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Beyond the Young-Laplace model for cluster growth during dewetting of thin films:
Effective coarsening exponents and the role of long range dewetting interactions
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Long range dewetting forces acting across thin films, such as the fundamental van der Waals interactions,
may drive the formation of large clusters (tall multilayer islands) and pits, observed in thin films of diverse
materials such as polymers, liquid crystals, and metals. In this study we further develop the methodology
of the nonequilibrium statistical mechanics of thin films coarsening within continuum interface dynamics
model incorporating long range dewetting interactions. The theoretical test bench model considered here is
a generalization of the classical Mullins model for the dynamics of solid film surfaces. By analytic arguments and
simulations of the model, we study the coarsening growth laws of clusters formed in thin films due to the dewetting
interactions. The ultimate cluster growth scaling laws at long times are strongly universal: Short and long range
dewetting interactions yield the same coarsening exponents. However, long range dewetting interactions, such
as the van der Waals forces, introduce a distinct long lasting early time scaling behavior characterized by a
slow growth of the cluster height/lateral size aspect ratio (i.e., a time-dependent Young angle) and by effective
coarsening exponents that depend on cluster size. In this study, we develop a theory capable of analytically
calculating these effective size-dependent coarsening exponents characterizing the cluster growth in the early
time regime. Such a pronounced early time scaling behavior has been indeed seen in experiments; however, its
physical origin has remained elusive to this date. Our theory attributes these observed phenomena to ubiquitous
long range dewetting interactions acting across thin solid and liquid films. Our results are also applicable to
cluster growth in initially very thin fluid films, formed by depositing a few monolayers or by a submonolayer
deposition. Under this condition, the dominant coarsening mechanism is diffusive intercluster mass transport

while the cluster coalescence plays a minor role, both in solid and in fluid films.
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I. INTRODUCTION

In a classic quantum electrodynamics study [1], Casimir
made a striking prediction that two perfectly reflecting parallel
plates placed in vacuum will attract each other. This exotic
phenomenon is due to the modification of the quantum
electromagnetic field ground state (“zero point”) energy of the
free space produced by the presence of the plates. Casimir’s
discovery had a great intellectual impact on the developments
of the theoretical understanding of other forces in nature, in
particular of the van der Waals forces. This deep understanding
of the van der Waals forces was provided by Lifshitz, who
related these forces to electronic charge density fluctuations
existing in any material even at zero absolute temperature due
to quantum effects [2,3]. These charge fluctuations and the
induced electromagnetic field fluctuations generate transient
dipole moments in atoms and produce effective forces acting
even between neutral atoms. At zero temperature these forces
are called London forces. Hamaker considered this London-
van der Waals interaction in thin films [4]. He found that
opposite surfaces of a thin film interact through the effective
potential,
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per unit area, where # is the thickness of the thin film and Ay
is the so called Hamaker constant that can be calculated from
the Lifshitz theory [2,3]. The potential ®(h) is essentially a
finite size contribution to the thin film net free energy. Van
der Waals force is just one of a large number of potentially
interesting thin film interactions; see, e.g., Refs. [4-6]. For
example, in Ref. [7], it has been suggested that the opposite
surfaces of smectic liquid crystal films interact with each other
by an effective interaction inversely proportional to the film
thickness,

D(h) ~ —l. (1.2)
h

This long range interaction is a thermomechanical quasi-

Casimir force induced by smectic thermal undulations.

Ever since the seminal studies of Lifshits and Slyozov,
and, independently, of Wagner [8], coarsening processes have
played a prominent role in statistical [9] and biological physics
[10] and in applied physical sciences [11-17]. Technologically
significant thin films are no exception to this, as exemplified
by growing microstructures seen in epitaxial growth [11,14].
A new venue in this area emerged from recent experimental
revelations that long range dewetting forces acting across thin
films, such as the above discussed van der Waals interactions
[18], may induce the formation of large clusters, i.e., tall
multilayer islands formed during high temperature annealing
of thin films, [19]. Earlier experiments with liquid Sn [13] and
solid Mn films [15] on silicon evidence that the clusters grow in
time by a coarsening process, with cluster linear size ~ ¢'/4 (at
long times ¢), as predicted by Chakraverty [16,17]. However,
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a more complex mode of cluster growth has also been seen, in
solid Co films on sapphire [20]. In addition, an intriguing long
lasting early time cluster growth behavior, preceding the #'/4
regime, has been seen in the experiments [13].

In this study we further develop the methodology of the
nonequilibrium statistical mechanics of thin films coarsening
within continuum interface dynamics models incorporating
dewetting interactions. The theoretical test bench model
considered here is a generalization of the classical Mullins
model for the dynamics of solid film surfaces [21]. Yet, under
the conditions discussed in Sec. IIE, our main results are
also applicable to fluid films. By analytic arguments and
simulations, we study the growth of clusters formed due to
dewetting interactions, such as the common van der Waals and
other experimentally significant long range interactions noted
above. We extract the effective (time-dependent) coarsening
exponents describing the cluster growth, such as the exponent

_ dIn(H))
By (@) = T(t)

characterizing the growth of the cluster average height (H).
For three-dimensional (3D) clusters on 2D substrates, this
exponent approaches 1/4 in long times limit, in accord with the
experiments [13,15] and previous theories [16,17]. However,
we reveal that long range (power-law) dewetting interactions
introduce a long lasting early time scaling behavior charac-
terized by effective cluster height growth exponent B, (¢)
larger than 1/4. Such a long lasting crossover behavior, with
a By (1) # 0.33 > 1/4, was indeed seen in the experiments
[13], and its physical origin has remained elusive to this date.
We show that such long lasting crossover phenomena can
be produced by long range dewetting interactions discussed
above, which are of the asymptotic form,

; (1.3)

1

P(h) ~ —.
for large film thickness &. Note that Eqgs. (1.1) and (1.2)
correspond to Eq. (1.4) with w =2 and w = 1, respectively.
We theoretically prove, by numerical simulations and analytic
methods, that the long range nature of dewetting forces
indeed produces long lasting early time departures from the
asymptotic power laws, with the effective exponent By (¢) >
1/4. This early time cluster growth regime is shown here
to be marked by a growing cluster height-to-width aspect
ratio which slowly approaches the aspect ratio determined
by the Young contact angle. In this respect, notable are the
experiments of Ref. [20], in which the clusters are indeed
seen to exhibit a growing cluster aspect ratio. For realistic
dewetting potentials, such as van der Waals and other long
range interactions, these early time scaling phenomena are
found here to persist over long intervals of time and they are
thus experimentally significant.

The structure of this paper is as follows. In Sec. II, with
due care for physics, we discuss the continuum modeling of
the morphology dynamics of solid and liquid thin films. In
this section we also outline a simple kinetic theory of the
coarsening dynamics of the clusters formed during dewetting
process. This discussion, however, provides the values of
the cluster growth exponents (such as the above mentioned
exponent fy) that are valid only in the long times limit. In

(1.4)
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this limit, the clusters are large and can be simply described
by the classical Young-Laplace model. We stress that all
previous analytic studies of the cluster coarsening dynamics
(starting with the seminal work of Chakraverty [16]) have been
exclusively based on the Young-Laplace model for cluster
morphology. Our study, however, goes beyond the classical
Young-Laplace model. Thus, in Sec. III, we use numerical
simulations of our interface dynamics model to explore the
role played by the long range dewetting interactions on the
character of the cluster coarsening dynamics. We find that
these interactions produce significant early time departures
from the asymptotic predictions based on the Young-Laplace
model. To analytically address this phenomenon, in Sec. IV,
we first provide a theoretical description of quasistatic (slowly
evolving) clusters that goes beyond the classical Young-
Laplace model. Next, in Sec. V, we use this theoretical
description to develop a powerful cluster coarsening dynamics
theory capable of analytically explaining the findings of
our simulations. Finally, at the end we provide a summary
and conclusion of this study. Some details relevant for our
discussions are outlined in Appendixes A and B.

II. INTERFACE DYNAMICS MODELS WITH DEWETTING
INTERACTIONS

A. Generalized Mullins model for solid films
with dewetting potentials

Continuum modeling of solid film interfacial dynamics
dates back to early works of Mullins and Herring [21]. In this
section we discuss a basic model for solid film morphology
dynamics respecting the conservation of the film volume of
the general form [11,21]

oh

Fri
Here, h(X,t) is the film interface height over a D-dimensional
substrate plane, X = (x1,x2,...,xp). In Eq. (2.1), J is the
surface current density [21], given by the Nernst-Einstein
equation,

-

-v.J. 2.1

J=-T'Vu=-TQVP. (2.2)

Here, I is a transport coefficient, and p is chemical potential
field; u(x,t) = QP(X,t), with , the atomic volume. Within
the small slope approximation (SSA), m = |Vh| < 1, the
pressure field P(x,t) in Eq. (2.2) is generated by the surface
contribution to the film free energy, of the form [3,18]

F= / dPx [%(Wz)z + d)(h)], (2.3)
via the relation
L u@En _ SF o
P(x,t) = = —— = —yV°h+d'(h). (23b
(x,1) o) ShG.D) 14 + ®'(h). (2.3b)

Above, y is the interface stiffness of the film at its top interface
with vacuum (or air), whereas ® (%) is the dewetting interaction
potential. As discussed in the Introduction, major physically
interesting dewetting potentials have the asymptotic form of a
power-law attraction,

(k) ~ —

ot 2.4)
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FIG. 1. (Color online) (a) Dewetting interaction potential causing the flat film instability. (Inset) Sketch of a cluster on top of a substrate
depicting the Young-Dupré model of dewetting; y, yrs, and yy s are the interface energies at vacuum-film, film-substrate, and vacuum-substrate
interfaces, respectively; 0y is the cluster-substrate contact angle and R, is the radius of the curvature of the cluster interface with vacuum,
whereas R is the radius of the cluster circular base. (b) Variation of the dispersion relation G(g) as function of the magnitude of the wave vector
q. (Inset) Schematic view of small fluctuations §4 of the thin film surface around average thickness /.

for large h; see Fig. 1(a). The common nonretarded van der
Waals interactions correspond to the case w = 2 of Eq. (2.4),
[3]. The case w = 1 may also be interesting [7]. Short range
dewetting interactions are regained in the large-w limit; w >> 1.
By Egs. (2.1)-(2.3),
dh 2 21,2 /

i QV-P = -I'QV-[yV°h — d'(h)]. 2.5)

For ®(h) = 0, Eq. (2.5) reduces to the classical Mullins
model for solid interface relaxation by surface diffusion [21],
with the transport coefficient I' = ppyng,:Q2. Here, ngy,s is
the surface density of surface active atoms and ppy is their
mobility constant at the film-vacuum (or air) interface. Such
a Mullins type model, emerging from a seemingly liquidlike
surface free energy (2.3a), has already been employed by a
number of authors to discuss some dewetting phenomena in
solid films, [22,23]. As in these previous studies, we assume
that the interface stiffness y is positive. Thus, in the absence
of dewetting potentials, an initially flat uniform film surface is
stable against tilting. Within the SAA, the surface free energy
[Eq. (2.3a)] is liquidlike. In fact, for the interesting crystal
surfaces, such as (001) surface, the crystal anisotropy would
show up only in higher order (quartic in slope) contributions
to the interface free energy, so, within the SSA, it is sufficient
to keep in Eq. (2.3a) just the isotropic term quadratic in slope.
The higher order slope terms would be needed only if the
y in (2.3a) is negative, in which case the interface would
develop tilted facets stabilized by the higher order terms.
For a positive y, however, the tilted facets do not develop
and the anisotropy plays only a minor role. We note that the
above model does not account for destabilizing elastic effects
induced in some solid films by the substrates, such as the
Asaro-Tiller-Grinfeld effect [24] or the formation of mounds
in Si-Ge heteroepitaxial systems [25]. The substrate induced
uniform film stress is, however, known to be vanishing if the
substrate is incommensurate with the film along their interface.
This is a rather common case for many thin film systems.
Under such conditions, the only source of the uniform film

instability in this model is the dewetting potential ®(h); see
Sec. II B. On the theoretical side, a conceptual advantage of
dealing with such a simple model is that the actual physical
effects of dewetting potentials are better highlighted. It should
be also stressed that the classical Mullins model (2.5), with
underlying liquidlike free energy (2.3a), effectively ignores
the layered character of solids, i.e., their long range positional
order. Because of this, in the applications to singular crystal
surfaces, one would have to add to the free energy (2.3a) the
oscillatory term of the form

2r
Fpositional ™ —/de cos (—nh(x,t)>,
a

reflecting the crystal periodicity along the 4 axis [26]. For D =
1, singular surfaces are rough at any temperature and the above
oscillatory interaction is renormalized to zero due to thermal
fluctuations. For D =2, such a dramatic renormalization
occurs only above the roughening temperature Tr, which
is typically above the crystal melting temperature for low
Miller index singular surfaces (with notable exception of
solid He). Yet, the simple Mullins model is still in broad
use in materials science studies of solid surfaces, including
the studies of dewetting phenomena (e.g., Refs. [22,23]). Its
predictions agree with numerous experiments (some of them
done by Mullins himself and his collaborators [21]). The
apparent success of the Mullins model can be attributed to
the fact that realistic crystal surfaces, such as the surfaces of
growing clusters, deviate significantly from a perfect singular
surface structure. They are better described as miscut (vicinal)
surfaces, and, under some conditions, Egs. (2.3a) through
(2.5) may become a viable phenomenological model even
below Tr. Such surfaces are always thermally rough in
D =2. Their thermal disorder may depress the effects of
crystal periodicity. Within the Mullins model, dewetting is
a continuous, nucleation free process which goes on in a
swift way; see Sec. III simulations. Thermal effects, chemical
disorder [15], or ion beam irradiation [28] may all produce
a significant surface disorder and thus make the Mullins
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model viable. Surface disorder should have similar dephasing
effects on oscillatory surface potentials. Significant examples
are the so-called fermionic Casimir potentials emerging from
quantum size effects of traveling fermions such as conducting
electrons in metallic films [5,6,27] of the form

1
quermionic(h) ~ I’l_a COS(ZkFermih)-

At low temperatures, such oscillatory fermionic Casimir
forces are believed to induce the formation of small islands
on singular surfaces [27]. We are, however, here interested in
larger surface structures such as the clusters formed during
a high temperature annealing of thin solid and liquid films
[13,15,20], sometimes assisted by ion beam irradiation [28].
In the presence of thermal or other surface disorder, the
oscillatory potentials may decohere and average out to zero,
possibly giving rise to some effective induced dewetting
potentials of the simple power-law form [Eq. (2.4)] considered
in this paper. On the other hand, the surface disorder can
never produce such dramatic effects on the monotonous
(nonoscillatory) London-van der Waals dewetting potential in
thin films.

As it stands, the model Eq. (2.5) only describes the dy-
namics of the film-vacuum(air) interface. It is thus applicable
to multilayer regions with h(X,t)/a > 1 with a = atomic
monolayer height. Dewetting processes, however, involve the
formation of “dry” submonolayer regions with i(x,t)/a < 1,
where the film material disperses into a fluid (gas) of adatoms.
In these regions, the physical meaning of the h(x,t) field is
expressed by the relation

h(X,t) = Qn(X,1), (2.6)

where n(x,t) is the local surface number density of adatoms
diffusing on the substrate: By the relation (2.6), the integral
of the h(X,t) field over any submonolayer domain is equal
to the total film material volume over the submonolayer
domain. Thus, the relation (2.6) manifestly preserves the
major conceptual feature of the 4 field that the integral of
h(X,t) over any substrate domain is equal to the total film
material volume over this domain. By means of the concept
encoded in Eq. (2.6), the above discussed multilayer Mullins
model (2.5) can be generalized to address the submonolayer
regions with h(xX,7)/a < 1. In these regions, the free energy
functional Eq. (2.3a) needs to be replaced by the free energy
density functional of the fluid of adatoms with local density
n(x,t) = h(x,t)/ . In general, free energy functionals can be
expressed as expansions in powers of spatial derivatives of the
involved fields. Hence, for our problem, the minimally needed
free energy functional can be written as

Fup = / dPx [V(h)(%hf 4 cbeff(h)]. 2.7

2

With suitable forms of the effective local potential @ (h)
and the stiffness function y(h), the functional Eq. (2.7) can
be used to treat the situations with both h(X,f)/a > 1 and
h(X,t)/a < 1 in a unified way. For multilayer domains with
h(X,t)/a > 1, the effective local potential ®.s() reduces to
the dewetting potentials discussed in Sec. I, while the stiffness
function obeys the limit y(h — oco0) — y, where y is the
stiffness of the film interface with vacuum (or air). On the other
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side, for submonolayer domains with 2(X,t)/a < 1, Eq. (2.7)
should reduce to the free energy density functional of the
fluid of adatoms with local density n(X,t) = h(¥,t)/ 2. For
example, for h(X,t)/a < 1, whence the adatom gas is dilute
and can be treated as an ideal gas, one can apply the familiar
results for ideal gasses to write
n
en,

h h
= & ;(0) + kT —1 , 2.8
eff(0) + kp o) n(eQn(,) (2.8)

(Deff(h) ~ q>eff(0) + kB Tnln <

where n, is a reference gas density. If the adatom gas is
uniform, the resulting chemical potential implied by Eq. (2.8)
has the familiar ideal gas form

_ 0Degr

on

= k3T1n<

n = Q- @ (h) ~ kT In (i>

no

h 2.9
Qn) 2.9)

By Eq. (2.9), the effective potential ®.¢(h) must be a
decreasing function for small 7 = Qn, whence the ideal gas
model becomes exact. On the other side, for A(x,t) > a,
whence (k) reduces in form to a dewetting potential as in
Eq. (2.4), the @4 (h) is expected to be an increasing function
of h. By these observations, one arrives at a simple yet very
important general conclusion that the ®.k(h) must have a
minimum at a characteristic value of &, called /., in Fig. 1(a),
at which the (uniform adatom fluid) chemical potential p© =
Q- @ ;(h) vanishes. The hpyi, corresponds to the adatom
gas density npyin = hmin/ 2, which is the equilibrium density
of the adatom gas coexisting with a macroscopic wedge
shaped film; see Sec. IIC and Appendix A. For a spatially
nonuniform %(X,t), the chemical potential and pressure fields
are obtained via the functional derivative of the unified free
energy functional Eq. (2.7), with the result

/L()_é,t) _ 5Feff
Q Sh(X,n)

P(x,t) =

- - 1 -
= —VIy(h)Vh] + Ey/(h)(Vh)z + D (h)
= Y WVh = Ly TR+ @elh), (2.10)

applicable for both A(X,t)/a > 1 and h(X,t)/a <1 with
suitably chosen forms of the effective local potential ®¢g(h)
and the stiffness function y(h). Note that the above form of
the pressure field is more complex than that in Eq. (2.3b)
because of taking into account the # dependence of the stiffness
y(h). The above mentioned film wedge configuration is the
equilibrium solution of Eq. (2.10) with zero chemical potential,
w = 0. For this solution, away from the wedge, #(X,t) — huin,
that is, the adatom density n(X,t) = Amin = Amin/ 2. This
feature can be used to calculate the Young contact angle for
interfaces modeled by free energy functional Eq. (2.7); see
Sec. I C and Appendix A. The chemical potential Eq. (2.10)
can be used to discuss the dynamics of the solid film dewetting,
in combination with Nernst-Einstein relation of the from

J=-T(h)Vu = -T(h)QVP. (2.11)
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Here, I'(h) is an h-dependent transport coefficient discussed
in the following. The conservation law Eq. (2.1) in combination
with Egs. (2.10) and (2.11) yields a generalized Mullins
dynamical model of the form

ah

= —VJ = V[['(W)Vu] = QV[T(h)V P]

Qv {F(hﬁ [y(hﬁzh + %y/(h)(%z -~ <I>gff(h>}} :
(2.12)

To implement the model Eq. (2.12), we need the functional
form of the transport coefficient I'(k). For h(x,t) > a (ie.,
in multilayer domain), the I'(#) should coincide with above
mentioned Mullins result discussed below Eq. (2.5), that is

1—‘Mullins(h) = MFVnsuer ~ UFva. (2133)

So, for h(X,t) > a the T'(h) is a nearly h-independent con-
stant. On the other hand, for h(X,t) < a (i.e., in submonolayer
domain) one deals with a gas of adatoms and Eq. (2.6) applies.
Then the appropriate form of I'(h) is

L'(h) = puh,

where g 1S the mobility constant of adatoms diffusing on
the substrate. Indeed, for h(X,?) < a, the generalized Mullins
model Eq. (2.12), in combination with the effective potential
in Eq. (2.8) and the transport coefficient in Eq. (2.13b),
reduces (to the lowest order in spatial derivatives) to the simple
diffusion equation

(2.13b)

oh > 5
a1 - Dsub(v) h»
with Dy = kpT tsup. As h(X,t) = Qn(X,t), by Eq. (2.14) we
see that for 4(X,t) < a our general model Eq. (2.12) regains
the standard diffusional dynamics expected for the gas of
adatoms. The y (h) terms in the full dynamical model (2.12)
produce only higher derivative terms that are subdominant
to the leading diffusive term displayed in Eq. (2.14); see also
Sec. II D discussions. We note that for h(X,t) < a, the physical
origin of the y () term in the model free energy Eq. (2.7) is the
interaction between adatoms, i.e., y (h) vanishes in ideal gasses
of adatoms. Thus, if the adatom gas is dilute [h(¥,t) < a] or
the temperature is high enough, the dominant role is played
by the ideal gas entropic contribution to the model free energy
density displayed in Eq. (2.8), whereas the y (/) term plays a
more minor role in the full free energy Eq. (2.7). Still, the y (h)
term cannot be ignored. For example, it is needed to develop a
consistent continuum theory of the Young contact angle based

on considering the wedge shaped film profiles; see Sec. II C.
Mathematically, the generalized Mullins model (2.12) is
similar to the models for the dewetting dynamics of liquid
thin films [29-32]. For liquid films, however, the interface
dynamics is mediated by the hydrodynamic flows in the bulk
of the film, in contrast to the Mullins model in which only
the atoms on the interface contribute to its dynamics. Related
to this, the transport coefficients of the liquid films models
[29-32] depend profoundly on the local film thickness, as
['(h) ~ h4, with, for example, g = 3, for the no-slip boundary
conditions at fluid-substrate interface. In contrast to this, the
generalized Mullins model has a nearly constant I"(%) in the

(2.14)
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multilayer regions [Eq. (2.13a)]. Nonetheless, as discussed at
the end of Sec. IIE, our main results are also applicable to
initially very thin fluid films whence the dominant coarsening
mechanism is diffusive intercluster mass transport while the
cluster coalescence plays a minor role. Thus, under these
conditions, our major results for the generalized Mullins model
(described in Secs. III, IV, and V) are also applicable to the
coarsening in fluid thin films.

B. Thin film instability

The presence of the dewetting effective potential ®g(h)
in the model (2.12) may induce an undulational (spinodal
dewetting) instability of flat (2 = const.) films similar to that
occurring in liquid thin films [29]. To exhibit its presence in the
Mullins model for solid films, consider a thin film of average
thickness hg, with a small undulational fluctuation 84 (X,?),

h(Z.1) = ho + 8h(Z.1) = ho + Az(1) cos(iGX),

with 84 < hg, as depicted in Fig. 1(b) inset. By linearizing
Eq. (2.12) one easily finds A;(t) = A;(0)exp[G(g)t], with
the dispersion relation G(g) given by

G(q) = T'(ho)Q - [y (ho)g* — ¢* @ (ho)].

This result is essential for understanding of the initiation
of the thin film dewetting process. If ®(h) > 0, the G(q)
is negative for any ¢, and the fluctuations of the film about
the initial thickness /o will smooth out. The flat film is
thus stable. On the other hand, as depicted in Fig. 1(b), if
@/ (ho) < 0, the G(g) is positive in the range || < g., with

—®/:(ho)/y (ho). The fluctuations with |G| < g, grow
exponentially in time, making the film interface unstable.
This instability initiates the dewetting of the thin film. In this
initiation, the dominant role is played by the fastest growing
fluctuations, with the largest value of G(g) corresponding to
its maximum seen in Fig. 1(b). Their wave vector gipija can
easily be evaluated from the condition G'(giniia) = O yielding
Ginitial = gc/ V2, corresponding to the wavelength

2n 2y (ho)
Ainitial = =2 | ————.
Ginitial — O (ho)

The corresponding value of the dispersion relation
Eq. (2.15) is

(2.15)

(2.16)

[q)/e/ff(h())]z
4y(ho)

The reciprocal of G(giniia1) is the characteristic time scale
for the growth of the spinodal decomposition instability. Due
to the spinodal instability, the thin film structures into a peri-
odiclike pattern with wavelength Ajpisar, see Fig. 1(b) inset. As
the film continues to evolve, it will subsequently form arrays of
pits, as exemplified by our simulations discussed in Sec. II D.
These arrays of pits are, however, unstable and subsequently
transform into arrays of cluster. The initial separation between
these clusters is ~ Aqna. These clusters continue to grow via
a coarsening process discussed in the following sections. In
the context of solid films, spinodal dewetting was observed
in Cr films [33], as well as in the smectic liquid crystal
films [34]. Smectics are one-dimensionally periodic solids

G (¢initial) = I'(ho)€2 - 2.17)
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and their observed spinodal dewetting may be induced by
the potential in Eq. (1.2) [7]. It should be stressed that the
fast spinodal instability in solid films may be induced only in
the situations when the Mullins model is applicable; recall the
positional order effects discussed below Eq. (2.5). They may
(meta)stabilize singular crystal surfaces below the roughening
transition temperature. Dewetting and cluster formation in
such situations will still occur, however, after a long nucleation
time. On the other hand, the miscut (vicinal) surfaces and other
surfaces with a significant disorder may undergo swift spinodal
instability induced by dewetting potentials [see the discussion
below Eq. (2.5)]. It should be also noted that dewetting and
cluster formation can also be swiftly initiated if the initial film
is in a submonolayer state, as in the experiments of Ref. [15].

C. Young contact angle

Due to the presence of clusters, at long times the film
partially “dewets”: Large slowly growing (quasistatic) clusters
sitting on “dry” substrate area are formed; see Fig. 1(a). The
“dry area” corresponds to the minimum ®,,;, of the effective
potential @ (h), at ki, (~atomic size) in Fig. 1(a). In the limit
of very large clusters, the cluster pressure P — 0; see Sec. [IE
in the following. In this limit, the maximum cluster profile
slope [occurring close to cluster base at an inflection point of
cluster radial profile] m,,x = tan(Omax) = |Vh|max approaches
the Young contact angle slope my = tan(fy). The calculation
of the Young angle has been discussed in literature, e.g., in
the works of De Gennes and co-workers [18]. These works
have, however, assumed that the stiffness function y (%) in the
free energy functional (2.7) is simply a constant equal to the
stiffness of the film interface with vacuum (or air). This is
a (nearly) valid assumption for the multilayered film region,
however, it badly breaks down once the submonolayer region
is incorporated into the unified model, as we discussed in
Sec. IT A. Therefore, in our Appendix A we present Young
angle calculation for the more general free energy model
Eq. (2.7) discussed in Sec. II A, with an /h-dependent stiffness
y(h). The result is given by

0.
my = tan(fy) = -,
14

(2.18)

where y = limy,_, », ¥ (h), is the stiffness of the film-vacuum
interface (far away from the contact point). Interestingly,
by the derivation of Eq. (2.18) presented in Appendix A,
one arrives at a nontrivial conclusion that the Young contact
angle does not depend on the detailed functional form of the
height-dependent stiffness y (k). This has not been noted in
the previous studies [18]. We stress that the result Eq. (2.18)
for the Young contact angle actually applies to large clusters
in any D, see Appendix A. It is physically illuminating to
note that, within the SSA, Eq. (2.18) is closely related to the
standard Young-Dupré law,

y cos(by) + yrs = Yvs, (2.19)

for the cluster-substrate contact angle 0y; see Fig. 1(a) inset.
To see this, we note that the film-substrate surface tension yrg
and vacuum-substrate surface tension yy s satisfy the relation

Yvs — Yrs — Y = Pmin = Peti(hmin), (2.20)
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suggested by de Gennes [18]. Within the SSA employed in
the model, cos(fy) ~ 1 — tan?(fy)/2, and, by Eq. (2.20), it is
easy to see that Egs. (2.18) and (2.19) are equivalent to each
other. It should be stressed that the Young-Dupré law is valid
only in the limit of very large clusters (see Appendix A). For
finite size clusters, however, the effects of dewetting potentials
become more significant and the Young-Dupré law is not
applicable; see Sec. IV. This feature gives rise to the interesting
phenomena we reveal in the following sections of this paper;
see Secs. 111, VI, and V.

D. Rescaled dynamical model and simulation procedure

By the discussions of Sec. II A, a realistic description
of the dewetting of solid films should be based on the
generalized Mullins model Eq. (2.12) employing #-dependent
transport coefficient I'(k) and stiffness function y(h). The
h dependence of I'(h) is, however, not dramatic. Over the
submonolayer regions, h X hy, ~ a, so by Eq. (2.13b),
the T'(h) = I'(hmin) = UsubPmin ~ Usuba@ 1S nearly constant
throughout submonolayer regions. Likewise, for multilayer
regions we have the Mullins result in Eq. (2.13a). By it, if
WEy ~ MUsubs, ON€ has Tyulling ~ I'(Amin) SO in a qualitative
discussion one can set I'(h) = I"(hpin) = const. for any h.
Moreover, as discussed in Sec. IIE, the cluster coarsening
dynamics is (under some conditions) dominated by intercluster
mass transport over dry submonolayer areas (with h & hy,)
so setting I'(h) = I'(hmin) is the appropriate choice. One
is also tempted to set the stiffness function y(h) to be
simply equal to its limit y(h — 00) — y, where y is the
stiffness of the film-vacuum interface. This ad hoc choice
has been commonly adopted in previous studies of liquid
films dewetting [18,30-32], yet it certainly breaks down in
submonolayer regions with 2 < a; see Sec. Il A. Fortunately,
the detailed behavior of y (k) for i < a is somewhat secondary.
For example, as shown in Appendix A, the value of Young
contact angle does not depend on the detailed form of the
height-dependent stiffness y (k). Rather, the Young angle
depends only on y = lim;,_,» ¥ (k). Another example is the
submonolayer diffusive dynamics Eq. (2.14). The y (h) terms
in the full dynamical model (2.12) produce only higher
derivative terms that are subdominant to the leading diffusive
term explicitly displayed in Eq. (2.14). Thus, within the
submonolayer regions, the choice of y (k) is irrelevant as long
as the £ field exhibits only long length scale variations over
the submonolayer regions between the clusters. This, however,
turns out to be the case, so the ad hoc replacement of y (h) with
y = lim;,_, », y(h) will yield a viable dynamical model.

In view of the above discussions, for the purpose of
our numerical simulations, we considered the dynamical
model (2.12) with constant transport coefficient and stiffness
function, I'(h) = T', y(h) = y. To explore the role of long
range power low tails of the dewetting potential Eq. (2.4), we
simulated the dynamical model in Eq. (2.12) with a model
form of the local potential with

/ A hmin ¢
el = [1- (M=) ]

2.21)
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corresponding to the potential

A 1 hmin ¢
Opph)=———|1— = s
e (f1) wh“’|: 2( 3 ) j|

having minimum at Ay,, as in Fig. 1(a). With this @ (h),
by a simple rescaling of (¥,z,h), the continuum model stated
in Egs. (2.12) and (2.21) can be made dimensionless (with
'Q=y = A =1), of the form

(2.22)

oh - o o
= V2P = —V?[V?h — dL(h)], (2.23)
and
’ 1 hmin ¢
P = o7 (1= (= : (2.24)

We chose the rescaling of the original model such that, in
the rescaled model,

b w+2 Ve
" 22w + 1) ’

This choice is a matter of future convenience. [Other
choices, such as hp;, = 1, are also possible to achieve by
the choice of rescaling. The choice in Eq. (2.25) is preferred
because it gives a very simple form to Eq. (2.31) discussed in
the following.]

The rescaled dynamical model in Egs. (2.23)—(2.25) de-
pends on a single parameter, the exponent  of the power-law
tail of the dewetting potential Eq. (2.4). To explore the role of
this exponent (i.e., the interaction range), we have numerically
simulated the model Eqs. (2.23)—(2.25) for three different w
values, w = 1,2,and 6. Quantitative results of these simula-
tions are presented in Sec. III, whereas some qualitative results
are displayed in Figs. 2 and 3 in this section. The interface
evolution equation Eq. (2.23) is numerically solved by standard
Euler algorithm,d,h(X,t) — [h(X,t + At) — h(X,1)]/At, with
At = 0.00390625 for w =1, At =0.0016 for w =2, and
At = 0.000377 for w = 6. The initial condition at t =0
is discussed in the following paragraph; see Eq. (2.32) in
the following. For the purposes of Sec. III, ten statistically
independent simulations (“samples”) were done for each w;
each sample was run up to one million time steps. For D =
2 systems, Eq. (2.23) was solved on a simple square lattice
which is an 800 x 800 grid with the lattice constant Ax. For
comparison, we also simulated the D = 1 case on a lattice
with 64 000 sites. The two Laplacians on the right hand side
of Eq. (2.23) are numerically evaluated using the first order
approximation,

V2W(F,1) — [Z W(Xpp,t) — 2D - \I'(J_c',t)j| /(Ax)2,

nn

(2.25)

where the sum runs over the 2D nearest neighbor lattice sites
(X,n) of the site X. The chosen lattice constant Ax = 0.707107
for w =1, Ax = 0.565685 for w =2, and Ax = 0.372134
for w = 6. We note that these lattice constants are about 14 to
15 times smaller than the spinodal instability wavelength given
by Eq. (2.16), which, for the simulated model in Egs. (2.23)—
(2.25), reduces to the simple expression Aipia = 47//@.
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FIG. 2. (a) A snapshot from our simulations: The interface profile
h(x,t) = h(x,t) — hy(thinner line) in D = 1 (with @ = 1) and the
corresponding field of pressure P(x,t) (thicker line), at t = 78.125.
Snapshots from our simulations in D =2 (with w = 1): (b) at t =
78.125, showing the initial stage of the D = 2 thin film interface,
dominated by the formation of pits; (c) at ¢+ = 156.25, showing the
ultimate stage of the D = 2 thin film interface evolution, dominated
by the presence of growing clusters.

By Egs. (2.24) and (2.25), the rescaled model potential

Dui(h) = ——— [1 - (”Lﬂ (226)
wh® 2\ h
has a single inflection point,
@ (hingr) = 0, (2.27)
at the height
1/
hint = (2(‘;—:21)) " (2.28)

For the initial (¢ = 0) thin film interface heights h(xX,t =
0) = hy that are above the inflection point, one has

@ (ho) < 0. (2.29)

Thus, by the Sec. II B discussion, such films are unstable
and will undergo spinodal dewetting. Interestingly, among
these unstable films there is one which is the most unstable.
Indeed, Eq. (2.17) shows that by maximizing the magnitude
of ®/;(ho) one can minimize the time scale of the instability,
i.e., maximize its rate. Thus, this maximization corresponds to
the condition

@/ (hg) =0 (2.30)

for the initial film height. By Egs. (2.24) and (2.25), it is easy
to show that Eq. (2.30) is solved by

ho=1. 2.31)
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FIG. 3. (Color online) (Left) Interface height plots showing the formation of a slowly growing cluster for D = 1 and w = 1, from our

simulation of the rescaled model with dimensionless ¢, X,and / [as in Fig. 2(a)], at times t =27, 10T, 30T, 807, and 1007 . Here, T = 39.0625 =
10* At. Well-structured clusters are seen for the first time at times ~7. In the figure, we indicate tangents drawn at inflection points of the
cluster profiles. Note that the tangent slope slowly grows in time. (Right) Interface height plots showing the formation of a slowly growing
cluster for D = 2 and @ = 1, from our simulation of the rescaled model with dimensionless ¢, X,and & [as in Figs. 2(b) and 2(c)], at times ¢ =
107, 20T, 40T, 60T, and 1007 . Here, again, T = 39.0625 = 10* At. The time ~3T corresponds to the crossover from pits arrays [seen in
Fig. 2(b)] to cluster dominated surface morphology [seen in Fig. 2(c)]; see also Fig. 4(b). In the above figure, we indicate tangents drawn at
inflection points of the cluster profiles. Note that the tangent slope slowly grows in time.

Motivated by this feature, in our simulations of the rescaled
model, we set the initial height to be

h(X,t =0) = hy =1 + asmallrandomfield, (2.32)

to initiate the spinodal dewetting instability. The thin film
satisfying Eq. (2.30) undergoes the fastest possible spinodal
instability and quickly passes from the initial instability time
stage to the stage characterized by cluster formation. It should
be stressed that the initial condition in Eq. (2.32) was motivated
by practical reasons, to avoid too much of our computation
time spent on the relatively simple spinodal instability time
stage. Our primary interest is in the postinstability stage when
the clusters appear and grow; see Figs. 2(a) and 2(c) from our
simulations. Quantitative simulation results from this ultimate,
cluster dominated stage are presented and discussed in detail
in Sec. III. In D = 2, this ultimate stage is preceded by an
initial stage in which arrays of pits are formed; see Fig. 2(b)
from our simulations.

At the minimum, the rescaled potential in Eq. (2.26) has
the value

2w+ 1
o(w+2)

Thus, by Egs. (2.33) and (2.18) [applied to the rescaled
model with A =y = 1], the Young angle slope for the rescaled
model Egs. (2.23)—(2.25) has the value

[2(2 1
my = tan(fy) = %

As discussed in Sec. IIC and Appendix A, this result
applies in the limit of large clusters. For a finite size cluster,
the corresponding quantity is the maximum cluster slope
Mmax = tan(Omax) = |Vh|max [Occurring close to cluster base
in Fig. 2(c), at an inflection point of cluster radial profile].
This slope is expected to approach the Young contact angle
slope my = tan(fy) in the limit of large clusters. This feature

cI)min = <I)eff(hmin) = - (233)

(2.34)

is illustrated in Fig. 3 from our simulations in which we
display the tangents drawn at the inflection points on a growing
cluster. One can see that the slope of these tangents indeed
slowly grows as the cluster grows. This phenomenon plays a
significant role in the discussions in the following sections.

E. Cluster coarsening dynamics in the Young-Laplace limit

In this section we qualitatively discuss the cluster formation
and the laws of cluster coarsening growth by a simple kinetic
scaling theory. More quantitative theory is developed in Sec. V;
however, the discussions in this section will be useful to set
the conceptual stage for this theory. Of direct interest is the
case with substrate dimension D = 2. However, we consider
these phenomena in a general number of dimensions. Thus, in
the following, we are looking at D + 1-dimensional clusters
on a D-dimensional substrate. The pressure field is nearly
uniform within a cluster, P(x,t) & Pguser, With each cluster
having a different pressure, as exemplified by Fig. 2(a) from
our simulations in D = 1. In this section, we consider clusters
in the Young-Laplace limit (in any D). In this limit clusters
are large and the cluster radial profile has the simple parabolic
(spherical cap) form

2
r
hry~H|1—-|—= , 2.35
(r) [ ( R) ] (2.35)
for r < R = cluster base radius in Fig. 2(c), while
2Dy -H
Pcluster ~ —R2 . (236)

Equations (2.35) and (2.36) are easily obtained by ignoring
the potential ®¢s(h) in Eq. (2.10) with y(h) = y. This reduces

the equation to the simple Poisson equation
Pejuster ~ _szhv (2.37)

spelling the classical Laplace relation between the pressure
and the interface curvature. The potential @i (h), however,
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does become important for r & R, where the cluster slope
assumes the value of the Young angle slope Eq. (2.18). Thus,
by Eq. (2.35),

) 2H
my = tan(By) = W' (R) ~ = (2.38)

By Eqgs. (2.38) and (2.36), the cluster pressure has the form

Dymf, N Dymy
2H R
valid in the Young-Laplace cluster model based on Egs. (2.35)—
(2.38). By the conservation law Eq. (2.1), the cluster volume
Veluster changes in time according to the equation
d

Z Vetuster = —1.

Here, the [ is the volume current discussed in the following,
while, by Eq. (2.35),

(2.39)

Pcluster ~

(2.40)

28(D)

—————_HRP".
D(D +2)

R

Vawser = D) [ e ) = (2.41)
0

Here S(D) is the surface area of the D-dimensional unit

sphere, given by the expression

(27T)D/221_D/2

SPY= 50

, (2.42)
where I stands for the ordinary gamma function (here, of D/2).
Note that, for an integer valued D, Eq. (2.42) reproduces the
familiar results such as S(D = 3) = 4, S(D =2) = 2x, and
S(D = 1) = 2. However, the above equation for S(D), as well
as our other discussions here, remain well defined even for
noninteger D. The current [ in Eq. (2.40) is, by Eq. (2.1), the
flux of the surface current density J through the cluster base
boundary being the surface of D-dimensional sphere with the
radius = R. By Eq. (2.12) with dh /3t =~ 0, one has

_V.J=rQv:P =0,

outside of the slowly evolving (quasistatic) clusters. In this dry
region, h & hpy,. Therefore, in the equations of this section
(as well as of the related Sec. V) we approximate I'(h)
with the constant I' = I'(imin) & UsubPmin = Msub$2Pmin =
Dy Qnmin/ kpT; see Eq. (2.13b). Assuming here a radially
symmetric solution, we obtain

1 dP dlI
J(r):—: _— =

—I'Q—, 0, 2.43
S(D)rb-1 dr dr ( )

outside of a slowly evolving (quasistatic) cluster, that is, for r
intherange R <r < A.

Here, X is a characteristic distance corresponding to
intercluster separation in Fig. 2 [35]. By integrating Eq. (2.43)
over r intherange R <r < A,

Fp(A,R)
P(R)— P\ = ——1. 2.44
(R) ) SIS (2.44)
Here, Fp(A,R) = f; dr/rP~!, and thus
)\'Z—D _ R2—D
Fp(A,R) = ——, (2.45)

2-D
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for D # 2, whereas for D = 2 we have,

A
Fp—(A,R) =In <E) . (2.46)
Equation (2.44) can be solved for the current 7,
P(R) — P(A
Fp(A,R)

The clusters are polydisperse in size, with smaller than
average clusters [with, by Eq. (2.39), higher pressure] decaying
by expelling their material into larger clusters [with, by
Eq. (2.39), lower pressure]; see Fig. 2 (a). This coarsening
yields a steady increase of average cluster height H(¢) and
cluster base radius R(#). The coarsening cluster growth is
governed by the decay of the clusters that are comparable
yet smaller than the average cluster size. For such a cluster
Pouster = P(R) > P()) = the pressure of the nearest-neighbor
(average size) cluster; see Fig. 2(a). Thus, by Eq. (2.44"), we
have the scaling

P, cluster

Fp(A,R)

In the Young-Laplace limit, the result in Eq. (2.39) applies.
With it, Eq. (2.47) yields

I ~S(D)rQ (2.47)

Kmy

[~— (2.47)
RFp(A,R)

with k = I'Qy.

We note that the volume conservation law in Eq. (2.1)
ensures that Viger = the film volume initially (at # = 0)
covering the base area ~ AP ie., by Eq. (2.41),

HRP ~ hoA”, (2.48)
with A, the initial film thickness. By Egs. (2.38) and (2.48),
A~ (my/hg)/PRFY/D, (2.49)
Note that by Eq. (2.49)
L <mYR>1/D ~ <£)1/D >1, (249)
R ho ho

for large clusters with H > hy.

The differential equation (2.40), in combination with
Egs. (2.38), (2.41), (2.47"), and (2.49), can be easily integrated
to find the time scale of the cluster decay, with the result

t ~ RPT2Fp(A,R)/xk. (2.50)

The cluster decay time scale ~ evolution time [9], so
Egs. (2.49) and (2.50) directly yield the desired coarsening
laws for the growth of R,H ~ myR, and A ~ R'*1/P,

Case D > 2. As . > R, for D > 2 one has, by Eq. (2.45),
Fp(A,R) ~ R>7P_ So, for t — o0, by Egs. (2.50) and (2.38)
one has

H/my ~ R ~ (kt)"/* (2.51)

forany D > 2.
Case D = 2. For this case, Fp_;(A,R) = In(A/R), so for
t — oo, Egs. (2.49’) and (2.50) yield

t ~ R*In(R/Ry)/x, (2.52)
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with Ry ~ ho/my. By iteratively solving Eq. (2.52) for R(t),
we obtain

H/my ~ R ~ [In(t/15)]" Y4 (k) /*#, (2.53)

with 7o ~ R§/«, for D =2 and t — oo. Thus, up to a very
slowly varying logarithmic prefactor, one has H ~ R ~ t!/4
for t — o0, in accord with our D = 2 simulations (discussed
in Sec. II) and the experiments [13,15].

CaseD < 2. As L > R, for D < 2 one has, by Eqgs. (2.45)
and (2.49), Fp(A,R) ~ A>~P ~ [(my/ ho)/PR'T1/P?=D 5o
by Eq. (2.50),

t ~ mZ DD REAIDD - C=DID (2.54)
By Eq. (2.54), for D < 2,
H/my ~ R ~ P/C+3D) (2.55)
for t — oo. For D = 1, Eq. (2.55) yields
H/my ~ R ~ t'/5 for t — oo. (2.56)

Let us summarize and discuss the above scaling behaviors.
At long times, i.e., in the Young-Laplace limit, the cluster
height H ~ t'/4, for any D > 2 (a superuniversal behavior),
in accord with the experiments [13,15], whence D = 2. In
D = 2, however, in addition to the power law, there is
also a slowly changing logarithmic correction displayed in
Eq. (2.53). On the other hand, for D < 2, the superuniversality
breaks down; H ~ tP#, with a D-dependent exponent Sy =
D /(2 + 3D). These scaling laws hold at long times, and they
are insensitive to the actual form of the dewetting potential
such the value of the exponent w in Eq. (2.4). It is interesting
to note that the result in our Eq. (2.56) for the special case D
= 1 coincides with the result obtained for a different model in
Ref. [30]. The model in Ref. [30] actually describes coarsening
of liquid films, in which case the transport coefficient I'
depends on the interface height in a profound way, as I'(h) ~
h3, rather than being nearly constant as in the Mullins model
for solid thin films discussed in Sec. I A. The existence of
the logarithmic correction in D = 2 has also been noted in
Ref. [31], for the case of liquid films coarsening. We also
note that the above discussed breakdown of superuniversality
was noted before in Ref. [31], for the case of liquid films.
However, it has not been noted before that this breakdown of
superuniversality occurs only for D < 2, as exhibited by our
discussions above showing that H ~ ¢!/4 for any D > 2.

Much like in our generalized Mullins model, in the models
for liquid films [30-32], the mass transfer between clusters
goes on over the dry areas with & =~ hp;,. Thus, the formal
replacement I'(h) — I (hpi,) will not affect much the cluster
coarsening dynamics i f the diffusive intercluster mass transfer
is the dominant coarsening mechanism. With this replacement,
the liquid film models become identical to the generalized
Mullins model with an A-independent transport coefficient
['(h) = I'(hmin). However, the mass transfer is not the only
possible coarsening mechanism. The clusters growth may
also go by their fusion (coalescence). This mechanism is
effective only if clusters can migrate during their lifetimes
[given by Eq. (2.52) for D = 2] by a distance Ajfe Which is
comparable or larger than the typical intercluster distance A in
Eq. (2.49). The cluster migration has been discussed in detail
in Ref. [32] for a generic I'(h) ~ h?. In general, the details
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of cluster migration were found to be strongly dependent
on the value of the exponent g [32]. Note that the formal
limit ¢ — O corresponds to the generalized Mullins model
Eq. (2.12) with an h-independent transport coefficient. The
results of Ref. [32] can be used to estimate the ratio Ay /A,
which turns out to crucially depend on the initial film thickness
ho. By applying the results of Ref. [32] to initially very thin
(atomically thin) films with hg ~ A, ~ atomic size, one finds
that, for g < 3, the ratio Ajg/A ~ 1 only for microscopically
(atomically) small clusters, and, as these clusters grow in time,
Aite/A — 0 for t — oo. Thus, quite generally (for both solid
and liquid clusters), cluster coalescence plays a subdominant
role relative to the mass transfer i f the initial film is atomically
thin, i.e., ko ~ hmin. With such an initial condition, the liquid
film models will yield nearly the same coarsening behavior as
generalized Mullins model, which is dominated by intercluster
mass transfer mechanism. The condition iy ~ hp;, 1s indeed
assumed in the Sec. III simulations of the generalized Mullins
model; see Sec. II D discussions. Under this condition, our
results in Secs. III, IV, and V can also be used to discuss the
experimental systems with liquid clusters. We stress again that
this assertion is applicable (at least) to the systems with initially
very thin films with /¢ ~ hy,;,. Experimentally, this condition
corresponds to very thin films, obtained by depositing a
few monolayers or a submonolayer. In fact, the films of
the significant experimental studies [13] and [15] are indeed
formed with such depositions. The authors of Ref. [13] have
actually claimed the absence of (liquid) cluster coalescence in
their experiments. This is in accord with the above discussion.
In our D = 2 simulations of the generalized Mullins model
with hg ~ hpin (Sec. 1), we also did not see some significant
cluster coalescence. Some migration of cluster centers was
seen [see our Fig. 3], but it was never large enough to bring
two clusters into coalescence during their lifetimes. This is
in accord with the above analytic conclusion that Ajg /A < 1
for initially very thin (atomically thin) films with kg ~ hpi, ~
atomic size.

A more quantitative support for these claims is provided in
Sec. V, in which we develop an analytic theory to calculate the
effective, cluster-size-dependent coarsening exponents [such
as the one in Eq. (1.3)]. The theory takes into account
only intercluster mass transfer mechanism and ignores cluster
coalescence. In Sec. V, the theory’s results are compared with
our Sec. III simulations (done with iy ~ hpin, see Sec. IID)
and a very good agreement is found. The agreement of this
(coalescence free) theory with the simulations shows that the
coalescence does not play substantial role in very thin films
with hy ~ hmin. See the figures displayed in Sec. V. Some
differences between the theory and the simulations seen at the
earliest times may be attributed to the coalescence of very
small clusters. However, as the clusters grow and become well
separated, the coalescence becomes insignificant. Thus, the
dominant coarsening mechanism becomes the coarsening via
diffusive mass transfer over the dry area where A(X,t) & Amin.

Overall, the coarsening dynamics of initially very thin
liquid films can effectively be described by the generalized
Mullins model with constant transport coefficient I'(hpin).
In view of this, our results in Secs. III, IV, and V can
also be used to discuss the experimental systems with liquid
clusters. We stress again that this assertion is applicable to the
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systems with initially very thin films with a few monolayers,
as in the experiments of Refs. [13]. This is documented by
our simulations of the generalized Mullins model (Sec. III),
which do indeed exhibit the same major features of the
effective coarsening exponents of the liquid clusters seen in
the experiments of Ref. [13]. On the other hand, for initially
thick films (with many monolayers), cluster coalescence will
become significant, and we anticipate significant differences
between solid and liquid films coarsening behaviors. The
ultimate (infinite time) coarsening behavior will still be the
same (with cluster height ~¢'/4 for D =2), yet cluster
coalescence may produce significant crossover behaviors that
are different for solid and liquid films which are initially thick
(ho > hpin ~ atomic size).

For the future purposes of Secs. IV and V, it is convenient
to express the quasistatic cluster pressure P, height H, and
base radius R as functions of the cluster volume V. This can
easily be done in the Young-Laplace limit, by a straightforward
application of Egs. (2.36), (2.38), (2.39), and (2.41), yielding

HI™M (V)= CyV'3, RX™ (V) =CrV'P,

(2.57)
Pan (V) = CpV ',
for the physically interesting case D = 2. In Eq. (2.57),
Cy = (2n)_1/3m§/3, Cr = (4/n)1/3m;1/3,
(2.58)

Cp = y(2n)l/3m?,/3.

For example, for our rescaled model of Sec. IID, with
y = 1, by Egs. (2.58) and (2.34),

Cn=Qm)'" <2(2a) + 1)>1/3

w(w + 2)
2Qw + 1)\ °
_ 1/3
Cr = (4/7) <—w(w " 2)) , (2.59)
Cp = (2)? (2(26() + 1))2/3
P w(w +2)

III. CLUSTER COARSENING GROWTH: RESULTS FROM
NUMERICAL SIMULATIONS

A. Statistical quantities characterizing clusters

This section describes quantitative results of our simula-
tions of the interface dynamics of the rescaled model defined in
Sec. I D;see Egs. (2.23)—(2.25) and (2.32) and Sec. I D for our
numerical procedure description. In this model, we consider
the dewetting potentials with w = 1,w =2, and w = 6 in
Eq. (2.24). In this and the following sections, we focus on
the physically interesting case with D = 2; see Fig. 4 from our
simulations. After an initial stage characterized by formation
of pits, the interface eventually structures as an ensemble
of clusters that grow via a coarsening process. As seen in
Fig. 4, the clusters are polydisperse in sizes, with smaller
than average clusters decaying by expelling their material into
larger clusters (recall the Sec. IIE discussion): Compare, for
example, the cluster ensembles seen in the last two panels
of Fig. 4(b). Due to the decay of the small clusters, the
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FIG. 4. Panel (a) exhibits the ultimate stage of the D = 2 thin
film interface evolution, dominated by the presence of growing
clusters. Panel (b) exhibits interface height contour plots showing film
morphology evolution for D = 2 and w = 1, from the simulation of
the rescaled model with dimensionless #,X,h (Sec. IID). Here, as in
Fig. 3, T = 39.0625 = 10* At. Note the emergence of the transient
wormlike morphology seen at t &~ 37T. For t < 3T, the interface is
in a time stage characterized by pit formation [as in Fig. 2(b)]. For
t > 3T, the interface is characterized by the formation of slowly
growing clusters [as in panel (a) here]. We note that in the above panels
we depict only a smaller portion (about 4%) of the simulated system
which actually contains about thousand clusters at t ~ 107". We also
note that for each dewetting potential (i.e., each @) we simulated ten
samples and the statistical data displayed in the following figures are
obtained by taking the average of the data obtained from the samples.

total number of clusters N(¢) in the system decreases in
time while the average cluster volume (V) increases in time;
see Fig. 5. This coarsening yields a steady growth of the
average cluster height and cluster base radius; see Fig. 4. In
the following, we introduce basic statistical quantities that we
used to characterize the evolving ensemble of growing clusters
exemplified in Fig. 4 from our simulations. By using interface
configurations such those seen in Fig. 4, we counted clusters
to obtain their number N (¢) in the simulation sample at time
t. We measured the heights of individual clusters, H, [n = 1,
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FIG. 5. Temporal evolution of the clusters average volume (V) in the systems we simulated, with w= 1,2, and 6. We also present the
evolution of the corresponding effective coarsening exponent, By, (¢t) = d In[(V)]/d In(z). This exponent is expected to approach the value of
+ 3/4 (dashed line) at long times. There are, however, significant deviations away from this value, which are seen in the §y,(¢) at early times.

2,3,..., N(1)], to obtain the average cluster height,
N(t)
H,
(H) = Z":—l 3.1
N(1)

[See the remark after Eq. (3.10) in the following.] We also
measured the pressure at the center of each cluster, P, to
obtain the average cluster pressure,

>0 P

(P) = NG

3.2)

Another important quantity characterizing our film is the
size of the wet area, i.e., the area covered by clusters (the
“white area” in Fig. 4). To extract it, we used a convention
involving a characteristic height scale #*, below which the
interface height approaches its asymptotic value & hy, [see
Sec. IV and Fig. 9(b) therein]. Thus, the interface sections
with i(X,t) < h* can be identified as dry areas, whereas, the
interface sections with A(X,7) > h* can be identified as wet
areas, i.e., clusters. The total wet area is thus given by the
surface integral,

Awet(t)=ff d2*=// d’X0(h(X,1) — h*).  (3.3)
wet sample

Here, 6(z) is the usual step function [0(z) = 1 for z > 0 and
0(z) = 0 for z < 0]. The total wet area Eq. (3.3) is obviously

smaller than the entire substrate area,

2=
Asample = // d°’x.
sample

The area fraction occupied by clusters (‘“wet area fraction”)
is thus

34

Awel(l) — ffwel dz)_é
Asample ffsample d?x

1. ample d*X0(h(X,t) — h*)
a f./.‘sample d’x

We stress that the above employed height scale #* is not a
sharply defined quantity. One possible choice would be to
identify #* with the inflection point of the dewetting potential
Der(h), ie., Do’ (h*) = 0. We have, however decided for
a different convention defining the /#* via the condition that
the third derivative of ®.(h) vanishes at 4*. For the here
interesting rescaled model potential in Egs. (2.24) and (2.25),
this condition gives #* = 1 for any w, as discussed in Sec. II D.

The base areas of the clusters are nonoverlapping (see
Fig. 4), so the total wet area is simply the sum of all clusters
base areas,

o(t) =

(3.5)

N(t)

Ava) =Y Ay (3.6)
n=1
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Thus, by Egs. (3.6) and (3.3), the average cluster base
area is

YN A Mampie AXOG 1) = 1)
N@) N(1)
We also measured the base area of each individual cluster,
A, [n=1,2,3,..., N()]. Cluster bases are nearly circular

(see Fig. 4 from our simulations), so one can introduce the
base radius of the nth cluster via

(A) = 3.7

An
TRXt)=A, = R, = —.
b g

(3.8)
Using (3.8), we calculated the average cluster base radius
via

SNOR,
N@)

Another quantity of interest is the total volume of the film
inside clusters, i.e., the volume of the film covering wet areas
with h(X,t) > h*. Away from the clusters /(X,t) & hpip SO
the actual film volume part which is within the clusters is
essentially above A, and it is best described by introducing
the reduced height,

i:l()_é»t) = h()_éat) - hmin-

(R) = 3.9

(3.10)

Thus, for example, the nth cluster height H, is defined by
Eq. (3.10) with X being the center of the cluster base area. The
total film volume above the &, level covering all wet areas
[h(X,t) > h*]is

// d%?ﬁ(z,z):/f d*’3X0(h(X,t) — h*)
wet sample

: [h()_é’t) - hmin]'

This volume is the sum of volumes of individual clusters,
Vo.[n=1,2,3,..., N(t)], so,

(3.11)

N@)

Y V= // d*XO(h(X,1) — h*) - [h(X,1) — Amin]-
=1 sample
(3.12)
Thus, the average volume of a cluster is given by
N
Vi
(V) — Zn:]
N(t)
_ Lampie BFORG D) = 1) - [h(E,1) o] -

N()

In the following, we discuss the dynamics of the numerous
statistical quantities introduced in this section by using the
results obtained from our simulations for three different values
of w (w = 1, 2, and 6). To suppress statistical fluctuations,
all statistical quantities are obtained by taking the average of
data obtained from ten statistically independent simulations
(samples) done for each studied value of w.

B. Dynamics of cluster sizes and pressure: Time-dependent
coarsening exponents

In Figs. 5 through 7, we display our simulation results
for the time evolution of the four basic statistical quantities
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characterizing cluster ensemble: average cluster volume (V'),
average cluster pressure (P), average cluster height (H), and
average cluster radius (R). These quantities are extracted from
our simulation results, using their definitions in Egs. (3.1),
(3.2), (3.9), and (3.13). In Figs. 5 through 7, we also display
the evolution of the effective coarsening exponents, defined by

_dIn({V)) _ dIn((P))

By (1) = a0 Bipy(t) = a0 »
_ dIn((H)) _ dIn((R)) G

Bimy (1) = I Br) (1) = dinG)

We used the methodology of Amar et al. [36] to numerically
calculate these effective exponents from our simulation data
for (V), (P), (H), and (R). From Figs. 5 through 7, we
see that these effective exponents significantly depend on
time 7. The exponents seen in these figures deviate from the
asymptotic values expected at long times on the basis of the
Young-Laplace model for clusters (Sec. ILE). By the Sec. ITE
discussions (for D = 2), these asymptotic exponents are
given by

Byt = 00) = Big)(t = 00) = 1 (3.15)
and by Eq. (2.41),
Byt = 00) = Bt = 00) + 2Br)(t = 00) = 2, (3.16)
while, by Eq. (2.39),

Bip)(t = 00) = —Buy(t = 00) = —1. (3.17)

The above asymptotic (Young-Laplace) coarsening expo-
nents are universal; i.e., they do not depend on the dewetting
potential details such as the value of w in Eq. (2.4). However,
the simulation results displayed in Figs. 5 through 7 do
evidence significant early time departures away from the
above universal long time coarsening exponents. Moreover, the
simulation results indicate that these departures are correlated
with the long range character of the potential. For example,
from Fig. 6, for a large w = 6 (essentially, a short range
dewetting potential), the early time range cluster height
exponent By is about 0.28, so it is close to the universal
asymptotic Byy = 0.25. On the other hand, by Fig. 6, for
genuine long-range potentials with for w =1 and w = 2,
the early time range exponent Bqy is about 0.33; i.e., it
significantly deviates from the asymptotic By = 0.25. It is
of direct physical interest to understand these effects. Indeed,
the potentials w = 1 and w = 2 are physically interesting, as
discussed in Sec. I. In addition, as noted in the Introduction
(Sec. I), an effective (early time) exponent for the growth of
cluster height, estimated to be ﬂgﬁ ~ (.33, has been indeed
observed in experiments [13]. In view of the above discussion,
by the results of our simulations in Fig. 5, we suggest that
the experimentally seen (in Ref. [13]) early time coarsening
exponent emerges as an effect of the long-range dewetting
interactions such as the van der Waals potential Eq. (1.1),
corresponding to the case w = 2.

The above simulation results show that the deviations
from the predictions of the Young-Laplace model are larger
for smaller values of w, i.e., for longer ranged dewetting
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FIG. 6. Evolution of the clusters average pressure (P), in (a) and cluster average height (H), in (b), in the systems with w = 1, 2, and 6.
Also given are the effective coarsening exponents, Bpy(¢) = d In[(P)]/d In(¢) (expected to approach — 1/4 at long times), and B y,(t) = d
In[(H )]/d In(¢) (expected to approach + 1/4 at long times). There are, however, significant deviations away from these asymptotic values that
are seen at early times.
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FIG. 7. Time evolution of the clusters average base radius (R) in the systems we simulated with w = 1,2, and 6. We also display the
corresponding effective exponent, B gy () = d In[(R)]/d In(¢) vs time. This exponent expected to approach the value of 4 1/4 at long times.
There are, however, significant deviations away from this value, which are seen in the Sz (¢) at early times. For comparison, we also display
Bay(®)/2, where B4, (t) = d In[{A)]/d In(¢) is the effective exponent for the growth of cluster base area.

interactions. To illustrate this point, in Fig. 8 we plot the time
evolution of the quantity

B (3.18)

By Eq. (2.46), we have for the nth cluster (in the Young-
Laplace limit)

2H, = myR, = 2(H) = my(R). (3.19)

Thus, the quantity in Eq. (3.18) is exactly / in the Young-
Laplace limit. However, from our simulation results in Fig. 8
(bottom panel) we see that the aspect ratio 2{H)/(R) is, at
early times, significantly smaller than the Young angle slope

my, especially for the smaller values of w, i.e., for longer range
dewetting interactions. As documented in Fig. 8 (top panel),
this effect is correlated with the magnitude of the departures
of the effective coarsening exponents from their asymptotic
values, which are larger for smaller values of w, i.e., for the
longer range interactions with w = 1 or 2.

This breakdown of the classical Young-Laplace model will
be discussed analytically in the Sec. IV as well as in Sec. V,
in which we develop a cluster coarsening dynamics theory
capable of calculating the effective coarsening exponents and
analytically explain the results of this section simulations.

Our analytic theory is used in Sec. V F to explain another
interesting feature seen in the simulations: The exponents 8 g,

032113-15



CONSTANTINESCU, GOLUBOVIC, AND LEVANDOVSKY

B(H) 0.44 N
03] ©=6 pom
0.2 /
Young-Laplace
0.1
0.0 . |
i 3
10 - :
1.4+
2(H)/{(R 1.2 YOung_Laplace
m,
i .
= o7 e, # oxee eooooaoooooioEM
N M
0'6- ° ° o © 00000000590000 0)=1
0.4
0.2
0.0 : |

10? 10° t

FIG. 8. The figure qualitatively documents the correlation be-
tween the failure of the Young-Laplace model prediction for cluster
aspect ratio (bottom panel), with the magnitude of the deviations
of the effective exponent By, away from its asymptotic value (top
panel). Both effects increase with decreasing w.

B (r), and By, approach their asymptotic values in Egs. (3.15)
and (3.16) in a nonmonotonous fashion by first crossing their
asymptotic values (from above) at a finite characteristic time.
This time is different for different coarsening exponents:
For B, the crossing time is shorter than our simulation
time for @ = 2 and 6, whereas it is longer for v =1 (see
Fig. 5); for Bm all crossing times are actually longer than
our available simulation times [see Fig. 6(b)]; for Bry the
crossing times are all shorter than our simulation times (see
Fig. 7). The analytic theory presented in Sec. V F reproduces
this finite time crossing of the asymptotic values for these
effective exponents. See Fig. 15 and the discussions at the
end of Sec. VF explaining the competing effects producing
the crossing phenomenon. On the other side, as inferred
from Fig. 6(a) from our simulations, there is no such finite
time crossing for the pressure exponent Bpy. This will be
independently confirmed by our analytic theory results for
By presented in Sec. V F; see Fig. 15 therein, which indeed
shows that this exponent does not cross its asymptotic value at
any finite time.

Finally, also interesting is the scaling of the average
cluster base area Eq. (3.7). The associated effective coarsening
exponent is

d1In((A))

P = dln@t)

(3.20)

Crudely, (A) is approximately 7 (R)?, so one may expect,

Bay(®)

Biay(@®) ~ 2Bry (1) = >

= Br)(1), (3.21)
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at any ¢, and, in particular,
1
Bay(t = 00) = 2fr)(t = 00) = 3,

in the infinite time, Young-Laplace limit. To check the validity
of the approximate relation (3.21), in Fig. 7 we plot our
simulation results for both f4y/2 and B g). The approximate
character of Eq. (3.21) is evident from these plots.

(3.22)

IV. CLUSTERS MORPHOLOGY BEYOND THE
CLASSICAL YOUNG-LAPLACE MODEL

A. Quasistatic clusters

In this and the following section (Sec. V), we develop an
analytic theory aimed to explain the results of our Sec. III
interface dynamics simulations of the cluster coarsening. Our
main goal is to elucidate the effects of the long range dewetting
interactions on the character of the cluster coarsening dynam-
ics. Our simulations suggest that the long range dewetting
interactions produce significant early time departures from the
asymptotic predictions based on the classical Young-Laplace
cluster model (Sec. ITE). For example, within this model, the
cluster height (H)-to-radius (R) aspect ratio does not depend
on the cluster size. By Eq. (38) of Sec. 11, in the Young-Laplace
limit we have

il “.1)

~ my = tan(fy),
indicating that the aspect ratio is a constant expressible in
terms of the Young angle slope. Likewise, by the discussions
of Sec. IIE, in the Young-Laplace static cluster model for
D = 2 we have the following simple results for cluster height,
cluster base radius, and cluster pressure, expressed as functions
of the cluster volume,
HYoung(V) — CH VI/S,

stat

RIME(V) = CrV'3,

Young —-1/3 “4.2)
Py, (V)=CpV s

with Cy, Cg, Cp being numerical constants expressible in
terms of the Young angle slope; see Eqgs. (2.57)—(2.59). How-
ever, the clusters seen in the simulations strongly deviate from
Young-Laplace behavior in Egs. (4.1) and (4.2). Moreover,
in Sec. III, we have found that these deviations are larger
for smaller values of w, i.e., for longer ranged dewetting
interactions. Recall, for example, of Fig. 8 of Sec. III, which
shows that, in contrast to Eq. (4.1), the ratio 2H/R is, at early
times, significantly smaller than the Young angle slope my,
especially for smaller values of w, i.e., for longer ranged
dewetting interactions. As documented in Fig. § of Sec. I1I, this
effect is correlated with the magnitude of the departures of the
coarsening exponents from their asymptotic values, which are
larger for smaller values of w suchas w = 1 or 2, corresponding
to the physically interesting dewetting interactions discussed
in Sec. L.

To quantify these effects, in this section we pursue a math-
ematical discussion of quasistatic clusters shapes and sizes
that goes beyond the Young-Laplace model. Our discussion
will be used in the following section (Sec. V), to develop
a powerful cluster dynamics theory capable of analytically
explaining the findings of our simulations and related results
from the experiments.
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FIG. 9. (a) Cluster profiles obtained by solving Eq. (4.3) for v =
1 for several different pressures. To obtain the cluster type solutions,
for each cluster height H, the pressure is fixed by the boundary
condition that the interface height approaches a finite value at infinity.
(b) The figure conceptualizes the definition of the cluster radius R.
Also labeled is the inflection point of the cluster profile at which the
interface slope reaches its maximum value 71 ,y.

Clusters occurring in our simulations are evolving very
slowly and can be considered as (nearly) time-independent,
static objects with (nearly) constant pressure. Thus, for D =
2, the radial profile of a single cluster can be described by
Eq. (2.10) with y(h) = y,

|:d2h 1dh
4

—] — ®(h) = — Py, 4.3)

dar? ' rdr
with Py, being the static cluster pressure [see also Eq. (A7) in
Appendix A]. Here, we outline the results obtained by solving
Eq. (4.3), for our rescaled model of Sec. II D, with y = 1, and

, 1 Amin \©
D (h) = sy |:1 — ( Zm> :| , 4.4)
where
w+2 1/o
hpin = | —————— . 4.5
e <2(2w+1)> (4.5)

For a given cluster height H [above the dry area, at h =
hmin; see Fig. 9(b)], we solved Eq. (4.3) numerically (using
Wolfram’s MATHEMATICA), with the boundary conditions

dh
dr

For any given H, the value of the cluster pressure Py
in Eq. (4.3), is chosen such that the h(r) approaches a finite
value (& hpy;,) in the limit of infinite r; see Fig. 9(a). Thus,
by imposing this boundary condition at infinity, we are able
to find the functional relation Py (H) expressing the cluster
pressure Py, as a function of the cluster height H. For the
purposes of Sec. V, it will be, however, more convenient to

h(r = O) =H + hmin, = 0. (4.6)

r=0
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express Pgy as a function of the cluster volume, defined in the
same sense as in Sec. IIT A, as
R
V =2m / dr r[h(r) — hyin]. 4.7
0

Here, R is the cluster base radius, fixed by the condition
h(r = R) = h*, with h* being a characteristic height below
which &(r) exponentially approaches its asymptotic value (at
infinite ); see Fig. 9(b). The #* is not a sharply defined quan-
tity. One possible choice would be to identify it as the inflection
point of the dewetting potential ®.¢(h). We have, however,
decided for a different convention defining the 4*, via the
condition that the third derivative of ®.¢(h) vanishes at #*. We
recall that the same convention is used in Sec. III to define clus-
ters from our simulations. For the rescaled model potential in
Eq. (4.4), this convention gives #* = 1 for any w, as discussed in
Sec. IID.

By the above described procedure, we have constructed the
functional relations,

Pga(V),  Hsa(V),  Rsa(V), 4.8)

expressing cluster pressure, cluster height, and cluster base
radius, as functions of the cluster volume. Our numerical
results for these functions are given in Fig. 10, for the rescaled
models with w = 1,2, and 6. See also Sec. IVB in the
following. In Fig. 10, for comparison, we also indicate the
corresponding results for the Young-Laplace cluster model,
Eq. (4.2). Evidently, the Young-Laplace model is correct only
asymptotically (in the large-V limit), and there are significant
departures away from it for the dewetting potentials with
smaller values of w such as w = 1 and w = 2.

In Fig. 11 we display several quantities further evidencing
the magnitude of the breakdown of the Young-Laplace cluster
model. Thus, in Fig. 11(a)), we display the quantity,

Mmax(H) ’ (4.9)
my
versus cluster height H. Here, muya = |dh/dr|max is the

maximum interface slope occurring at the inflection point of
the cluster profile; see Fig. 9(b). The my.x approaches the
Young angle slope my for large H, so the ratio in Eq. (4.9)
approaches / in the Young-Laplace limit. However, for a finite
H, this ratio is smaller than one, and this effect is especially
prominent for dewetting potentials with smaller values of w
such as w = 1 and w = 2. On the other side, for a large = 6
(essentially, a short range potential), the ratio in Eq. (4.9)
quickly approaches 1, i.e., the Young-Laplace limit. The same
trend is seen in other quantities displayed in Fig. 11 for various
values of w. Thus, in Fig. 11(b) we display the ratio

2H
RS(H((H) , (4.10)
my

which by Eq. (4.1) approaches / in the Young-Laplace limit
of infinite cluster height H. We also display, in Fig. 11(c),

Pya(H)
PYoung(H) ’

stat

4.11)

being the ratio between the true pressure of a cluster with
height H and the Young-Laplace model pressure for a cluster

032113-17



CONSTANTINESCU, GOLUBOVIC, AND LEVANDOVSKY

PHYSICAL REVIEW E 88, 032113 (2013)

InR

Young-Laplace .

stat

-2 0 2 B 6 8 10 v

Young-Laplace

stat | “~~._ Young-Laplace In H,, 3

B \ 24

1 oy '1

- 1

2 . 0:‘

exact ]

Ho=1 '

-4 2

0 2 4 6 8 0nyv 2
InP

stat ] - Young-Laplace InH,,, 3

i 2 ;

1 . ~ 14

-24 l o_‘:

s exact - i

lo=2 N

2!

2 0 2 4 6 8 10 .y
: Young-Laplace

34

‘I \

1] O= 6 exact

04

2 0 2 4 6 8 10 .y

FIG. 10. (Color online) Our numerical results for the functions Py, (V), Hy.(V), and R, (V) for the rescaled model with w = 1,2, and 6.
The dashed line is the corresponding result in the Young-Laplace model; see Egs. (2.57)—(2.59).

of the same height H [given by Eq. (2.39)]. Finally we display,
in Fig. 11(d), the quantity

Y
Vaat - (H)

Vaa(H) 12

being the ratio between the Young-Laplace model volume of
the cluster with the height H and the true volume of the cluster
with the same height H. The ratios in Eqs. (4.10)—(4.12) all
approach 1 in the limit of infinite cluster height H. However,
for a finite H, these ratios are all smaller than 1, and this effect
is especially prominent for dewetting potentials with smaller
values of w such as w = 1 and w = 2. On the other side, for
a large w = 6 (essentially, a short dewetting range potential),
all these ratios in Eqs. (4.10)—(4.12) quickly approach 1, i.e.,
the Young-Laplace limit.

The results in Fig. 11 are in accord with the Sec. III
simulation results, indicating that the deviations from the
Young-Laplace model are larger for smaller values of w, i.e.,
for longer ranged dewetting interactions. Thus, for example,
Fig. 8 of Sec. Il shows that, in contrast to Eq. (4.1) but
in accord with Fig. 11(b), the ratio 2H/R is, at early times,
significantly smaller than the Young angle slope, especially
for smaller values of w, i.e., for longer range dewetting
interactions. As documented in Fig. 8 of Sec. III, this effect
is correlated with the magnitude of the departures of the
coarsening exponents from their asymptotic values, which
are larger for smaller values of w, i.e., for the longer range
interactions. This dynamical effect will be discussed in the next
section (Sec. V), in which the results of the present section are
used as inputs to a cluster coarsening dynamics theory capable
of analytically explaining the results of Sec. III simulations as

well as the related results from the experiments such as those
of Ref. [13].

B. Representation of cluster size-dependent properties

By the procedure discussed in Sec. IV A, the functions
Pyot(V), Hyt(V), and Ry (V), displayed in Fig. 10, are
numerically obtained for a discrete set of V values. However,
for the purposes of Sec. V, we need these functions as
functions of a continuous V, for each of the studied long range
dewetting potentials. For this purpose, we fitted our numerical
results for Py (V), Hyar(V), and Ry (V') with suitably chosen
continuous functions. Rather than using P, H, and R as
functions of V, in the mathematical framework of Sec. V it is
more natural to employ a change of variables and express

P =In(P), H =In(H), (4.13)

R =In(R),
as functions of
V =In(V). 4.14)

We fitted our numerical results from Sec. IV A using the
four-parameter fits of the form

P =AY+ ADV + (BY + BYV) exp(—V /3),
A=A +AYV + (BY + B V) exp(~V/3), (4.15)
R=AQ + ARV + (BY + BYV) exp(—V /3).

In Eq. (4.15), the terms with the A constants are motivated
by the Young-Laplace large-V limit; see Eqgs. (2.57) through
(2.59). In this limit, the terms in (4.15) with the B constants
would represent the asymptotic corrections to the leading order
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FIG. 11. The panels document the way how the four cluster properties in Egs. (4.9) through (4.12) approach the Young-Laplace limit (the
dashed line in the above figures) with increasing cluster height H, for the rescaled model with @ = 1,2, and 6.

terms, while, by Eqgs. (2.57)—(2.59), the A constants in the
leading order terms in (4.15) would have to be fixed to
(1)

AP =—1,

(0) (0) (0) (4.16)
AY =In(Cp), A} =In(Cy), AR =In(Cg).

Thus, in the large-V limit, the A constants are fixed and
Egs. (4.15) reduce to two-parameter fits, for the B constants
only. On the other hand, in our Sec. V analytic calculations,
we are interested to compare analytic results with the results
obtained from the simulations of Sec. III. In these simulations,
the cluster volumes are below the large-V range in which
Eq. (4.16) applies. For this reason, Eqs. (4.15) are considered
as true four-parameter fits that are done in the actual finite V
range encountered in the simulations. Using this procedure we
have obtained excellent fits to the analytic results displayed in
Fig. 10. These fits are used in the Sec. V calculations.

V. ANALYTIC THEORY OF THE CLUSTER
COARSENING GROWTH

A. Cluster dynamics and statistics

In this section, we use the results of the Sec. IV analysis to
develop a powerful cluster dynamics theory capable of analyt-
ically explaining the findings of our simulations. Main result
of this section is that the effective cluster growth coarsening
exponents can be expressed as functions of the cluster size.

We calculate these exponents by our analytic approach and
compare them with the results obtained from our numerical
simulations of Sec. III. We find a very good agreement
between our analytic results and the corresponding results for
the effective exponents obtained from our simulations. This
agreement is the final proof of our assertion that the long
range dewetting interactions are responsible for the significant
early time departures from the asymptotic predictions based
on the classical Young-Laplace model.

We begin our discussion by considering in more detail the
dynamics of clusters. A simple model for this dynamics was
introduced already in Sec. IIE. By Egs. (2.40) and (2.44'),
we have (for D = 2) the following result for the dynamics of
cluster volume V,

v _ L GPU=R) - Pr=§)
dt In(¢/R)

; (5.1

with I'= l—‘(hmin) ~ Msubhmin = Msubgznmin = Dsuanmin/
kpT [see the discussion above Eq. (2.43)]. By the discussions
of Sec. IIE, the P(r = R) in Eq. (5.1) can be identified with
the quasistatic cluster pressure, expressible (by the results
of Sec. IV; see Fig. 10 therein) as a function of the cluster
volume, Py, (V). In addition, by the Sec. IV discussions (see
Fig. 10), the cluster radius entering Eq. (5.1) is also expressible
as a function of cluster volume, Ry, (V). We handle Eq. (5.1)
in the spirit of the statistical mean-field Lifshits-Slyozov
theory [8,16,17], so Eq. (5.1) will be replaced by the
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equation

dv Pstat(v) - P
— =F{V)=-21TQ——F—F——.

dt In[§ / Rtar(V)]
In Egs. (5.1) and (5.2), the length scale £ is a “screening
length” proportional to the average intercluster separation A;
see Sec. IIE and Ref. [35]. The P* in Eq. (5.2) is discussed
in the following. The volume conservation law implied by
Eq. (2.1) ensures that the average cluster volume is equal to the
film volume initially (at ¢ = 0) covering the area = w(1/2)%.

Thus, we have
AN\ -
V)= — | ho,
(V) 7T<2> 0

where £ labels the initial film thickness measured above the
dry level A, (see Secs. IIT A and IV A). By Eq. (5.3), we can
write

5.2)

(5.3)

4(V)
é:c)\_zc =,
JTh()

54

where C is a numerical proportionality constant discussed in
the following (see Sec. V F).

Within the Lifshits-Slyozov statistical approach, the en-
semble of clusters is described by their volumes distribution
function p(V)f) such that p(V,f)dV = dN = the number of
clusters within the volume interval (V,V 4 dV)). Thus, the total
number of clusters is

N = /dN =/de(v,z).

The total film volume Vg, is essentially all within the
clusters. Thus,

(5.5)

Viiim = /dNV =/dV,o(V,t)V. (5.6)
The average cluster volume is then given by

Vi

vy = % - /an(V,t)V. (5.7)
Here,
o(V,1)

Vit)y= —— 5.8
(V1) N (5.8)

is the cluster volume probability density function. The time
evolution of the cluster distribution function p(V,f) is, in
general, governed by the continuity equation,

il 0
Eﬂ(V,I) = —W[F(V)p(V,t)]. (5.9

Here, in our case, the function F(V) is given by Eq. (5.2).
The conservation of the total film volume Eq. (5.6), implies
a restriction on the possible form of F (V) that can be used
to fix the value of the parameter P* introduced in Eq. (5.2).
Indeed, by using Eqgs. (5.6) and (5.9), it is easy to show that
the condition d Vg, /dt = 0 implies the condition

0= (F(V)) = /an(V,t)F(V). (5.10)

In combination with the form of F(V) in Eq. (5.2),
Eq. (5.10) can be easily used to obtain the value of the
parameter P*.

PHYSICAL REVIEW E 88, 032113 (2013)

B. Cluster distribution cutoff

A special feature of the here interesting cluster distributions
is that they exhibit a sharp cutoff Vi, (#) (the maximum cluster
size) such that

p(V,t) =0, for V > Viyu(2). (5.11)

The cutoff Vi,ax(#) will play an essential role in the following
discussions. Within the present kinetic theory Eq. (5.9), the
presence of the sharp distribution cutoff imposes a special
requirement, namely the consistency condition noted for the
first time by Lifshits and Slyozov [8,9] for the system they
considered. This condition, generalized to an (V') of a general
form (see Appendix B), requires that

aF(V)
F(V)-V =0, (5.12)
W)yt
which is easily seen to be equivalent to
dIn[F(V
dIn[F(V)] =1. (5.12)
aIn(V) |y_y

A consequence of the condition Eq. (5.12) is that the cutoff
size dynamics equation,

d Vinax
o = FVna), (5.13)
can also be written as
dVimax F(V
=V V) . (5.14)
dt vV Jy_v

To proceed with discussing the dynamics of Vi (), we
simplify our kinetic theory by using the approximation (valid
for V. ~Viax),

Pslal(V) - P

F(V)y=-2rTQ
In[§ / Ryae(V)]
Pstat(v) — P*
~2n'Q————— | (5.15)
In[§ / Rytar(Vinax)]
within which Eq. (5.10) yields the result
P = (Psar(V)), (5.16)
while Eq. (5.12) reduces to
d Pyar(Vinax
P* = Pyiae(Vimax) — Vmax$. 5.17)

By Egs. (5.15) and (5.14), we obtain an equation giving the
dynamics of Vi (2), of the form

dVinax Vinax
max ma 7 ( 5.18)
dt T(Vinax)
with a conveniently defined Vp,,x-dependent time scale,
dPga(V)
1 - _

— = 27TQ S [ (5.19)
T(Vmax)

—
In (Rsm«vmax))

We recall that, by Eq. (5.4), the length scale £ in the above
equation is given by
4V)

=Cr=C —.
%- 7'[]’10

(5.20)
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Equations (5.18) through (5.20) will form a closed descrip-
tion of the dynamics of V,,x provided we manage to express
the (V) [entering Eq. (5.20)] as a function of V. If this
closing is achievable, then the right hand side of the first order
differential equation (5.18) would become a function of Vi«
only. Such an equation can be then directly integrated. The
result would give the time evolution of the cutoff Viax.

C. Closing the cutoff dynamics equation

Fortunately, the above anticipated closing of the cutoff
dynamics equation (5.18) is indeed possible. We base it on
the approximate relation

(Psar(V)) = Py ((V')).

For our system, the relation in Eq. (5.21) is indeed satisfied
to a very good approximation. We document this in Fig. 12
from our simulations, which plots the obtained average cluster
pressure (P) versus the average cluster volume (V'), obtained
at various times. In the same figure, we give also the function
Py.«(V) as obtained in our analytic calculations discussed in
Sec. IV (see Fig. 10 therein). From Fig. 12 one can see that
Eq. (5.21) holds for essentially all times during the interface
evolution stage characterized by the presence of growing
clusters depicted in Fig. 4(b).

By Eq. (5.21) in combination with Eqgs. (5.16) and (5.17),
we obtain the relation

(5.21)

% dPstat(Vmax) .
P* = stat(<v>) = Pstat(vmax) - Vmax—v (522)
d Vinax
i.e.,
d In[ Pytar(Vinax) ]
P* = stat(<V>) = Pstat(Vmax) ' |:1 - W} .
(5.22))
By Eq. (5.22),
_ d Pytat(Vimax)
(V) = Pt | Paa(Vinax) = Vinx—r—= | (5.23)
d Vinax

Here, the P, signifies the inverse function of the function
Py.t(V). Note that by Eq. (5.23), we managed to express the
average cluster volume (V') [entering Eq. (5.20)] as a function
Vmax~

In combination with Eq. (5.23), Egs. (5.18) through (5.20)
form a closed description for the dynamics of Vi.x. The right
hand side of the first order differential equation (5.18) thus
becomes a function of V,,, only and can be thus integrated.
The result of this integration gives the time evolution of V.«
through the integral,

Vinax dV Vinax
t = / 71(V) = / dIn(V)T(V), (5.24)
Here, by Egs. (5.19), (5.20), and (5.23),

_ dPya(V)
arQ——4VvV ,

(V) =
E(V)
In (R,wl(w)

(5.25)
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FIG. 12. (a) The figure contains two plots. One of them is obtained
from our simulations of the model with w = 1, in D = 2. It plots
the obtained average cluster pressure (P) versus the average cluster
volume (V'), obtained at various times. In the same figure, we give also
the plot displaying the function Py, (V) as obtained in our analytic
calculations in Sec. IV, for w = 1, in D = 2 (see Fig. 10 in Sec. IV).
From the displays of the two plots, one can see that Eq. (5.21) holds
for essentially all times (except for very early times, when the clusters
are small and not quasistatic). Panel (b) is the same as the panel (a)
but for the model with w = 2, in D = 2. Panel (c) is the same as the
panel (a) but for the model with w = 6,in D = 2.

with

4P—l PV _VdPsm((V)
%_(V):C\/ stat[ .tt( ) dv ] (526)

7'[};0
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Equation (5.24) gives the system evolution time ¢ as a
function of Vi.x. Inverting this function thus gives the Vi« as
function of the time ¢. Thus, Eq. (5.24), in combination with
Egs. (5.25) and (5.26), provide the desired solution Vi.x(f)
for the evolution of the cluster distribution cutoff, i.e., of the
maximum cluster size.

D. Calculating the effective coarsening exponents

A neat feature of Eq. (5.24) is that it can be used to
obtain the effective exponents of the cluster coarsening growth.
Interestingly, as discussed in the following, these effective
coarsening exponents can be expressed as functions of cluster
size, e.g., as functions of cluster average volume (V') at any
time ¢. This is one of the major results of this study.

To derive this significant result, we first discuss the effective
coarsening exponent for the growth of the cutoff, i.e., the
maximum cluster size Vi (¢),

d In(Vinax)
= — 5.27
Vs dIn(r) (527
By Eq. (5.27),
1 t )
Bvow =~ = —a (5.27)
d In(Vinax) d In(Vinax)
Using here Eq. (5.24), we obtain
[V dIn(v)z(v)
B = ——7 (5.28)
! T (Vi)
By Eq. (5.28), it is easy to see that
[T (Vina) BV = T(Vinax)- (5.29)

d In(Vinax)

After a little algebra, Eq. (5.29) can be transformed into the
differential equation,

dBy,, 1
- =1 5.30
dn(Vne) | O i -
with
1 _ dIn[t(Vimax)] (5.31)

BY  dIn(Vina)

Note that solving the differential equation (5.30) effectively
gives the desired effective coarsening By, expressed as

function of V.. It is convenient to re-express Eq. (5.30) as

_ dlBVmax
d ln( Vmax)

The By,, and other effective coarsening exponents are
slowly changing functions of Vi,.x (as documented in the
following sections), so Eq. (5.32) can be solved iteratively
by writing

IBVmax = ﬂgg?ax(vmax) : |:1 i| . (5.32)

By (Vina)
/3(”) (Vmax) = :3(0) (Vmax) ==,
Vinax Vinax d ln(Vmax)
n=123,..., (5.33)

with /Sg,onlx in Eq. (5.31) being the zeroth order approximation.
From the concrete calculations discussed in Sec. V F, we find
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that Eq. (5.33) is a rapidly converging iteration. The effective
coarsening exponent,

B Vinwx) = 1im By (Vina), (5.34)

is well approximated already by ,8%2';3)(Vmax). Importantly,

by the above discussions, thus obtained effective coarsening
exponent By, =~ is expressed as a function of V.. This
exponent can be expressed also as a function of the average
cluster volume (V). This can be accomplished by using
Eq. (5.23) relating the (V) to Vpa. In practice, this can be
done by making the parametric plot of By, versus (V), with
both of these variables expressed as functions of Vp,x.

Once the By, is calculated, other coarsening exponents
can be also calculated in a straightforward fashion. Thus, the

exponent for the growth of the average cluster volume,

dIn({V
Bw) = %@))) (5.35)
can be expressed as
_ dIn((V))  dIn(Vina) .
PO = Vo) dln(r) (5:36)
i.e.,
_dIn((V))
IB(V) = m 'IBle.x(Vmax)- (5.37)

Here, the first term is a function of V,,,,x that can be calculated
using Eq. (5.23) expressing (V) as function of Vj,x. Thus,
Eq. (5.37) gives the exponent By) as function of Viy,x.

It is, however, more natural to express this exponent as
a function of the average cluster volume (V). This can be
accomplished by using Eq. (5.23) relating the (V) to V. In
practice, this can be done by making the parametric plot of
Bvy versus (V), with both variables expressed as functions of
Vmax~

Within our theory, it is also possible to calculate the
exponents associated with the coarsening dynamics of other
quantities characterizing the ensemble of clusters, such as
average cluster pressure, cluster height, and cluster base radius.
Thus, for the average cluster pressure we have, by Eq. (5.21),

(P) = (Psar(V)) = Peat((V')), (5.38)
So, the pressure exponent,
_dIn((P)) _ dIn[Pyyu((V))]
By = a0 S dmo (5.39)
can be calculated as
Bip) = dIn[ Py ((V))] dIn{V)
B T (vy) din(r)’
i.e.,
_ dIn[Pu (V)]
(Py = dln((V)) ,3<V>' (540)

In Eq. (5.40), the By, is calculated as described before, while
the first term can be calculated by using the results of Sec. [V
for the pressure Py, (V) of the quasistatic clusters (see Fig. 10
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and Sec. IV B). In effect, Eq. (5.40) thus gives the exponent
B(py expressed as a function of the cluster average volume
(V).

The coarsening exponents for growth of average cluster
height and base radius are obtained using the relations

(H) = Hga((V)),  (R) * Rya((V)),

with the functions Hg, and Ry, calculated in Sec. IV (see
Fig. 10 and Sec. IV B). By Eq. (5.41),

_ dIn({H)) _ dIn[Hgu((V))] dIn(V)

(5.41)

T ngr) dIn((V)) d1n(t)
. d In[ Hya ((V))]
= s B (5.42)

and

Biy = dIn((R)) ~ dIn[Rya((V))] dIn(V)

B = T d @) dIn((V)) d1n(t)
_ dIn[Reu((V))]
= By (5.43)

Thus, once the exponent By, is calculated (as described
before), Egs. (5.42) and (5.43) can be then used to calculate the
exponents for the growth of the cluster average height and base
radius. In Sec. V F, we employ the theory we developed in this
and previous sections to derive various coarsening exponents
for the clusters emerging in our interface dynamics model
of Sec. II, with the functions Py (V), Hya(V), and Ry (V)
calculated in Sec. IV (see Fig. 10 and Sec. IV B). Prior to this,
in the next section, we first revisit the Young-Laplace model,
Sec. IIE.

Finally, it should be stressed that, within the present theory,
the size-dependent coarsening exponents do not depend on the
value of the transport coefficient I" entering the cluster volume
dynamics Eqs. (5.18) and (5.19). From these equations and
Eq. (5.28), one can easily see that I' cancels out in the final
expression for the size-dependent coarsening exponent.

E. Young-Laplace model revisited

As an important illustration for the theoretical program
developed in the previous section, we first apply it to Young-
Laplace model discussed in Sec. II E. This model is interesting
in its own right since it gives asymptotic behavior of the
coarsening process at the longest time scales. In the Young-
Laplace limit, we have (for D = 2)

HSTZ(‘)tung(V) — CHV1/3, Rz;);mg(v) — CRV1/3, (5 44)
PYoung(V) — CPV_I/S,

stat

with Cy, Cg, and Cp being numerical constants expressible

in terms of the Young angle slope; see Eqgs. (2.57)—(2.59) of

Sec. II. By Eq. (5.44), in combination with Eq. (5.22") we have
(V)TP =Vl = (=1/3)];

max

ie.,

(5.45)

PHYSICAL REVIEW E 88, 032113 (2013)

Next, using Eq. (5.44) in combination with Egs. (5.25) and
(5.26), we have

4/3 V1/3
t(V)=AV In <K~—> , (5.46)
ho
with the numerical constants
4 3\ c? 3 1
K=—|-) =5 A=+ 755 (5.47)
w \4) Cy 2Cp 27aI'Q2

By Eqgs. (5.46) and (5.28), after an elementary integration,
we find

3 1
Bvpw =7 |1 - ——g5—= (5.48)
b ( 4-In [Kvnﬁéi/ho])

or, by Eq. (5.45),

3 1
P =3 <1 4 1n[(41</3><V>1/3/ﬁo]>’ G4

By Eq. (5.45) we have,
Biv) = B
Thus, by Eq. (5.49),

(5.50)

3 1
Pn=7g- (1 e 1n[(4K/3)(V)1/3/BO]> - O3

Next, by Egs. (5.40), (5.42), and (5.43), in combination
with Eq. (5.44), we have

Biry = =3By, By = By = 3By (5.52)
Thus, by Egs. (5.51) and (5.52), we find
1 1
=3 (1 4 1n[<4K/3><V>1/3/fzo]> -3
and
1 1
P =P =3 <1 4 1n[<4K/3><V>'/3/ﬂo]) - e
By the above results,
Jm fn = fim fin =5 559
whereas
lim By = é (5.56)
(V)—>oo 4
and
lim Bpy = —l. (5.57)
(V)—=o0 4

By the results in Egs. (5.51) and (5.54), we see that
the magnitudes of the effective ({(V)—dependent) coarsening
exponents By B(uy and B gy are depressed below their asymp-
totic values, by a slowly changing logarithmic correction. The
correction originates from the log in the denominator of the
cluster dynamics equation (5.15), containing the “screening
length” &. This depression of the exponents below their
asymptotic values is the dominant correction to scaling at long
times, i.e., in the large (V) limit. On the other hand, as we
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FIG. 13. Analytic results versus the corresponding simulation results for the effective coarsening exponents for the growth of cluster
volume, By, and for the cluster pressure, fp), as functions of the average cluster volume (V). We recall that the asymptotic value of By, is

0.75, whereas the asymptotic value of Bp) is — 0.25, for infinite (V).

reveal in the following section (Sec. V F), at early times, the
dominant correction to scaling comes from the breakdown of
Eq. (5.44), i.e., of the classical Young-Laplace model. In this
early time regime Eq. (5.44) needs to be replaced by the exact
forms of Py, (V), Hgar(V), and Ry, (V) obtained in Sec. IV.
The resulting coarsening exponents are discussed in the next
section (Sec. VF). Here we note that the breakdown of the
Young-Laplace model at early times yields the coarsening
exponents that are actually above their asymptotic values,
in contrast to the effect of the above discussed logarithmic
correction (due to the screening length £) which [by Egs. (5.51)
and (5.54)] tends to depress the coarsening exponents By,
By and Bry below their asymptotic values. Thus, these
exponents eventually approach their asymptotic values from
below. In contrast to this, by Eq. (5.53), the pressure exponent
B py approaches from above its asymptotic value of — 1/4. See
also the discussion at the end of Sec. V F and Fig. 15 therein.

F. Effective exponents beyond the Young-Laplace model

In this section, we use the results of the previous sections to
analytically explain the findings of our simulations in Sec. III.
The main theoretical results will be the effective cluster growth
coarsening exponents calculated as functions of the cluster
average volume (V') at time t. Furthermore, we compare our
analytic results for the cluster coarsening exponents with the
corresponding results obtained from our numerical simulations
of Sec. III. The comparison shows a very good agreement
between our analytic results and the corresponding results
for the effective exponents obtained from our simulations.
This agreement constitutes the final proof of our assertion
that the long range dewetting potentials are responsible for
the significant early time departures from the asymptotic
predictions based on the classical Young-Laplace model.

Our analytic calculation of the effective coarsening expo-
nents employs the iterative procedure introduced in Eq. (5.33),
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FIG. 14. Analytic results versus the corresponding simulation results for the effective coarsening exponents for the growth of cluster height,
Buy, and cluster base radius, S g, as functions of the average cluster volume (V). We recall that the asymptotic values of By, and B, are

both 0.25 for infinite (V).

yielding the exponent Bymax. The exponents Bvy, B(py Bw)»
and B g are then calculated using Eqgs. (5.40) through (5.43)
and expressed as functions of the average cluster volume (V'),
as detailed in Sec. VD. In these analytic calculations, the
central inputs are the forms of quasistatic cluster pressure
Pyat(V), cluster height Hg,(V), and cluster base radius
Rg((V), all obtained in Sec. IV for our rescaled model
(Sec. II D), for the potentials with w = 1, w = 2, and w = 6;
see Fig. 10 of Sec. IV and Sec. IV B. In the figures that follow,
we display our analytic results for Bvy, B(p), B(my, and Br)
as functions of (V), for the potentials withw = 1, w = 2, and
w = 6; see Figs. 13 and 14. In these figures, for comparison,
we also display the corresponding results for vy, B(ry B(m),
and B g, as functions of (V), obtained from our simulations
in Sec. III. From Figs. 13 and 14 we see that there are
statistical fluctuations seen in the simulation results. Note,

however, that these statistical fluctuations go around the
corresponding analytic results for the exponents. By Figs. 13
and 14, the agreement between the analytic and the simulation
results for the exponents is very good, for all the potentials
(w=1, =2, and w = 6) and for all the exponents By,
Bip) By, and Bir).

We recall that our analytic theory contains a numerical
proportionality constant C [see Eq. (5.26) or Eq. (5.20) for
the screening length]. This constant relates to the intercluster
transport of material over nearly dry areas where the film
thickness is very small. Thus, the C should not depend much
on the details of the dewetting potential such as the value of
w, which actually describes the asymptotic behavior of the
potential for large film thicknesses occurring only in wet areas
inside the clusters. We indeed find that Sec. III simulations of
the cases w = 1, w = 2, and w = 6 can all be well fitted by

032113-25



CONSTANTINESCU, GOLUBOVIC, AND LEVANDOVSKY

PHYSICAL REVIEW E 88, 032113 (2013)

1.00 1.00
By By By 100
0.95 0.95 0.95
0.504 0.90 0.90
0.85 0.85 0.85
0.801 =1 0.80 0.80
0.75%===oNrrerrsrcacacccaccccaaas 0.75 0.75+-
0.70 0.70 0.70
0 10 |2o((\/>3)o 0 50 0 10 20 30 40 30 0 10 20 30 40 50
n In (V) In (K\V))
<P>-0-100 [}<P>-0.100 P -0.100
0.125 0.125 ® 0125
-0.150 -0.150 -0.150
0.175 0.175 0.175
-0.200 0.200 -0.200
0.22 022 -0.22
zigg -0.250 -0.250
2 - 0275 0275
@ 10 20 30 40 50 0 10 20 30 40 30 0 10 20 30 40 50
In (V) In ((V)) In ({V))
B, 050 B, 050
H H 0.50
( >0.45 ¢ >0.45 B<H>o.45
0.40 0.40 0.40
0.35 0.35
i o =2 0.35
0.30/ = 0.30 0.30 0=6
0.25 0.25 1+ N 0.254--=
0.20 0.20 0.20
0 10 20 30 a0 30 0 10 20 30 40 30 0 10 20 30 20 <0
In (V) In (V)
B 0.300 B 0.300 0.300 In (V)
(R (R) B(R)
0.275 0.275 275
0.250 0.250 0.250
0.225 0.225 0.225
0.200 0.200 0.200
0 10 20 30 3 50 0 10 20 30 40 50 70 10 20 30 40 S0

In ((V))

In (V) In ((V))

FIG. 15. Analytic results for the effective coarsening exponents S vy, B(py, B, and B g, as functions of the average cluster volume (V'),
for the rescaled model with w = 1, 2, and 6. In this figure, we display the exponents in a volume (V) range that is much wider than in Figs. 13
and 14 so one can see clearly the approach to the asymptotic exponent values, which are 0.75 for 8y,, —0.25 for Bp), 0.25 for 4, and 0.25

for ﬂ(R)-

our analytic theory using a single value of C = 1.60 that has
been employed in the figures displayed in this section.

As evidenced by Figs. 13 and 14, both the analytic theory
and the simulations exhibit a significant effect of the actual
value of the w on the early time behavior of the effective
exponents By, B(py, By, and B(ry: The larger the w, the
smaller will be the difference between effective exponents and
their asymptotic values in Eqgs. (5.55)—(5.57). Indeed, for a
large @ = 6 (essentially, a short range dewetting potential), the
early time range exponent 8y is about 0.28, so it is close to
the asymptotic gy = 0.25. On the other hand, for long-range
potentials with for @ =1 and @ = 2, the early time range
exponent B gy is about 0.33; i.e., it deviates significantly from
the asymptotic B(xy = 0.25. We recall that the cases @ =1
and w = 2 are the physically interesting cases; see Sec. L.
Experimentally, as discussed in Sec. I, such an effective early
time exponent, measured to be ,Bf,f ~ (.33, has been indeed

reported in Ref. [13]. Our analytic theory, in combination with
simulations, explains these experimental findings in terms of
long range dewetting potentials.

With increasing time, i.e., cluster average volume (V'), the
effective coarsening exponents do approach their asymptotic
values Eqs. (5.55)—(5.57) predicted by Young-Laplace model.
This approach is, however, nonmonotonous for the exponents
By, Bmy, and B (g, as can be seen in Fig. 15. In this figure,
we display the analytically calculated effective exponents over
a volume (V) range that is much wider than in Figs. 13 and
14, so one can see better the approach to the asymptotic values
of the exponents which are 0.75 for B(y), —0.25 for Bp),
0.25 for Bmy, and 0.25 for B(g). By Fig. 15, for example, the
exponent B gy is bigger than }‘ at early times, and it crosses %
at a finite time. After this, the 8zy becomes smaller than %, and
it goes through a minimum value (< }1) at a finite time. After
this instant of time, the B g) increases to reach the asymptotic
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value of % at infinite time. The early regime with Bzy > le
is dominated by the breakdown of the Young-Laplace model
Eq. (5.44) induced by long range forces. On the other side, the
late time regime with Br) < i is dominated by the screening
length effects discussed in Sec. V E [see Eq. (5.54) and the last
paragraph of Sec. V E]. Thus, at the longest times, the B
ultimately approaches }1 from below; see Fig. 15. Due to the
same reason (i.e., the competition between long range forces
and screening length effects), the exponents By and B also
exhibit nonmonotonous time evolution and they cross their
asymptotic values at finite times, as evidenced by our analytic
results for these exponents in Fig. 15. On the other hand, there
is no such finite time crossing for the pressure exponent §p),
as evidenced by our analytic results in Fig. 15, showing that
this exponent monotonously approaches its asymptotic value
from above [for the reason discussed in the last paragraph of
Sec. VE]. All these analytic conclusions are consistent with
the corresponding simulation results of Sec. III.

VI. SUMMARY

In summary, we presented the following.

(i) We discussed a generalized Mullins model for dewet-
ting of solid films.

(i) We used numerical simulations of the model to explore
the role played by the long range dewetting interactions on the
character of the cluster coarsening dynamics.

(iii)) We find that these interactions produce significant early
time departures from the asymptotic predictions based on the
classical Young-Laplace model.

(iv) To address this phenomenon, we first provided a
theoretical description of quasistatic (slowly evolving) clusters
that goes beyond the classical Young-Laplace model.

(v) Next, we used this description to develop a powerful
cluster dynamics theory capable of calculating effective
coarsening exponents and thus analytically explain the findings
of our simulations.

We have theoretically proved, by numerical simulations
and analytic methods, that the long range nature of dewetting
forces produces long lasting early time departures from the
asymptotic (Young-Laplace) power laws, with the early time
effective exponent fBy) > 0.25 for the growth of cluster
height. Experimentally, such an effective early time exponent,
measured to be By, ~ 0.33, has been indeed reported in
Ref. [13]. Our analytic theory, in combination with simula-
tions, explains these experimental findings in terms of long
range dewetting potentials such as van der Waals attraction.

We recall that the above results apply for the case of initially
very thin films (with a few monolayers or a submonolayer,
as in Refs. [13] and [15]). With such initial films, the
dominant coarsening mechanism is the diffusive mass transfer
between the clusters, whereas the direct cluster coalescence
is insignificant. This assertion applies to both solid and liquid
very thin films. Related to this, as discussed in Sec. I E, our
results for the cluster size-dependent coarsening exponents
in the generalized Mullins model (for solid films) are also
applicable to the liquid clusters, as in the experiments of
Ref. [13]. On the other side, for initially thick films (with many
monolayers), cluster coalescence will become significant, and
we anticipate significant differences between solid and liquid
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films. An analytic theory of the cluster coarsening growth in
such thick films remains a challenge for future studies.

Finally, we would like to stress that the present study high-
lights the physical significance of the early time coarsening
phenomena characterized by exponents different from those
of the late time, asymptotic regime. Much of the previous
theoretical (especially analytic) work was really focused on the
late time regime, see, e.g., Refs. [9-11,14]. A notable exception
is the numerical MC study of Amar et al. [36] inspired by
an earlier work of Huse [37] on the domain growth in 2D
spin exchange kinetic Ising model. Yet, systematic analytic
methods capable of treating early time coarsening regimes,
such as the methods developed in this study, are scarce in the
literature. Early time regimes deserve much more attention.
They regularly appear in more complex dynamical systems.
In regards to this, an interesting extension of the present study
would be to more deeply study the coarsening in the ensembles
of aggregates such as fluid membrane vesicles [38], or in
other states of soft matter [4,39]. Other venues of potential
interest are the complex dynamics of biomolecules adsorbed
on surfaces [40] and exotic interfacial dynamics revealed in
recent theoretical studies of epitaxial growth [41], to name just
a few.
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APPENDIX A

Here we present Young angle calculation for the more
general free energy model Eq. (2.7) discussed in Sec. IT A, with
an h-dependent stiffness y (/). Let us consider the equilibrium
film configurations in the limit of zero chemical potential. For
them, by Eq. (2.10), in the limit P — 0,

- 1 -
—y(WVZh = Sy (VR + gy = 0. (AD)

For films on 1D substrates (D = 1), or for one-
dimensionally varying interface profiles in any D, Eq. (Al)
reduces to

d’*h

J/(h)m

! "(h dh ’ d.(h)=0 A2
+§V()<E> — Oq4(h) = 0. (A2)

Next, we note the identity

d | y(h) (dh\?
E[T (&) _%(m}

dhd*h  y'(h) (dh\’® dh
= y(h)— — — ) — ol (h)—
YW a2 (dx) ()
_ (h)d2h+y’(h) dn\’ o | a3
= "W 2 \dx eff dx’
By Eq. (A2) and the identity (A3) we see that
(h) (dh\*
PU(Z) - oun) = C. (A4)
2 dx
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where C is an integration constant. Equation (A4) describes a
wedge shaped interface profile around the “contact point” of
the film with the dry substrate. On the dry side of the contact
point, the profile 4(x) asymptotically approaches Ay, . In this
limit, by Eq. (A4) we obtain that C = —®¢g(hpin) = — Ppin >
0. With this condition, Eq. (A4) reduces to

i (d

2 \dx (A5

2
) - (Deff(h) = —Ppyp.

On the other (wedge) side of the contact point, 7 —
oo for x — oo. In this limit,®.(h — 00) — 0 and, also,
the stiffness y(h — o0) — y, where y = lim;,_. y(h) is
the stiffness of the film-vacuum interface (far away from the
contact point). Thus, by Eq. (AS), the interface slope dh/dx
approaches the Young angle slope my = tan(fy), satisfying
the equation

14 2

E(mY) —0=—Ppin. (A6)
Equation (A6) is equivalent to Eq. (2.18). By the above
derivation of my = tan(fy), we arrive at a significant and
nontrivial conclusion that the Young contact angle does not
depend on the detailed functional form of the height-dependent
stiffness y (). This has not been noted in the classical studies
[18].

The result Eq. (A6), i.e., Eq. (2.18) for the Young contact
angle actually applies to large clusters in any D. To see this,
consider a D + /-dimensional cluster on a D-dimensional
substrate case (D =2). For a radially symmetric cluster,
Eq. (2.10) reduces to

d’h D—ldh]

y'(h) (dh
o[£ 2 (2

2
> dr) — @4 (h) = —P.
(A7)

Around the contact point, we can expand r = R + x with
x < R, where R is the cluster base radius, as in Fig. 12(c).
Thus, Eq. (A7) becomes

d*h D —1dh7 y'(h) (dh\*
h) | — — —) — &, (h)=—P.
ve )[dx2+R+xdx] 2 (dx) arr ()
(A8)
Expanding, Rix = %(1 — % + %22 — ...) for x €K R, we
obtain
d*h y'(h) (dh\?
hN—+ 2=
ra T (a’x)
y x  x? dh ,
+D =D (1- g+ % =) 72— Palh) = —P.
(A9)

In the limit of large clusters, R — oo, the cluster pressure
P — 0 (see Sec. IIE). In this limit, Eq. (A9) reduces to
Eq. (A2) we had for the 1D case. Thus, the result for the contact
angle slope my = tan(fy) stated in Eq. (A6), i.e., Eq. (2.18)
also applies to very large clusters on D-dimensional substrates
for any D.
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APPENDIX B

Here we discuss the rationale behind Eq. (5.12). Let us
consider cluster volume dynamics like in Eq. (5.2), of the
form

av

—-=FW). (B1)

Following Lifshits and Slyozov [8], let us consider the
scaled volume,

V(t)
V()
where V*(¢) is the zero of F(V), i.e., F(V*) = 0. By (B1) and
(B2), one easily obtains

x(t) = (B2)

B (B3)
din(vey O
with
v(x) = %F(xV*) — X. (B4)

dr
For the maximum size clusters (with V = Vi), X = Xmax
with, by (B2),
Vi
Xmax = ‘r/nix (BS)
By the arguments put forward by Lifshits and Slyozov [8],
the conditions

dv(x)
V() y=xpex = 05 3 =0, (B6)
X

X=Xmax

have to be satisfied (at long times) to ensure the conservation of
the total film volume Eq. (5.6). By (B4) and (B6) one obtains
1 1
WF(xmaxV*) — Xmax = 0; v
di di

VA (Xma V) — 1 = 0.

(B7)

Combining the two relations displayed in (B7) yields the
relation,

xmaxV*F/(xmaXV*) —1 (B8)
FlxmV*
which is, by (BS5), equivalent to
VmaxF/(Vmax) _ (B9)
F(Viw)

It is easy to see that (B9) is equivalent to Eq. (5.12). We
would like to stress that the above discussion assumes that the
cluster ensemble is at long enough time scales such that the
relations in (B6) apply. Validity of this assumption is confirmed
by the good agreement between our simulation results and the
analytic calculations of Sec. V based on the use of (B9), i.e.,
Eq. (5.12). Indeed, as evidenced by the figures displayed in
Sec. V, the analytic calculations and the simulations agree well
with each other. The differences between the simulations and
analytic calculations seen in these figures at very early times
are likely just a transient to the ultimate behavior governed by
(B9),i.e., Eq. (5.12). Additionally, the cluster coalescence (not
taken into account in the theory of Sec. V) may also contribute
to the differences between the theory and the simulations seen
at the earliest times; see Sec. II E discussions.
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