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Influence of long-range interactions on charge ordering phenomena on a square lattice
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Usually complex charge ordering phenomena arise due to competing interactions. We have studied how
such ordered patterns emerge from the frustration of a long-ranged interaction on a lattice. Using the lattice
gas model on a square lattice with fixed particle density, we have identified several interesting phases, such as a
generalization of Wigner crystals at low particle densities and stripe phases at densities between ρ = 1/3 and 1/2.
These stripes act as domain walls in the checkerboard phase present at half-filling. The phases are characterized
at zero temperatures using numerical simulations, and mean field theory is used to construct a finite temperature
phase diagram.
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I. INTRODUCTION

The formation of ordered structures is one of the main
topics in the field of condensed matter physics. Starting from
the relative straightforward crystalline order a wide variety of
increasingly complex ordering phenomena has been observed
and proposed such as stripes [1–8], charge density waves [9],
incommensurate phases [10], and so forth.

These complex ordering patterns usually arise as a result
of competing interactions. For example, the kinetic energy of
holes competes with the tendency towards antiferromagnetic
order in cuprates thus forming stripes. In anisotropic next-
nearest-neighbor Ising (ANNNI) models, the next-nearest-
neighbor Ising coupling has the opposite sign as the nearest
neighbor coupling. The question immediately arises whether
higher-order commensurate or incommensurate phases can
appear in systems with only one type of interaction.

Of course this is the case. In the continuum the sole presence
of long-range interactions will cause particles to form a Wigner
crystal. When a fixed number of particles are placed on an
underlying lattice the desired Wigner crystalline order may be
incommensurate with the lattice, thus leading to frustration.

We have investigated the influence of long-range inter-
actions on charge ordering phenomena on a square lattice.
Expanding the results of Refs. [11,12] we explored the full
range of particle densities 0 � ρ � 1 and types of long-range
interactions V = 1/rp. Our main result is summarized in
Figs. 1 (zero temperature) and 2 (finite temperature), where
we depict phase diagrams of unusual charge ordered patterns.
At low densities the competition between the continuum
triangular Wigner lattice and the underlying square lattice
indeed leads to a plethora of “generalized Wigner” crystals. At
higher densities, this leads to variations of the checkerboard
pattern which is well-known at half-filling. Stripe phases
appear as they are rooted in the topological defects of the
checkerboard order.

We do not claim that the phase diagrams we derived are
the exact phase diagrams. As is often the case for frustrated
systems, a large set of metastable states persists down to
zero temperature. Unbiased numerical computation of the
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energy for a large ensemble of configurations gives us a
strong indication that indeed the phase diagram of Fig. 1 is
correct; however, these indeed be metastable states incorrectly
recognized as ground states.

The layout of this paper is as follows. In Sec. II we introduce
the lattice gas model, which is the model describing interacting
classical particles on a lattice. In the two subsequent sections
we discuss qualitatively the ordered structures at low densities
(Sec. III) and at densities close to half-filling Sec. IV). We
have performed a Monte Carlo simulation in Sec. V to derive
the zero temperature phase diagram of Fig. 1. In Sec. VI we
extend these results to finite temperatures using mean field
theory; see Fig. 2.

II. LONG-RANGE LATTICE GAS MODELS

The lattice gas model can be defined on any kind of lattice,
but we focus only on the square lattice. On each of the N

lattice sites there can be a particle or not, denoted by ni = 1
or 0 respectively. These particles interact via some general
potential Vij . The corresponding Hamiltonian is then

HL =
∑
i �=j

Vij (ni − ρ)(nj − ρ) − μ
∑

i

ni . (1)

We subtract the average particle density ρ to prevent divergent
energies. In the grand-canonical ensemble, the chemical
potential μ tunes the average particle density ρN = ∑

i ni .
The model (1) is in fact equivalent to the Ising model [13].
Under the replacement σ z

i = 2ni − 1 and considering only a
nonzero nearest neighbor interaction 1

4V〈ij〉 = J one finds

HI = J
∑
〈ij〉

σ z
i σ z

j − B
∑

i

σ z
i . (2)

The chemical potential maps onto an external magnetic field
B = 1

2μ − V〈ij〉, while the particle density maps onto the mean
magnetization.

For the ferromagnetic Ising model the ground state is
completely magnetically ordered, which amounts to either a
full or empty lattice in the lattice gas parlance. In addition,
a model with antiferromagnetic coupling will be half-filled
with particles if the external magnetic field is small, |B| < 2J .
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FIG. 1. (Color online) The approximate ground state phase
diagram of the long-range lattice gas model on a square lattice,
based on variational methods as discussed in Sec. V. On the vertical
axis the type p of the long-range interaction V (r) = 1

rp is given,
together with a logarithmic decaying interaction. The horizontal
axis represents the particle density. From low to high densities we
identify the following phases: The area without name depicts the
dilute generalized Wigner crystal, followed by the 1/9 Wigner crystal,
the 1/6 glassy phase described by Ref. [12], the 1/4 Wigner crystal,
the “checkerboard-in-a-checkerboard” 1/4′ phase, stripe phases (with
a plateau for the 1/3 stripe phase and “C” denotes the channeled
stripes as described by Ref. [11]), and finally the checkerboard phase.
Phases below 1/4 filling are discussed in Sec. III, above 1/4 filling
are discussed in Sec. IV. Below the phase diagram typical particle
configurations in six phases are shown enlarged.

Therefore, using the standard grand canonical ensemble will
in general not enable us to investigate all possible particle
densities: a canonical ensemble, fixed particle number, is
required.

We argue that most physical realizations of lattice gas
models are in fact at a fixed particle number, and not at
fixed chemical potential. One particular example is the oxygen
ordering in YBCO planes, where it is beyond doubt that
the number of oxygen ions in the lattice is fixed [14].
The patterns in which the oxygen ions align themselves are
quasi-one-dimensional, in a manner similar to the expected
electronic ordering in TTF-TCNQ salts [15]. While studying
the latter, Hubbard has developed a general solution for the
ground state of a lattice gas model with long-range interactions
at any particle density in one dimension. Hubbard’s solution
requires only the interaction energy as a function of distance
to be convex.

Among two-dimensional realizations of lattice gas models
are for example the ordering of ad-atoms on a surface [10,16,
17], XY systems [18], higher order commensurate magnetic
phases [10,19,20], or stripe order in high-temperature super-
conductors [21–23]. Systems with anisotropic short-ranged
interactions or competing short- and long-range interactions
[24,25] have especially acquired considerable attention over
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FIG. 2. (Color online) Mean field finite temperature phase dia-
gram of the lattice gas model (1) on a square lattice with V ∼ 1/r

interactions; see Sec. VI. Temperature is in units of the nearest-
neighbor interaction. The phases are the same as in the zero-
temperature phase diagram of Fig. 1. At low densities we find various
Wigner crystalline phases (see Sec. III) with densities of the form
1/pq with p,q integers. Close to half-filling we find checkerboard
order which has a smooth crossover to the “checkerboard-in-a-
checkerboard” 1/4′ phase. Around n = 1/3 and 3/7 there are stripe
ordered phases (see Sec. IV). The transitions towards the 1/4′ and
checkerboard phase are second order, the other transitions are first
order.

the years; therefore we wish to focus here on the case of
long-range isotropic interactions [26–29].

Most studies of lattice gas models in two dimensions,
however, restrict their attention to half-filled, empty and full
lattices, due to the aforementioned grand-canonical reasons.
There are two notable exceptions: the stripe order discussed
in Ref. [11] between 1/3 and 1/2 filling and the glassy
dynamics at 1/6 filling [12]. These results were obtained
for a “quasi-logarithmic” repulsive interaction, which is a
solution of Poisson’s equation on a lattice, ∇2Vij = −2πδij .
Given the nontrivial ordering patterns discovered there, as a
follow-up we present here a systematic study of the ground
state orderings at all densities between 0 and 1/2, for general
repulsive interactions

Vij = 1

|rij |p > 0. (3)

In the next two sections we will first discuss qualitatively such
long-range lattice gas models at fixed densities, while in the
remaining sections the picture will be further quantified using
numerical simulations and mean field theory.

III. DILUTE DENSITIES: GENERALIZED WIGNER
CRYSTALS

In the previous section we introduced the lattice gas model,
which we will now study at fixed densities on the square
lattice with long-range repulsive interaction of the form (3).
In the limit of very low particle density, the underlying
square lattice becomes irrelevant compared to the average
interparticle distance,

�p � a, (4)
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FIG. 3. (Color online) At density ρ = 1/9 a triangular crystal of
particles is formed, which is not equilateral as would be the case for
a perfect Wigner crystal. It is thus a prime example of a generalized
Wigner crystal. The unit cell and unit vectors of the Wigner crystal
are shown.

where a is the lattice constant. In the continuum description
of particles repelled by a long-range force, Wigner [30]
showed that the interaction energy is minimized when the
particles form a crystalline structure, which is triangular in
two dimensions [42]. In general, one can state that the energy
of a Wigner crystalline state of the particles is [16]

E = JNρ
∑

crystal

1

|d|p , (5)

where N is the number of lattice sites of the underlying lattice,
ρ is the particle density, and the summation runs over the
particles in the Wigner crystal. The distance between particles
in the Wigner crystal �p scales with the inverse square root
of the density. Therefore the energy in the low density limit
scales as

E ∝ JNρp/2+1. (6)

The presence of the underlying lattice is now a source of
frustration. Reference [16] considers an underlying triangular
lattice, leading to frustration only if the density is not of the
form 1/p2. For example, when ρ = 1/9 a perfect triangular
Wigner crystal can be formed. On top of a square lattice,
however, it is not possible to form a triangular Wigner crystal
because

√
3 is irrational. One can nevertheless construct

“almost perfect” triangular crystals. As an example, consider
the density ρ = 1/9; see Fig. 3. The lowest energy state is there
also a triangular crystal of particles, but not equilateral as for
a perfect Wigner crystal. In principle such “almost perfect”
Wigner crystals could exist at densities

ρpq = 1

pq
(7)

with p,q integers while p � q, such that the following
equilateral triangle relation is approximated by

p ∼ 1
2

√
3q. (8)

For example, the densities ρ = 1/9, 1/12, 1/16, etc. would
allow such “almost perfect” triangular crystal. Following the
work of Hubbard [15] in one-dimensional systems, we will
call these particle orderings “generalized Wigner crystals.”
From this qualitative reasoning we argue that such Wigner
crystals might exist. Note, however, that one has to resort to
a numerical computation to find whether such crystals have
indeed the lowest energy at a given density.

So far we considered only densities of the form ρpq =
1/pq. When the density of a lattice gas is between such
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FIG. 4. (Color online) A generalized Wigner crystal can be clas-
sified according to peaks in the Fourier transformed particle density.
For densities close to each specific crystal density (7) the associated
crystal structure will be maintained. We put forward the hypothesis
that this leads to a devil’s staircase of generalized Wigner crystals at
low densities. The figure shows the crystal structure versus density
obtained by mean field theory (see Sec. VI) at β → ∞, displaying
a staircase (thick solid lines). The thermodynamic potential (16)
relative to the disordered state is shown (decreasing red dashed line),
the thin lines underneath indicate the energy of specific ordered states.

densities, we suspect that it is favorable to maintain a
generalized Wigner crystal structure. The deviation from the
ρpq density can be accommodated by a superlattices of crystal
defects or interstitial vacancies. If such a superlattice of defects
forms, the original ρpq order is still visible in, for example,
the Fourier transformed particle density, where each crystal
type has its own specific Fourier peaks. We expect therefore
a “plateau” at densities in the vicinity of each specific ρpq ,
where the associated crystal structure remains intact modulo
the interstitial superlattice. As we will describe in more detail
later when discussing the numerical results, indeed a “plateau”
is observed for the 1/4, 1/6, and 1/9 states. Using mean field
theory, we went as far as the 1/25 crystal phase, as is shown
in Fig. 4. We have therefore strong indications the plateau
structure exists all the way to ρ → 0, yielding an infinite
staircase of plateaus. This structure is reminiscent of the devil’s
staircase, as exists in the case of the one-dimensional lattice
gas in the grand-canonical ensemble [31], where specific
charge orderings are stable for a finite window of chemical
potential.

Notice that starting at 1/4 filling the generalized Wigner
crystal picture certainly fails. If one adds one single particle to
the 1/4 crystal, it will be necessarily next to another particle.
Since the nearest-neighbor repulsion is the strongest, and
nearest-neighbor occupancy can be avoided for any density
below half-filling, the 1/4 crystal will be quickly destroyed
upon adding particles. For densities above 1/4 it is necessary
to start reasoning from the ordering occurring at the half-filled
lattice.

IV. DOMAIN WALLS AND STRIPES

Exactly at half-filling the ground state is “checkerboard”
like, or antiferromagnetic in the Ising language. This means
that one sublattice is exactly filled and the other sublattice
is completely empty. Densities slightly less than half-filling
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can be obtained by removing particles from the checkerboard
pattern, a process we call hole doping. The density of holes ρh

is defined as follows:

ρh = 1 − 2ρ, (9)

where ρ is the total particle density. The same scaling
arguments for the dilute particle limit ρ 
 1 can be applied to
the dilute hole limit ρh 
 1, so close to half-filling the energy
scales as

E ∝ E1/2 (1 − 2ρh) + JNchρ
p/2+1
h , (10)

where E1/2 is the energy of the half-filled checkerboard
configuration and ch is some proportionality constant.

This scaling argument assumes that all particles will remain
on the filled sublattice of the checkerboard phase. However,
the checkerboard phase is a broken sublattice symmetry
phase, and therefore domain walls and topological defects
can exist between regions where the checkerboard phase is
realized on different sublattices. Though the ground state at
densities slightly less than half-filled might be unrelated to
the checkerboard phase, we discuss in this section possible
structures that are related to the checkerboard. Thus the
smallest example, which is neglected in the scaling arguments
of Eq. (10), is shown in Fig. 5(a). There a single particle on the
“wrong” sublattice is surrounded by holes, which is obviously
a stable configuration.

On a large scale domain walls may exist such as the one
depicted in Fig. 5(b). However, such a straight domain wall
is not stable. One can imagine a single particle moving to
the other side, thus causing the domain wall to meander. The
energy difference between the configurations in Figs. 5(b) and
5(c) is given by the energy of that single moved particle,

�E = Estraight − Emeander

∼
∑′

n even

[
1

|n|p − 1

(n2 + 1)p/2

]
> 0, (11)

where the prime on the summation means that we should
exclude n = 0. Since the meandering domain wall has a
lower energy than the straight one, the latter is unstable. This
argument can be pursued further to the point where one finds
that only a diagonal domain wall, as shown in Fig. 5(d), is
locally stable. The resulting domain wall has a surface energy
that vanishes in the thermodynamic limit but is extremely stiff
with respect to bending.

Now a single domain wall on a infinite lattice will
not affect the average particle density. However, to obtain
particle densities away from half-filling one can introduce a

(a) (b) (c) (d)

FIG. 5. Some examples of domain walls between checkerboard
phases. (a) A particle on the “wrong” sublattice surrounded by
“holes,” which forms the smallest possible domain wall loop.
(b) A horizontal domain wall. (c) Instability of a horizontal domain
wall, by moving one particle to the other domain. (d) Stable, diagonal
domain walls can exist for all long-range interactions.

(a) (b) (c)

FIG. 6. Some examples of stripe phases. (a) The ρ = 1/3 state.
(b) The ρ = 2/5 state. (c) The ρ = 3/7 state, but now doped.

macroscopic number of domain walls. Such a periodic array of
domain walls constitutes a “stripe phase,” similar to the ones
discussed in cuprates [1,2,6], nickelates [3], manganites [4–6],
or cobaltates [7,8]. Examples can be seen in Fig. 6.

If the ground state of a long-range lattice gas model is
perfectly stripy, then the system is effectively reduced to a
one-dimensional system. The arguments of Hubbard [15] then
apply, and one can thus find the specific stripe ordering, as is
shown in Fig. 6(a) and 6(b).

But again, for some densities it may pay off not to form
perfect stripes but rather to dope a stripe structure as in
Fig. 6(c). It is then a matter of numerical computation to find
out whether the ground state is a Hubbard-type stripe pattern or
a “doped” stripe pattern. Lee et al. [11] call these doped stripe
patterns “partially filled diagonal channels.” Finally, we must
emphasize that the discussion in this section does in no way
whatsoever constitute a proof of existence of stripe ordered or
hole doped checkerboard phases. The only way to find the state
with the lowest energy is a tedious numerical computation.

V. SIMULATIONS AND CHARACTERISATION
OF THE PHASES

Let us now describe the numerical algorithm that was used
to find the lowest energy configurations. First, notice that for
each form of order there is symmetry breaking and hence
a degeneracy in the ground state. As the simplest example,
observe that the checkerboard configuration at half-filling is
twofold degenerate. However, for the purpose of finding the
specific type of charge order, we do not need to worry about
ground state degeneracy.

In our algorithm we took various different types of initial
configurations, such as the generalized Wigner crystals of
Sec. III, stripe structures of Sec. IV, Wigner crystal structures
of defects in the checkerboard, variations of the checkerboard
phase, suggestions from literature, and a large ensemble of
random configurations. We then swapped filled and empty sites
randomly. A swap is accepted if it lowers the total energy of the
system. The long-range nature of the interaction was taken into
account by summing the interaction over all mirror charges
as in an Ewald summation [33]. For the quasi-logarithmic
interaction we followed the method of Ref. [11].

The major issue is that one cannot know for sure whether
this algorithm leads to the global ground state or that one
gets stuck in a local energy minimum. Indeed, for a frustrated
system we expect to find a large number of metastable states.
The method of simulated annealing, by which we mean slowly
reducing the temperature to zero, was therefore also used
to avoid getting stuck in a local energy minimum. Upon
comparing the energies of configurations obtained from the
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n=1/9 n=0.2556 n=1/3

FIG. 7. (Color online) Fourier transformed density at fillings 1/9,
0.25556 and 1/3; on a 90 × 90 lattice with 1/r interactions. The
different ordering wave vectors are clearly visible. These peaks are
used to identify the phases that lead to the phase diagram of Fig. 1.

various initial configurations, using both zero temperature
swapping and simulated annealing, we found a lowest energy
state at each density.

Our work was performed on a square lattice with 90 × 90
and 154 × 154 sites. These lattice sizes were chosen such that
the linear dimension L is divisible by the prime numbers 2,3,5
(for L = 90) and 7 and 11 (for L = 154). We looked at all
densities that were a multiple of the linear dimension, hence
ρ = n/90 and ρ = n/154 for all integers n = 1, . . . ,L/2.

After obtaining the ground state configuration, a Fourier
transform of the particle density was taken:

n(k) = 1

N

∑
i

e−ikri ni . (12)

The peaks in the Fourier spectrum were used to identify the
specific orderings at each density, as can be seen in Fig. 7.
The ground state energy as a function of density is shown
in Fig. 8, rescaled such that the energy at half-filling equals
E = 1. Indeed, the general scaling behavior close to zero
and half-filling, as described in the previous two sections,
is retrieved. This is most explicit in the limit of p → ∞, the
energy becomes constant between ρ = 0 and ρ = 1/4, and
linear between ρ = 1/4 and ρ = 1/2. Notice an extra kink
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FIG. 8. (Color online) Ground state energy of the long-range
lattice gas model as a function of density, for various types of
interaction. All energies are rescaled such that E(ρ = 1/2) = 1.
Starting with a logarithmic interaction in solid red, we computed the
energy for interactions of the form 1/rp . Notice the scaling behavior
in the limit p → ∞ and notice the kink around ρ = 1/3 signaling
stripe order.

in the energy around ρ = 1/3, which signals the onset of the
stripe order.

With the caution that the resulting configurations might be
in fact metastable states incredibly close to the actual ground
state, we constructed the zero temperature phase diagram in
Fig. 1. At low densities the finite lattice size used in our
numerical simulations form a limitation with regard to the
precision of the results. The first unequivocal observed charge
ordering state is the 1/9 generalized Wigner crystal phase,
which is stable for a considerable range of densities around
ρ = 1/9. Interestingly, the presence of this phase is remarkably
independent of the interaction range p.

The 1/9 phase is followed by the 1/6 phase, which is
extensively discussed in the work of Ref. [12]. There the 1/6
phase is characterized as a glassy phase, with infinite ground
state degeneracy due to the infinite ways one can tile unit cells
of 2 × 3 lattice sites. For further details we refer to Ref. [12].

Directly below ρ = 1/4 densities the 1/4 general-
ized Wigner crystal phase is stable. As described before,
introduction of particles to densities higher than ρ = 1/4
leads to a superlattice of interstitials which can be called a
“checkerboard-in-a-checkerboard 1/4′ phase,” which seems
to be absent in the case of logarithmic interactions.

Here the logarithmic interactions seem to play a special role,
in that for a much larger density regime than for algebraic
interactions the stripe phases seem to be stable. We find,
contradictory to the results of Ref. [11], only stripe order
of the Hubbard kind and no channeled stripes in the region
between 1/4 and 4/9; see Fig. 9. Only the 1/3-stripe order
seemed to be present for a larger region of densities. We
have found “partially filled diagonal channels,” or equivalently
doped stripe orders, only for interaction types p = 1 and 2 in a
very narrow density range. Our approach differs from Ref. [11]
in two aspects: we have looked at the ground state, while
they looked at low temperature results obtained by simulated
annealing only, and we considered nonlocal particle swaps
in the configuration while they restricted the system to local
swaps only. We have compared the energy of the ground states
we found with the explicit ground states of Ref. [11], taking

Logarithmic p=1

Perfect stripe order Channelled stripe order

FIG. 9. Detail of the charge configurations of the lowest energy
states at a density of n = 29/77 ≈ 0.377 and L = 154. For logarith-
mic interactions the perfect stripe order is 9 × 10−5% lower in energy
than the channeled stripe order, in contrast to Ref. [11] which finds
channeled stripes here. For p = 1 interactions the channeled stripes
are 0.0014% lower in energy than the perfect stripes.
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into account the specific commensurability with the finite
lattice size of their doped stripe orders. Figure 9 gives an
example of this energy comparison at n = 29

77 . For all densities
that we checked, it was found that our ground state energies
are lower, be it only by a very small amount.

Notice that for algebraic interactions, the stripe phase shifts
to higher densities when p increases. For large p, the stripe
phase seems to dominate in the whole region between 1/3 and
1/2 fillings.

We also computed the ground state phase diagram for
interactions with a finite screening length of the form

V (r) = e−r/λ

rp
(13)

turning into a Bessel function K0(r/λ) for the “screened
logarithmic” interaction. We find that the corresponding phase
diagram for screened interactions is largely similar to Fig. 1,
with only small quantitative differences that do grow with
decreasing screening length λ.

VI. FINITE TEMPERATURE

The phases described in the previous section survive at
finite temperatures, because we are dealing with a system with
discrete symmetry in two dimensions. We have computed a
finite temperature mean field phase diagram using standard
mean field theory [34], for the 1/r interaction (p = 1).

It is of course highly questionable whether mean field
theory correctly describes the competition between various
phases. For example, the rich phase diagram of the ANNNI
model is constructed using mean field theory [10], but
corrections beyond mean field are shown to tip the delicate
balance between different phases and reduce the critical
temperature [35]. At the same time Monte Carlo simulations
of the ANNNI miss incommensurate phases that are clearly
present in analytical extensions of mean field theory [10].
Results from the ANNNI model thus suggests that mean
field theory acts as a qualitatively reliable first approximation
towards the understanding of complex ordering patterns.

Let us now briefly summarize the quintessence of our mean
field theory. For the model Hamiltonian (1) we postulate an
ansatz for the density,

〈ni〉 = n +
∑

α

mα cos(Qα · ri), (14)

where there can be as many ordering wave vectors Qα as
one needs to correctly describe the specific charge order.
For example, the 1/9 order has ordering wave vectors Q1 =
(0, 2π

3 ), Q2 = ( 2π
3 , 2π

9 ) and all linear combinations inside the
first Brillouin zone. When mα �= 0 the translational invariance
is spontaneously broken. Using the ansatz (14) one constructs
a mean field Hamiltonian

H0 =
∑

i

[
−μ +

∑
α

mαVQα
cos(Qα · ri)

]
ni. (15)

We then minimize the thermodynamic potential

� = F0 + 〈H − H0〉0 (16)

with respect to the mean field parameters mα , where F0 =
− 1

β
log Tr e−βH0 and 〈· · · 〉0 implies a thermal average with

respect to the mean field Hamiltonian H0. Every charge order
we found at zero temperature acts as a possible ansatz, and
we numerically minimize at each temperature and density the
thermodynamic potential �.

Since mean field theory gives only a qualitative phase
diagram, and because the zero-temperature phase diagram of
Fig. 1 suggests little qualitative difference between various
interaction ranges, we restrict ourselves to the Coulomb
interaction V = 1/r . The resulting phase diagram is shown
in Fig. 2. In addition to the 1/9 Wigner crystal phase we
also considered 1/12, 1/16, 1/20, and 1/25 crystals. As
for the stripe phases, we studied only the 1/3 and the 3/7
“channeled” state. The phase diagram we thus find indeed
matches the zero-temperature phase diagram obtained by
numerical simulations of the previous section. We emphasize
that further studies are needed to understand the possible
incommensurate stripe phases in between 1/3 and 4/7 filling.

The transition to the checkerboard phase and the similar
“checkerboard-in-a-checkerboard” 1/4′ phase is of the second
order type within the Ising universality class [27]. The
thermodynamic potential for some temperatures around Tc,
with its typical second order transition behavior, is shown in
Fig. 10(a). The question arises whether this 1/4′ “phase” is an
artefact of the mean field theory. As is known at half-filling,
a liquid-like state with local checkerboard order exists in
the presence of long-range interactions [36]. Such correlated
liquid phase can also be present away from half-filling, but
will be beyond the scope of standard mean field theory.

The phase transitions to more complicated orders are
always of the first order kind, an example of which is
shown in Fig. 10(b) at 1/9 filling. This is a natural result
because transitions from solid to liquid phases are usually
discontinuous [37]. The existence of such first order transition
implies that one can supercool the high-temperature (or 1/4′)
state [38]. At ρ = 1/3, for example, the 1/4′ phase remains
a local minimum of the free energy even though its energy
is higher than that of the stripe phase; see Fig. 10(c). This
suggests that it might be hard to actually trap the system in the
lowest energy state.

0 0.05 m

T=0.319

T=0.318

T=0.317

T=0.316

(a) n=0.27, 2nd order

m

0.10

T=0.14

T=0.15

T=0.16T=0.17

(b)  n=0.11, 1st order (c)  n=0.33, two transitions

0.2 0.4

T

1/4' phase

1/3 stripe phase

FIG. 10. (Color online) Thermodynamic potential relative to the
disordered state ��, in arbitrary units, plotted around various phase
transitions. (a) At n = 0.27 there is a second order phase transition
into the 1/4′ state, clearly visible by the Mexican hat potential. The
second order phase transition is common for transitions in the Ising
universality class. (b) At n = 1/9 there is a first order transition
toward the Wigner crystal, as is customary for solidification tran-
sitions. (c) At n = 1/3 there are two transitions: a second order
transition into the 1/4′ state followed by a first order transition
towards the stripe phase. The 1/4′ and the stripe phases are locally
stable however for a longer range of temperatures. This implies the
possibility of supercooling the 1/4′ phase.
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In combination with our earlier observation that a correlated
liquid-like state at intermediate temperatures might exist,
we then also expect glassy physics upon supercooling [39].
With “glassy” we mean that there are macroscopically many
local minima of the free energy, leading to slow relaxation
rates. There is a difference however with the glassy physics
found at ρ = 1/6 densities [12]. There the glassy nature
is a ground state property, where glassy physics around
a first order transition vanishes if the temperature is low
enough.

The mean field theory shows the possibility of supercooling,
the consequences thereof such as possible glass-like behavior
needs to be addressed differently. Finite temperature numerical
simulations however have the great disadvantage that they get
easily stuck in such a complicated free energy landscape. It
remains thus an open challenge to quantitatively describe the
finite temperature phase diagram of the long-range Ising model
away from half-filling.

VII. CONCLUSIONS AND OUTLOOK

In conclusion, we numerically found a ground state and
finite temperature phase diagram of the lattice gas model
at fixed density on a square lattice with general long-range
interactions. We were motivated by the potentiality of nontriv-
ial charge ordering phenomena. Most notable ordering patterns
are the generalized Wigner crystals at low densities, supplanted
by the stripe order at densities between 1/4 and 1/2. All phases

are shown in Fig. 1 at zero temperature and in Fig. 2 for finite
temperatures.

These results extend mainly the work of Ref. [11], in that
we have derived complex ordering patterns in the absence of
anisotropy or competing interactions. In this case, we suggest
that the frustration between the underlying square lattice and
the preferable Wigner crystalline state causes the complex
ordering. In the vicinity of half-filling this mechanism is
supplanted by periodic domain walls in the checkerboard
phase. It is these domain walls that cause the formation
of stripes.

The finite temperature phase diagram has been obtained
using mean field theory, yielding only a qualitative description.
Numerical and/or analytical extensions of the classical mean
field theory will increase the accuracy of the finite temperature
phase diagram. Thereby one can address the possibility of
supercooling and glassy physics.

A possible next step is to include the kinetic energy of
the particles present. This also allows for an extension to
quantum particles [40] or O(n) spin variables [41] instead
of the classical particles we have considered thus far.
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[28] A. Tröster, Phys. Rev. B 81, 012406 (2010).
[29] Y. Pramudya, H. Terletska, S. Pankov, E. Manousakis, and
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