction. However, the precise correspondence between
the Fisher-Widom line and the line R = 0 remains an open
interesting research issue.

In Fig. 8(a), R is drawn along the vapor-liquid (BC and CT)
and the low-density vapor-solid coexisting line (AB). The two
lines, which start from the critical point C, represent the vapor
site (ABC with ρ < ρc) and the liquid site (CT with ρ >

ρc) of the corresponding coexisting lines. The vapor branch
of the vapor-solid coexisting line starts at a temperature of
T = 0.3 (point A), from where the vdH EOS is valid in the
corresponding solid state, too. The curvature R diverges to
−∞ at the critical point (C) and decreases strongly toward
point A as the molar volume increases in the vapor phase.
Figure 8(b) shows the freezing (TD) and the melting line (FE)
at the liquid-solid transition as well as the solid branch of the
vapor-solid coexisting line (FG). The curvature R changes the
sign along the freezing line (TD) at about T ≈ 1.44, as we
have discussed before.

The MBWR EOS of Johnson et al. (but also the
MBWR/2012 EOS) is fitted by using simulation data down
to temperatures of T = 0.7. Extrapolating the results for
both equations to the triple point with T < 0.7 leads to
different results and causes uncertainties in the prediction of
R. Therefore, the lines are stopped before reaching point T

(indicated by an arrow).

VI. CONCLUSION

In this study, we analyzed in detail the dependence of
the thermodynamic curvature scalar R on the intermolecular
strength by using a separation ansatz proposed by Weeks-
Chandler-Anderson. This separation ansatz allows an inves-
tigation of the behavior of R by changing the interaction
continuously from the poorly repulsive WCA potential to
the full LJ potential. The analysis is based on different
multiparameter EOS. For intermediate attraction (λ = 0.5),
we developed a MBWR-EOS based on a set of new MD
simulation data. The results show clearly a transition from
R > 0 for poorly repulsive interaction to R < 0 when loading
attraction.

Furthermore, we traced out the vapor-liquid coexisting lines
depending on the interaction strength by applying standard
thermodynamic requirements and the new R-crossing method.
We obtained good agreement between both methods in the
limits of their applicability. We also confirmed numerically
theoretical predictions for critical point properties of R and find
that for the classical MBWR-EOS the curvature R diverges
with an exponent of 2 at the CP.

In the following, we explored the state point dependent
behavior of R in the whole phase space for a full LJ potential.
Based on the vdH-EOS for an face-centered-cubic-LJ-solid
we could show that the curvature R is positive, as expected, in
the whole density-temperature range for which the vdH-EOS
was constructed.

Special attention was paid to the calculation of R along
liquid-solid and vapor-solid equilibria. R is positive at the solid
side along both liquid-solid and vapor-solid line according to
the statement before. On the vapor side of the vapor-solid
coexisting line, R is negative and decreases strongly when
temperature decreases and the molar volume increases. On
the freezing line at the liquid-solid transition, R starts with
R < 0 for temperatures slightly above the TP-temperature and
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changes the sign at about T ≈ 1.44. This is the starting point
of the line R = 0, which indicates a change in interaction. We
mapped out the line R = 0 in the liquid region, which is close
to the liquid-solid transition.

In summary, we believe that the investigations of our
study offer new and interesting insights into the behavior
of the curvature R for the thermodynamics of fluid systems.
Our study is part of a larger effort at classifying R in all
thermodynamic systems, including fluids, solids, and spin
systems. In addition, these findings may extend to black-hole
thermodynamics, where there is absolutely no consensus about
the correct microscopic Hamiltonian. The calculation of R

offers one of the few direct methods available for probing
microscopic elements of black holes; see Åman et al. [5] for
review. But attempts to make sense of the black-hole behavior
by these means requires an excellent understanding of R in
ordinary thermodynamics [29]. The study here extends this
effort.

APPENDIX: CALCULATION OF R

The thermodynamic line element d is given by the
thermodynamic entropy information metric [10]:

d2 =
∑
i,j

gij dqidqj . (A1)

d2 is an invariant in the thermodynamic parameters qi and the
coefficients gij are the components of the metric tensor. For a
one-component fluid there are two independent state variables
q1 and q2 and the Riemannian curvature is calculated from

([6,10,28])

R = − 1√
g

[
∂

∂q1

(
g12

g11
√

g

∂g11

∂q2
− 1√

g

∂g22

∂q1

)

+ ∂

∂q2

(
2√
g

∂g12

∂q1
− 1√

g

∂g11

∂q2
− g12

g11
√

g

∂g11

∂q1

)]
,

(A2)

with

g = g11 g22 − g2
12. (A3)

By the rules of Riemannian geometry, the value of the
curvature for any thermodynamic state is independent of
the coordinate system. We choose ρ and T as independent
variables and the basis of our analysis for R is the Helmholtz
free energy A(T ,N,V ). This quantity per volume is ([8,10])

f = A

V
. (A4)

f is associated with the specific free energy a by f = ρ a.
(T , ρ) coordinates are orthogonal and the curvature R becomes

R = 1√
g

[
∂

∂T

(
1√
g

∂gρρ

∂T

)
+ ∂

∂ρ

(
1√
g

∂gT T

∂ρ

)]
, (A5)

with

gρρ = 1

T

∂2f

∂ρ2
, gT T = − 1

T

∂2f

∂T 2
, and g = gT T gρρ.

(A6)

In this formula, the specific free energy is calculated from
the EOS, which was discussed in the previous sections.
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