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Ergodic crossover in partially self-avoiding stochastic walks
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Consider a one-dimensional environment with N randomly distributed sites. An agent explores this random
medium moving deterministically with a spatial memory μ. A crossover from local to global exploration occurs
in one dimension at a well-defined memory value μ1 = log2 N . In its stochastic version, the dynamics is ruled by
the memory and by temperature T , which affects the hopping displacement. This dynamics also shows a crossover
in one dimension, obtained computationally, between exploration schemes, characterized yet by the trajectory
size (Np) (aging effect). In this paper we provide an analytical approach considering the modified stochastic
version where the parameter T plays the role of a maximum hopping distance. This modification allows us to
obtain a general analytical expression for the crossover, as a function of the parameters μ, T , and Np . Differently
from what has been proposed by previous studies, we find that the crossover occurs in any dimension d . These
results have been validated by numerical experiments and may be of great value for fixing optimal parameters in
search algorithms.
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I. INTRODUCTION

Deterministic walks in regular and disordered environments
may present several interesting results [1–4]. For instance,
consider a deterministic partially self-avoiding walk [5–8] in
which a walker can visit N sites, randomly distributed on a
landscape, following the deterministic rule of going to the
nearest site not visited in the last μ steps, including the current
site [5]. One can compare this walker with a tourist exploring
cities, and the memory μ with the time required for a city
already visited to become attractive again to the tourist. In
foraging, it may be important to avoid recently visited sites
but allow returning after a time period μ (e.g., after a suitable
time delay necessary for replenishment of exhaustible food
resources) [9–16].

In one-dimensional systems, this dynamics has a crossover
in the exploration behavior according to μ1 = log2 N . We have
shown [8] that if μ < μ1, the walker is trapped in small regions.
Nevertheless, if μ � μ1, the walker crosses the medium, if
leaving from one extremity [8]. As an optimization problem,
for small memories, compared to system size, one guarantees
the whole landscape exploration [8,17,18]. The robustness
of this crossover has been addressed with the inclusion of
a stochastic factor.

If movements are according to a cost function dependent
on μ and on a formal temperature T , then hops to nearest
sites are favored (T → 0) while long jumps are also allowed
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(T → ∞) [19–21]. In this scenario there is a nontrivial
exploration crossover dependent on μ and T [21].

The results of these numerical simulation are valid only for
one-dimensional systems. To achieve an analytical method
also valid for high dimensionalities, as demanded in opti-
mization procedures, further simplifications are necessary. In
this paper the walker also avoids the last μ visited sites, but
its decision rules are limited to include only the walker’s
surroundings, which size is defined by the stochastic parameter
T . Thus, the walker’s reach is defined by T .

One can view this dynamics as a stochastic optimization
algorithm that combines local and global exploration. If
information is feeded to the system as it evolves, one cannot
use traditional methods such as simulated annealing [22,23]
or genetic algorithm [24], since the whole system to be
optimized must be known beforehand. Here we address the
situation where the information about the system is fed as
it evolves, and only local information in the T range must
be supplied. To reach the best results, one can avoid the
initial parametrization working along a crossover line between
two regimes: a nonergodic one, which explores locally the
parameter space, and the ergodic one, which drives the system
away from the local minima. In this paper we present a model
that has this kind of exploration crossover even for systems
with arbitrary dimensions. In addition, our model allows us to
obtain analytically the relation between the parameters μ and
T along the crossover line.

Our arguments are presented as follows. In Sec. II we
describe the model and justify the simplifying assumptions.
The analytical solution and numerical simulation method are
discussed in Sec. III. We show that aging must be considered
in our analytical approach to be compatible with computer
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simulations. In Sec. IV we present the data collapse of
computer simulations and analytical treatment indicating a
subtle change in the exploration scheme, transitioning from
a nonergodic to an ergodic regime. Finally, in Sec. V we
conclude, indicating systems where our model could be
applied.

II. MODEL

Consider walks on a disordered landscape composed of
N sites. This landscape can represent, for example, localized
feeding sites as flowers, trees, water holes, islands, etc. [5,20].
The disordered medium can be defined with each site coor-
dinate, x

(k)
i , i = 1,2, . . . ,N and k = 1,2, . . . ,d, being drawn

in accordance with a random and uniform distribution along
the edges of a d-dimensional hypercube. For a d-dimensional
hypercube with edge length L, the mean site distance � is the
edge length of an also d-dimensional hypercube associated to
each site. If these hypercubes do not overlap, N�d = Ld ⇒
� = LN−1/d . The mean site distance � is used to normalize the
distance between sites. To hop from one site to another, the
walker uses a strategy based on some arbitrary cost function
E(Dj,i), which is a monotonically increasing function of the
normalized Euclidean distance

Dj,i = N1/d

L

{
d∑

k=1

[
x

(k)
i − x

(k)
j

]2

}1/2

(1)

between sites i and j . In the thermodynamical limit, N →
∞, this procedure preserves the constant site density as the
system dimensionality varies and makes it possible to compare
systems with distinct dimensionalities.

To move on this landscape, the walker strategy based in the
cost function E(Dj,i) follows a probability density function
(PDF) that depends on the inverse of the formal temperature,
T > 0, and the walker memory, μ � 0. The memory generates
a self-avoiding window with the last μ visited sites, including
the current site, which are forbidden revisitation in the next μ

steps. The inverse of a formal temperature T is the stochastic
parameter β = 1/T , and as β decreases, long hops are favored.
Thus, the PDF is Wj←i = e−βE(Dj,i )/

∑′N
k=1 e−βE(Dk,i ), and

the summation
∑′ excludes the forbidden sites by μ. The

denominator is the normalization factor Z
(β,μ)
i . This model,

named the stochastic tourist walk (STW), privileges local
exploration when T → 0 (β → ∞) and extended exploration
when T → ∞ (β → 0). By means of Monte Carlo numerical
simulation, it has been shown a crossover between these
localized and extended explorations that occurs for specific
values of T and μ [21].

For an analytical approach, in the particular case of
the STW, the main difficulty concerns the normalization
coefficient, which value changes as a function of the walker
position. To circumvent this problem, we decided to modify
the model. At each discrete time step, a walker moves on this
medium hopping from one site to another site not visited in
the μ previous steps, including the presently occupied site,
and within a range T . The range T ∈ (0,d1/2/2) defines the
walker’s maximum step length and a hypersphere centered in

FIG. 1. Standard medium configuration for d = 2, N = 30, and
μ = 4. Dots represent the sites. The line segments stand for the
trajectory. The circle indicates the volume Vd with nv = 8 and nμ = 3
sites. Black dots are sites unreachable in the following step. Gray
dots belong to the memory. White dots are allowed to be visited with
probability W = 1/5.

its position with volume

Vd = πd/2T d

�(1 + d/2)
, (2)

where �(x) is the gamma function. This volume contains nv

sites, out of which nμ � μ belong to the avoidance window,
due to the memory μ. For each step, the medium has at most
μ sites forbidden to revisitation, N − nv sites (outside Vd )
unreachable, and for the following step there are nv − nμ sites
equally likely to be visited. The sketch in Fig. 1 illustrates this
issue.

The probability of a walker to hop from site i to j is

Wj←i =
{

(nv − nμ)−1; for Dij � T and j /∈ nμ,

0; otherwise,
(3)

where Dij is given by Eq. (1). As nμ approaches nv in the
volume Vd , fewer sites become available due to the avoidance
window. Thus, the probability of each allowed site to be
visited increases in the following step. However, if μ � nv

and nμ = nv , then Wj←i diverges, because all sites inside Vd

are prohibited since they have already been visited in previous
steps. The walker becomes trapped. To use the expression
“survival probability” within the random walk context, we
may say the walker dies when it is not able to reach any other
site. This situation also occurs for the deterministic tourist
walk with μ = N [5]. Notice that these trappings do not occur
in the previously studied partially self-avoiding stochastic
walks [21]. Contrary to these cases, where the hopping range
has not been strictly defined (it is an emerging characteristics
of the exponential function in the Boltzmann-Gibbs weight),
here we abandon the Boltzmann-Gibbs weight and strictly fix
the range, eventually producing traps.

According to the mean distance between sites, �, for T < �

and μ > 0, the walker is always trapped. For T � �, the walker
survival depends on μ, nμ, and nv: (1) if nv > μ, there are
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always allowed sites and the walker survives, (2) if nv � μ

and nμ < nv , there are allowed sites and the walker survives,
and (3) if nv � μ and nμ = nv , all volume Vd is forbidden,
leading to the walker’s death. For μ = 0, the walker does
not remember the presently occupied site, and thus it always
survives because it can stay at the current site, regardless of
the size of T .

To explore efficiently the random medium, the walker
must survive as long as possible. In addition, as in the one-
dimensional cases for deterministic partially avoiding walks
[17] and stochastic walks [21], there is a transition in the walker
behavior, namely, a crossover between ergodic and nonergodic
exploration regimes. The walker survival probability is the
order parameter for this situation and depends on the number
of allowed sites nd = nv − nμ, which depends on T and μ.

The following analysis is based on the volume Vd , where
d and T are implicitly considered. Therefore, as we show, the
exploration crossover occurs for an arbitrary d, not only for
d = 1, as described in Refs. [17,21].

III. ANALYTICAL AND COMPUTATIONAL METHODS

In this section we describe the analytical treatment and its
validation by computational simulations.

A. Analytical method

The analytical treatment is based on the discrete ran-
dom variable statistics. The number of sites nv inside the
volume Vd is a discrete random variable with mean value
〈nv〉 = Nv, where v = Vd/V ′, with Vd given by Eq. (2),
and a d-dimensional volume V ′, with N sites uniform and
randomly drawn. It follows that nv is distributed according to
a binomial, with success probability v. This result has been
numerically validated (not shown). For V ′ = 1 and v = Vd ,
the nv distribution is

p(nv) =
(

N

nv

)
V

nv

d (1 − Vd )N−nv . (4)

Since this is a static medium characteristic, nv is independent
of μ.

As is nv , nμ is also a random variable. To obtain its
distribution, consider nμ as the number of sites in Vd that
have a given characteristic C and M is the subset of all sites
with this characteristic; see the Venn diagram in Fig. 2. The
nμ distribution is a hypergeometric distribution [25],

p(nμ) =
(

nv

nμ

)(
N − nv

μ − nμ

)(
N

μ

)−1

. (5)

This result has also been numerically validated (not shown).
If the condition nv = nμ is satisfied, the walker dies. Let

A be the event nv = k and B be the event nμ = k. Although
nμ � nv , the value nμ does not depend on nv , but rather on μ.
Only if μ � nv , nμ is equal to nv . As μ is independent of nv ,
the events A and B are independent. Therefore,

P (A ∩ B) =
(

μ

k

)
V k

d (1 − Vd )N−k , (6)

where Vd is given by Eq. (2).

FIG. 2. In the Venn diagram, the intersection of Vd and M has nμ

sites. The M subset not in Vd has μ − nμ sites, and the subset Vd not
in M has nv − nμ sites. The total amount of sites not in M or in Vd is
N − nv − μ + nμ.

To describe the model dynamics, the relevant quantity to
consider is the walker death probability Pδ . It is defined at
each step by the summation over all possible values of k in
Eq. (6). For T large enough to allow a walk in this medium,
the possible values of k are in the interval 2 � k � μ. Note
that, the case k = 0 does not occur (there always is at least one
site inside Vd ), and for the case k = 1 there is no walk. Thus,
at each step, the walker death probability is

Pδ(Vd,μ) =
μ∑

k=2

(
μ

k

)
V k

d (1 − Vd )N−k

= (1 − Vd )N−μ

[
1 − (1 − Vd )μ

(
1 + μVd

1 − Vd

)]
.

(7)

Figure 3 depicts Eq. (7) for a system with N = 100 sites.
The walker death occurs when μ ∼ O(N ), except when Vd →
0. In this case, death occurs only if nv = 1; however, if there is
a first step in the walk, nv > nμ and the survival is guaranteed.
In the other cases, the walker survival always occurs.

One should note that Eq. (7) has a factor dependent only on
the maximum number of available sites N − μ, explicating the
system finite size effect. The factor inside the brackets depends
only on μ related to the memory effect. In the thermodynamics
limit (N − μ → ∞), Pδ → 0, and the walker survival always
occurs. Indeed, in this limit, if Vd > 0, 〈nv〉 = NV → ∞, and
the Eq. (4) becomes p(nv) = δnv,∞. Thus, nμ < nv , ∀μ = N ,
favoring the walker survival. The plots in Fig. 3 illustrate the
behavior of Eq. (7).

B. Monte Carlo simulations

To validate Eq. (7), we have performed computational
simulations on disordered environments with N = 32, 64,
and 128 sites and dimensionality d = 1, 2, 3. We have
varied the memory as μ = {0; 1; 2; . . . ; N}, and the volume
as Vd = {0; 0.01; 0.02. . . . ; 1}. Further, for each set of N and
d, 104 maps have been generated. On each map, N walks have
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FIG. 3. (Color online) Walker death probability [Eq. (7)] for N =
100 sites. (a) Constant μ and (b) constant Vd . Inset: The exponential
behavior of the later case.

been performed, each walk starting from each site of the map.
Therefore, there are 104N trajectories to analyze. For each
trajectory, the walker explores the medium randomly going to
one of the nv − nμ allowed sites, given by Eq. (3). After each
step, the avoidance window, with at most μ sites, is updated.

Unlike the deterministic walks that finish in cycles, this
walk does not end naturally, except when the walker dies. For
this reason, it is necessary to limit the simulation time with a
stop condition. Thus, we introduce a new variable, the explo-
ration time Np, which is the number of steps along the walker
trajectory. The insertion of this variable has only a numerical
justification, yet, as shown later, physically it generates the
aging effect. Each trajectory has at most Np steps, which value
is set a priori. Therefore, the trajectory ends when the walker
dies or after Np steps, whichever occurs first. We have varied
this parameter as Np = N, 5N, 10N, 25N, 50N, 70N, 90N ,
and 100N steps.

As in the analytical treatment, here we define the numerical
walker death probability Pδ . It is obtained by the ratio between

the total number of walks that ended due to the walker’s getting
stuck and total number of walks.

The finite size effect is also observed in the computational
simulations, by reducing the total death region as Vd → 0. In
addition, another effect appears, the boundary effect.

The boundary effect does not influence the analytical result
because, hypothetically, the population of sites is uniform
in all analyzed space regions, so that sites near the edges
have the same number of neighbors as those closer to the
center. In the numerical simulation, however, this is not true,
since the sites closer to the edges have fewer neighbors than
those in the center. Thus, the volume Vd centered in sites
closer to the edges has a nonpopulated area beyond the edges,
violating the hypothesis of uniformity in all space regions
and, therefore, compromising the simulation and increasing
the death probability near the edges. Moreover, the walker
death probability increases as d increases with N kept constant,
contradicting the analytical result, according to which this
probability does not depend explicitly on d. This contradictory
increasing on the walker death probability is also explained
by the boundary effect, which gets stronger as the system
dimension increases.

A commonly used solution to fix the boundary effect is
the use of periodic boundary conditions. Nevertheless, as a
side effect, periodic boundary conditions also simulate an
environment of infinite population (N → ∞), eliminating
the finite size effect, which is indeed taken into account in
analytical resolution. Further, using the thermodynamic limit
(N → ∞), the survival is the general rule. Therefore, to
observe the crossover between the walker’s survival and death,
it is not interesting to eliminate the finite size effect in the
computational simulations, which prevents the use of periodic
boundary conditions and therefore maintains the boundary
effect in the system.

IV. TRANSITIONS TO ERGODICITY

For a given set of parameters, the walker can perform a
localized (nonergodic) or an extended (ergodic) exploration.
The walker must survive as long as possible to increase
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FIG. 4. (Color online) Visitation rate as function of T and
memory for N = 128, d = 1, and Np = N .
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the medium exploration. Therefore, the crossover is obtained
by the walker survival probability. Nevertheless, prolonging
the walker survival makes the system undergo an aging
phenomena.

A. Exploration crossover

To verify that high walker survival is a guarantee of high
exploration, computational experiments have been performed
measuring the visitation rate (ratio between the number of
distinctly visited sites, ne, and N ) as a function of T and μ.
Figure 4 shows the obtained results for N = 128, d = 1, and
Np = N , which is the lowest number of steps required for a
total visitation. It is worth mentioning that this behavior is the
same for other dimensions, and similarly for the walker death
probability, the visitation rate does not depend strongly on d.
Further, for V < 1, all sites are visited even for T = 1, which
is equal or smaller than Tmax = √

d/2.
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FIG. 5. (Color online) Death probability P� (8) as function of
(a) memory for volume Vd = 0.1 and (b) volume Vd for memory
μ = 75, for N = 128.

B. Aging effect

As a physical consequence due to the introduction of the
variable Np, the computational approach presents the aging
effect. To analytically examine the aging effect in our model,
we consider the walker survival probability after Np steps.
Equation (7) gives the walker death probability at each step,
so that the survival probability is 1 − Pδ . After Np steps,
the survival probability is Ps = (1 − Pδ)Np . Therefore, the
probability of the walker death after Np steps is P� = 1 − Ps :

P�(Np,Vd,μ)

= 1 −
{

1 − (1 − Vd )N
[
−1 + (1 − Vd )−μ − μVd

1 − Vd

] }Np

.

(8)

The effect of increasing the exploration time Np is similar for
any value of N . They present a sharp transition between the
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FIG. 6. (Color online) Collapse of death probability P� as
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(b) scaled volume VS for constant memory μ for N = 128 and
Np = N . Symbols stand for numerical data, and the continuous line
for the analytical collapse.
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regions for the walker survival (P� ≈ 0) and death (P� ≈ 1).
Further, P� has a sigmoidal behavior as a function of both μ

for a constant value of Vd and Vd for constant μ.
The aging effect is shown in Figs. 5(a) and 5(b). Observe

that the increasing of Np shifts the P� curves. On one hand,
for Vd constant, the shift is towards small memory, and the
survival is guaranteed only for small memory. On the other
hand, for μ constant, the shift is towards larger volumes, since
the survival occurs after a minimum value of Vd , for each Np.

In addition, we have also analyzed P� as a function of μ

for different values of Vd , and as a function of Vd for different
values of μ. Since we have similar curves, we rescale them
to obtain a collapse. For the curves on a function of μ for
constant Vd , from Eq. (8), we have calculated the inflection
point, called a critical memory (μc), and the transition width
(wv,μ), a scale factor. Thus we obtained a scaled memory
μS = (μ − μc)/wv,μ for constant volume Vd . We have done
the same analysis for the curves for Vd for constant μ,
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FIG. 7. (Color online) Critical memory μc as function of the
volume Vd for different values of Np for N = 128 sites calculated
(a) from the analytical curves and (b) from the numerical result.

where the inflection point gives us the critical volume Vc,
so the scaled volume is VS = (Vd − Vc)/wμ,v . The collapses
are shown in Fig. 6 with a comparison with computational
results. The wide dispersion of the numerical data regarding the
analytical prediction can be reduced by increasing the number
of analyzed maps.

From our computational experiments, the parameter Np,
itself allows us to evaluate the aging effect of the system.
Figure 6 shows that, as for the analytical case, there still is
a way to collapse the data. This collapse coincides with the
analytical case (continuous line). In addition, it shows that
the transition curves behave quite similar with the analytical
model. The values for the critical memory (μc) and the width
of the transition region (wv,μ) were obtained using the first and
second numerical derivatives of each curve. In cases where the
curve does not change the concavity, the concerning memory
was obtained from the average height of P� as μc.

Plotting the values of μc as a function of Vd for several
values of Np it is possible to see the shift of the transition
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Vd as function of Np/N for a system with N = 128 sites obtained
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(below) and walker death (above) regions. The data points are given
by analytical results.

curves, which is the main characteristic of the aging. Figure 7
shows the analytical and numerical shift on the transition
region as a function of Np for N = 128. Despite the difference
between the predicted value, it is possible to see that in both
cases, the behavior of the phenomenon of aging is the same:
the reduction of the walker survival region as a function of Np.
In fact, this reduction is much faster in numerical experiments
due to edge effects.

In our model, we understand the effect of the exploration
time as a system aging effect. Since the value of μc decreases
as exploration time increases, it could be possible to find a
limit value for Np, such that μc > 0. Thus, as in the one-
dimensional case of STW [21], we could obtain a value for
Np after which the aging is slow and can be neglected. From
Fig. 8, μc as function of Np/N for N = 128 sites, one notes
that μc ∝ − log(Np/N) for any value of Vd , such that the the
system suffers the aging effect until Np → ∞.

Although Fig. 8 shows that the numerical results are a bit
different from the analytical results, it is possible to see that, for
Vd � 0,5, the logarithmic behavior of the system aging effect
remains the same. The slow aging for the case Vd = 0.1 is due
to the small generated volumes Vd , which have few sites in
its interior, increasing the death probability. Thus, along with

the edge effects, it causes death in a few steps, and therefore
the transition memory is somewhat affected by the increasing
on Np.

Despite the fact numerical results quantitatively differ from
the analytic results, they agree qualitatively with each other,
showing similar behaviors for the analyzed quantities. The
observed deviations are explained by edge effects that, for this
particular case, are difficult to eliminate.

To summarize our results and to delineate the walker death
and survival regions, we have plotted the crossover diagram,
depicted in Fig. 9, for V −1

d , which includes the dependence
on the range T , and critical memory μc. The region below
the curves corresponds to the walker survival, and otherwise
the walker death. As Np/N increases the walker death region
increases. Namely, as the trajectory is longer, nμ increases
and nv decreases. Therefore, the probability of death in the
next step increases. Note that an increase of Np can allow
the crossover even in the thermodynamics limit. Further, for
an environment with finite N , an increase of Np leads to an
increase on the number of trajectories that end due to the
walker death. Besides, in this case, death always occurs for
Np → ∞.

V. CONCLUSION

We have considered a d-dimensional environment with N

randomly distributed sites. An agent explores this random
medium moving stochastically within a range T and a spatial
memory μ. The analytical results have been validated by
numerical experiments and a crossover from the nonergodic
to the ergodic regime has been found. With parameters fixed
near this crossover, one can devise algorithms ensuring optimal
search strategies. These algorithms may extend the agent
deterministic moves used in pattern recognition, imaging
texture analysis and classification, and complex network
classification [26–30].
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