
PHYSICAL REVIEW E 88, 032111 (2013)

Quantum spin-1 anisotropic ferromagnetic Heisenberg model in a crystal field:
A variational approach

D. C. Carvalho,1 J. A. Plascak,1,2 and L. M. Castro3

1Departamento de Fı́sica, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postale 702,
30123-970 Belo Horizonte, Minas Gerais, Brazil

2Center for Simulational Physics, University of Georgia, 30602 Athens, Georgia, USA
3Departamento de Ciências Exatas, Universidade Estadual do Sudoeste da Bahia, Estrada do Bem Querer Km04,

Caixa Postale 95, 45083-900 Vitória da Conquista, Bahia, Brazil
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A variational approach based on Bogoliubov inequality for the free energy is employed in order to treat
the quantum spin-1 anisotropic ferromagnetic Heisenberg model in the presence of a crystal field. Within the
Bogoliubov scheme an improved pair approximation has been used. The temperature-dependent thermodynamic
functions have been obtained and provide much better results than the previous simple mean-field scheme. In
one dimension, which is still nonintegrable for quantum spin-1, we get the exact results in the classical limit, or
near-exact results in the quantum case, for the free energy, magnetization, and quadrupole moment, as well for the
transition temperature. In two and three dimensions the corresponding global phase diagrams have been obtained
as a function of the parameters of the Hamiltonian. First-order transition lines, second-order transition lines,
tricritical and tetracritical points, and critical endpoints have been located through the analysis of the minimum of
the Helmholtz free energy and a Landau-like expansion in the approximated free energy. Only first-order quantum
transitions have been found at zero temperature. Limiting cases, such as isotropic Heisenberg, Blume-Capel, and
Ising models, have been analyzed and compared to previous results obtained from other analytical approaches as
well as from Monte Carlo simulations.
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I. INTRODUCTION

Quantum phase transitions have been extensively studied
in the literature [1–7] and their full understanding is still one
of the most interesting and important subjects in modern con-
densed matter physics, both experimentally and theoretically.
These transitions have been observed in several experimental
realizations such as the magnetic insulators LiHoF4 [8] and
La2CuO4 [9] and the heavy-fermion systems [10] CeRu2Si2
and β-YbAlB4. These quantum phase transitions are driven by
quantum fluctuations coming from the Heisenberg uncertainty
principle (usually due to the existing competition of a field
with the ordering energy interaction), unlike the classical
phase transitions, which are just driven by thermal fluctuations
(temperature). Despite the fact that quantum phase transitions
occur only at zero temperature and thus in a region of difficult
experimental access, quantum effects can also be seen in a
finite temperature region [11]. Hence, it is very important to
study, besides the quantum phase transitions themselves at
absolute zero temperature, the corresponding phase transitions
in the region of low temperatures, in which the quantum effects
are certainly still present.

From the theoretical point of view, the simplest nontrivial
magnetic model that exhibits quantum phase transitions is the
Ising model with a transverse field or, simply, the quantum
transverse Ising model. It is the transverse field that competes
with the ordering exchange interaction energy. In this case,
only the spin-1/2 one-dimensional (1D) version [12,13] can
be exactly solved. In addition, this 1D quantum model can
be mapped onto a two-dimensional classical Ising model.
In general, one has indeed that any d-dimensional quantum
system can be mapped onto an analogous (d + 1)-dimensional
classical model [14].

Another important system, and much richer than the
quantum transverse Ising model, is the isotropic Heisenberg
model. It has been studied for many years, both in its
classical [15,16] and quantum versions [17,18]. Nevertheless,
this model can be exactly solved in its classical 1D version [19]
and in its quantum spin-1/2 1D version [20]. On the other hand,
this model, for spin-1 in one dimension, is not integrable due
to the difficulty involved with tackling the noncommutativity
of spin operators. Moreover, due a theorem by Mermin and
Wagner [21], it has been shown that it is not possible for this
system, in one and two dimensions, to present any long-range
order at finite temperature.

It is known, however, that in realistic systems one expects
to find some degree of anisotropy which can modify the
global symmetry of the material, creating thus axes, or even
planes, of easy magnetization [22–25]. For instance, the
ferromagnetic superconductor UGe2 [26] exhibits an easy
axis anisotropy. Therefore, in any theoretical model, one must
consider such features in the Hamiltonian that should describe
the phenomenon under study. A suitable model that takes
into account such asymmetries is the so-called anisotropic
Heisenberg model in the presence of a crystal field (or single
ion anisotropy), which can be written as

H = −J
∑
〈i,j〉

[
η
(
Sx

i Sx
j + S

y

i S
y

j

) + Sz
i S

z
j

] − D

N∑
i=1

Sz
i

2

−H

N∑
i=1

Sz
i , (1)

where J > 0 is the ferromagnetic exchange interaction be-
tween spins i and j , the first sum is over pairs of nearest-
neighbor sites 〈i,j 〉, and N is the total number of sites of
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the lattice. The parameter η measures the degree of the spin
interaction anisotropy (this model is also called the XXZ

model) in the region of the easy axis for η < 1, or the easy
plane for η > 1, and D plays the role of the crystal field.
H is the external magnetic field which will be set to zero
and Sα

i are the α = x,y,z components of spin operators at
site i with the eigenvalues of Sz

i operator taking the values
−S, − S + 1, . . . ,S − 1,S.

The above model has some interesting limits: (i) for
η = 0 it reduces to the classical Blume-Capel model with
general spin-S; (ii) for η = 1, D = 0, and H = 0, one has
the isotropic Heisenberg model; and (iii) when D → ∞ the
Hamiltonian is equivalent to the spin-1/2 Ising model. The
classical model in item ( i) has been extensively studied, for
instance, by mean-field approximations [27–30], mean-field
renormalization group [31], Monte Carlo simulations [32–34],
and conformal invariance [35], among others. The phase
diagram consists of ordered and disordered phases separated
by second- and first-order transition lines, with tricritical and
double critical end points for integer values of S (except for
S = 1 which has only one tricritical point), and only double
critical end points for semi-integer values of the spin S.

We will consider herein spin S = 1 in order to study the
crystal field effects on the quantum model when η �= 0. In
particular, it will also be interesting to better understand
how the quantum fluctuations will affect the presence of
the tricritical points, mainly for the three-dimensional (3D)
lattice. It should be stressed that experimental realizations of
spin-1 systems range from metamagnet [36] and magnetic
materials (see, for instance, Ref. [37] and references therein) to
He3-He4 mixtures [38]. On the other hand, from the theoretical
point of view, in the η = 1 case, limit ( ii) above, the spin-1
ferromagnetic isotropic Heisenberg model in the presence
of an arbitrary crystal-field potential has been treated by
the mean-field approximation [39,40] and a linked-cluster
expansion method [41]. However, to the best of our knowledge,
the complete Hamiltonian (1) with spin-1 has been treated only
by a mean-field-like approach, which does not distinguish
either the topology or the dimension of the lattice [40,42].
Moreover, the topologies of the corresponding phase diagrams
have not been detailed enough to give a clear picture of all the
transitions involved, mainly the quantum phase transitions at
zero temperature. It would be worthwhile thus to investigate
the behavior of this anisotropic Heisenberg model with a crys-
tal field by taking a better, or more reliable, approach, even in
its 1D version. The procedure we will follow is closely related
to the variational approach based on Bogoliubov inequality
for the free energy [43], within the pair approximation [44],
which reproduces exact results in some limiting cases.

The plan of the paper is as follows. In the next section, we
present the theoretical approach for getting the free energy and
the thermodynamic quantities of interest. In Sec. III we present
the numerical results. Some concluding remarks are given in
the last section, and in the Appendix some of the analytical
equations are presented.

II. VARIATIONAL APPROACH FOR THE FREE ENERGY

The pair variational procedure and the corresponding
thermodynamic functions of interest will be presented below.

The potentiality of the approximation will be discussed by
comparing the results in some limiting cases, where exact or
more reliable approaches have been previously employed.

A. Bogoliubov variational approach

The variational approach that will be employed is based on
the Bogoliubov inequality for the free energy [43]

F � F0 + 〈H − H0(γ )〉0 ≡ �(γ ), (2)

where H is the Hamiltonian under study (1), H0(γ ) is a trial
Hamiltonian which can be exactly solved and depends on
variational parameters designated by γ . F is the free energy of
the system described byH, F0 is the corresponding free energy
of the trial Hamiltonian H0, and the thermal average 〈. . .〉0 is
taken over the ensemble defined by H0. The approximate free
energy is then given by the minimum of �(γ ) with respect to
γ , i.e., F ≡ �min(γ ).

We will follow herein the pair approximation by Ferreira
et al. [44] consisting of taking n1 single free spins and n2

disconnected pairs of spins distributed on the lattice, in such a
way that n1 + 2n2 = N . In this way, the trial Hamiltonian can
be written as

H0 = Hf

0 + Hp

0 , (3)

where Hf

0 and Hp

0 are the single free spin and pairs of spins
contributions, respectively.

As the Hamiltonian (1) has, in principle, either easy-axis
(for η < 1) or easy-plane (for η > 1) ordering, each term of
the above trial Hamiltonian can be chosen as a sum of two
parts:

Hf

0 = Hf

0‖ + Hf

0⊥, (4)

Hp

0 = Hp

0‖ + Hp

0⊥, (5)

whereHf

0‖ andHp

0‖ take into account, respectively, the free and
pairs of spins ordering along the z axis, and Hf

0⊥ and Hp

0⊥ take
into account the corresponding ordering along the xy plane.
The free and pairs of spins Hamiltonian components can be
then written as

Hf

0‖ = −
∑
free

[
h

‖
1S

z
i + DSz

i
2 + γ

‖
1 Sz

i
2]

, (6)

Hp

0‖ = −
∑
pair

{
J
[
η 
Si · 
Sj + (1 − η)Sz

i S
z
j

] + D
(
Sz

i
2 + Sz

j
2)

+h
‖
2

(
Sz

i + Sz
j

) + γ
‖
2

(
Sz

i
2 + Sz

j
2)}

, (7)

Hf

0⊥ = −
∑
free

{
h⊥

1√
2

(
Sx

i + S
y

i

) + DSz
i

2 + γ ⊥
1 Sz

i
2
}
, (8)

Hp

0⊥ = −
∑
pair

{
J
[
η 
Si · 
Sj + (1 − η)Sz

i S
z
j

] + D
(
Sz

i
2 + Sz

j
2)

+ h⊥
2√
2

(
Sx

i + Sx
j + S

y

i + S
y

j

) + γ ⊥
2

(
Sz

i
2 + Sz

j
2)}

,

(9)

where h
‖
1, h

‖
2, γ

‖
1 , and γ

‖
2 are variational parameters along the

parallel direction of the z axis and h⊥
1 , h⊥

2 , γ ⊥
1 , and γ ⊥

2 are
variational parameters in the xy plane. The sum

∑
free is taken
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over all isolated spins and
∑

pair is taken over all disconnected
pairs of spins. A similar choice for the trial Hamiltonian has
been proposed by Lara et al. [30] in the study of the classical
Blume-Capel model, corresponding to the limiting case η =
0 in our Hamiltonian (1). In the present paper, we have
generalized such a trial Hamiltonian for different values of the
anisotropy η, thereby allowing for the presence of quantum
fluctuations in the system, which significantly complicates
the analysis. In this pair approximation two nearest-neighbor
spin fluctuations are taken into account exactly, while in the
previous usual mean-field approach no fluctuations at all were
considered [40].

From the trial Hamiltonian H0, we can write the partition
function Z0 as

Z0 = Tr(e−βH0 ) = Tr
(
e−β(Hf

0 +Hp

0 )
)

= Tr
(
e−β(Hf

0‖+Hp

0‖+Hf

0⊥+Hp

0⊥)) = Zf

0‖Z
p

0‖Z
f

0⊥Z
p

0⊥, (10)

in which the free Hamiltonian contributions for the partition
function are given by

Zf

0‖ = Tr
(
e−βHf

0‖
) = (

Zf

1‖
)n1

,

Zf

0⊥ = Tr
(
e−βHf

0⊥
) = (

Zf

1⊥
)n1

,

where β = 1/kBT , with kB the Boltzmann constant. The
one-spin 3 × 3 Hamiltonian matrix can be easily diagonalized
yielding

Zf

1‖ = 1 + 2eβ(D+γ
‖
1 ) cosh(βh

‖
1), (11)

Zf

1⊥ = eβ(D+γ ⊥
1 ) + 2e

β(D+γ⊥
1 )

2

× cosh

⎛
⎝β

√
(D + γ ⊥

1 )2 + 4(h⊥
1 )2

2

⎞
⎠ . (12)

Analogously, for the parallel component of the pair
Hamiltonian we get

Zp

0‖ = Tr
(
e−βHp

0‖
) = (

Zp

2‖
)n2

, (13)

Zp

2‖ = 4eβ(D+γ
‖
2 ) cosh(βh

‖
2) cosh(βJη) + e−β[J−2(D+γ

‖
2 )]

+ 2eβ[J+2(D+γ
‖
2 )] cosh(2βh

‖
2) + 2e− βα

2 cosh

(
β�

2

)
,

α = J − 2(D + γ
‖
2 ) and � =

√
α2 + 8(Jη)2. (14)

The above expression comes from the parallel pair
Hamiltonian which is a 9 × 9 matrix that can be analytically
diagonalized. A different situation, however, holds for the
perpendicular (xy plane) component of the pair Hamiltonian.
In this case we cannot obtain an analytical expression for the
nine eigenvalues of the corresponding Hamiltonian and we
have to resort to a numerical diagonalization of Hp

0⊥ in order
to get the partition function Zp

0⊥.
After calculating the terms appearing in the Bogoliubov

inequality, we can write the free energy per particle as

f = F

N
= f‖ + f⊥ = F‖

N
+ F⊥

N
, (15)

where the free energies f‖ and f⊥ are given by

f‖ = F‖
N

= − c

2
kBT lnZp

2‖ + (c − 1)kBT lnZf

1‖

+ (1 − c)(h‖
1m‖ + γ

‖
1 q‖) + c(h‖

2m‖ + γ
‖
2 q‖), (16)

f⊥ = F⊥
N

= − c

2
kBT lnZp

2⊥ + (c − 1)kBT lnZf

1⊥

+ (1 − c)(h⊥
1 m⊥ + γ ⊥

1 q⊥) + c(h⊥
2 m⊥ + γ ⊥

2 q⊥), (17)

where c is the coordination number of the lattice. In the
above equations m‖ and m⊥ are the parallel and perpendicular
components of the magnetization defined by

m‖ ≡ 〈
Sz

i

〉
0 = 1

β

∂lnZf

1‖
∂h

‖
1

= 1

2β

∂lnZp

2‖
∂h

‖
2

, (18)

m⊥ ≡
√〈

Sx
i

〉2
0 + 〈

S
y

i

〉2
0 = 1

β

∂lnZf

1⊥
∂h⊥

1

= 1

2β

∂lnZp

2⊥
∂h⊥

2

. (19)

Note from Eqs. (18) and (19) that the magnetization coming
from single spins and from pairs of spins are the same in order
to keep the translational symmetry of the model. Similarly,
we get for the parallel and perpendicular components of the
quadrupole moments q‖ and q⊥

q‖ ≡ 〈
Sz

i
2〉

0 = 1

β

∂lnZf

1‖
∂γ

‖
1

= 1

2β

∂lnZp

2‖
∂γ

‖
2

, (20)

q⊥ ≡ 〈
Sz

i
2〉

0 = 1

β

∂lnZf

1⊥
∂γ ⊥

1

= 1

2β

∂lnZp

2⊥
∂γ ⊥

2

. (21)

After minimizing the free-energy f with respect to the eight
variational parameters h

‖
1, h‖

2, γ ‖
1 , and γ

‖
2 , and h⊥

1 , h⊥
2 , γ ⊥

1 , and
γ ⊥

2 , we obtain the following relations

(c − 1)h‖
1 = ch

‖
2 and (c − 1)γ ‖

1 = cγ
‖
2 , (22)

(c − 1)h⊥
1 = ch⊥

2 and (c − 1)γ ⊥
1 = cγ ⊥

2 . (23)

Thus, for a given value of the Hamiltonian parameters D/J ,
η, and c, and at a reduced temperature t = kBT

J
, one can

solve Eqs. (18)–(23) in order to get the dimensionless reduced
variational parameters h

‖
1/J , h

‖
2/J , γ

‖
1 /J , and γ

‖
2 /J , and

h⊥
1 /J , h⊥

2 /J , γ ⊥
1 /J , and γ ⊥

2 /J . When more than one set
of solutions are found, the stable solutions will be those
which minimize the approximated free energy. From this
procedure all thermodynamic properties of the system can be
computed.

It turns out that the system is only ordered either along the
z direction or in the xy plane, in such a way that the variational
parameters along z and perpendicular to z are decoupled. This
allows one to get some analytical results for the critical lines
and the tricritical and tetracritical points. For instance, when
the perpendicular variational parameters vanish, Eqs. (18) and
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(20) yield

eβγ
‖
1 sinh(βh

‖
1)

Zf

1‖
= eβγ

‖
2 sinh(βh

‖
2)

Zp

2‖
[2eβ(J+D+γ

‖
2 ) cosh(βh

‖
2)

+ cosh(βJη)], (24)

2eβ(D+γ
‖
1 ) cosh(βh

‖
1)

Zf

1‖
= eβ(D+γ

‖
2 )

Zp

2‖

{
2 cosh(βh

‖
2) cosh(βJη)

+ eβ(J+D+γ
‖
2 )[2 cosh(2βh

‖
2) + e−2βJ ]

+ e− βJ

2

[
cosh

(
β�

2

)

− α

�
sinh

(
β�

2

)]}
, (25)

which together with Eqs. (22) can be numerically resolved
for h

‖
1(t)/J , h

‖
2(t)/J , γ

‖
1 (t)/J , and γ

‖
2 (t)/J , as a function

of the reduced temperature t for a given set of Hamiltonian
parameters. This gives the ordering of the parallel order-
parameter m‖ and the thermodynamics of the parallel ordered
phase.

At criticality, Eqs. (24) and (25) can be simplified, because
the magnetization along the z axis continuously goes to
zero, i.e., m‖ → 0, which is equivalent to taking the limit
h

‖
1 → 0 and h

‖
2 → 0. Hence, we arrive at the following coupled

equations for the critical temperature of the parallel order
parameter

eβγ
‖
1 c

(c − 1)Zf

1‖(0)
= eβγ

‖
2

Zp

2‖(0)
[2eβ(J+D+γ

‖
2 ) + cosh(βJη)]

and

2eβ(D+γ
‖
1 )

Zf

1‖(0)
= eβ(D+γ

‖
2 )

Zp

2‖(0)

{
2 cosh(βJη)+eβ(J+D+γ

‖
2 )[2 + e−2βJ ]

+ e− βJ

2

[
cosh

(
β�

2

)
− α

�
sinh

(
β�

2

)]}
,

where

Zf

1‖(0) = 1 + 2eβ(D+γ
‖
1 ), (26)

Zp

2‖(0) = 4eβ(D+γ
‖
2 ) cosh(βJη) + e−β[J−2(D+γ

‖
2 )]

+ 2eβ[J+2(D+γ
‖
2 )] + 2e− βα

2 cosh

(
β�

2

)
. (27)

Analogously, for the perpendicular plane the same method
can be realized to get the perpendicular variational parameters,
since in this case the parallel ones vanish. The expressions for
1
β

∂lnZf

1⊥
∂h⊥

1
and 1

β

∂lnZf

1⊥
∂γ ⊥

1
can be readily obtained from Eq. (12) as

follows

1

β

∂lnZf

1⊥
∂h⊥

1

=
4e

β(D+γ⊥
1 )

2 sinh
(

β
√

(D+γ ⊥
1 )2+4(h⊥

1 )2

2

)
h⊥

1√
(D+γ ⊥

1 )2+4(h⊥
1 )2

Zf

1⊥
, (28)

1

β

∂lnZf

1⊥
∂γ ⊥

1

=
eβ(D+γ ⊥

1 ) + e
β(D+γ⊥

1 )

2

[
cosh

(
β
√

(D+γ ⊥
1 )2+4(h⊥

1 )2

2

)
+ (D+γ ⊥

1 ) sinh
(

β

√
(D+γ⊥

1 )2+4(h⊥
1 )2

2

)
√

(D+γ ⊥
1 )2+4(h⊥

1 )2

]

Zf

1⊥
. (29)

Nevertheless, as previously stressed, the pair perpendicular
Hamiltonian Hp

0⊥ could not be solved analytically, meaning

we do not have any analytical expression for 1
2β

∂lnZp

2⊥
∂h⊥

2
and

1
2β

∂lnZp

2⊥
∂γ ⊥

2
. Everything must be done numerically for finite

values of h⊥
1 as h⊥

2 . However, at criticality, h⊥
1 and h⊥

2
go to zero, which permits simplifying expressions (28)
and (29); also, the pair Hamiltonian can be analytically
diagonalized for h⊥

2 = 0. So, by using the usual time-
independent quantum mechanics perturbation theory up to
second order in h⊥

2 , we can get the corresponding expanded
eigenvalues. In this way we can write the following coupled
equations:

2c[eβ(D+γ ⊥
1 ) − 1]

(1 − c)(D + γ ⊥
1 )Zf

1⊥(0)
=

∑
i e

−βδi 
i

Zp

2⊥(0)
, (30)

2eβ(D+γ ⊥
1 )

Zf

1⊥(0)
= eβ(D+γ ⊥

2 )

Zp

2⊥(0)

{
2 cosh(βJη) + eβ(J+D+γ ⊥

2 )

× [2 + e−2βJ ] + e− βJ

2

[
cosh

(
β�

2

)

− κ

�
sinh

(
β�

2

)]}
, (31)

where

∑
i

e−βδi 
i

= e−β[J−2(D+γ ⊥
2 )]

J (1 − η) − (D + γ ⊥
2 )

+ 2
eβ[J+2(D+γ ⊥

2 )]

−J (1 − η) − (D + γ ⊥
2 )

+ e−β[Jη−(D+γ ⊥
2 )]

−J (1 − η) + (D + γ ⊥
2 )

+ 3
e−βλ+x2

+
λ+ + Jη + D + γ ⊥

2
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+ 3
e−βλ−x2

−
λ− + Jη + D + γ ⊥

2

+ 2
eβ(Jη+D+γ ⊥

2 )

J (1 − η) + D + γ ⊥
2

+ 3x2
+

eβ(Jη+D+γ ⊥
2 )

−(Jη + D + γ ⊥
2 ) − λ+

+ 3x2
−

eβ(Jη+D+γ ⊥
2 )

−(Jη + D + γ ⊥
2 ) − λ−

, (32)

Zf

1⊥(0) = 1 + 2eβ(D+γ ⊥
1 ), (33)

Zp

2⊥(0) = 4eβ(D+γ ⊥
2 ) cosh(βJη) + e−β[J−2(D+γ ⊥

2 )]

+ 2eβ[J+2(D+γ ⊥
2 )] + 2e− βκ

2 cosh

(
β�

2

)
, (34)

with

x+ =
√

(λ+ − b)

�
and x− = −

√
(λ+ − a)

�
, (35)

b = 2[J (2η + 1) − 2(D + γ ⊥
2 )]

3
,

a = J (−4η + 1) − 2(D + γ ⊥
2 )

3
,

(36)
� =

√
[J − 2(D + γ ⊥

2 )]2 + 8(Jη)2,

κ = J − 2(D + γ ⊥
2 ), λ± = κ ± �

2
.

From Eqs. (30) and (31) one has the critical temperature for
the perpendicular ordering m⊥.

In addition, the first-order transition lines between the
ordered phases (where m‖ �= 0 and m⊥ �= 0) are given when
the corresponding free energies are equal, whereas they come
from the ordered phases and the disordered phase when the free
energies are the same as the free energy of the paramagnetic
phase with m‖ = m⊥ = 0.

B. Analytical results

Although in this approach, general results can only be
achieved through a numerical analysis of the above equations,
some additional analytical results are available in the limiting
case D → ∞. In that limit, we get for the reduced critical
temperature tc = kBTc

J

tc(D → ∞) = 2

ln
(

c
c−2

) . (37)

Observe that the last expression does not depend on the
anisotropy η, depending only on the coordination number c

of the hypercube lattice. Therefore, in such limit, quantum
effects are not relevant for the critical behavior. This fact
is understandable because when we let D → ∞ in the
Hamiltonian (1), the eigenvalues of the Sz operator can take
only the values 1 and −1, since the high energetic cost
prohibits that the eigenstates associated with zero eigenvalue
could be accessed. Then, the Hamiltonian (1) reduces to the
spin-1/2 Ising model, which is a classical one. Equation (37)
gives tc = 2.885 in the two-dimensional limit, which should
be compared to the exact result tc = 2.269 [45]. For the
three-dimensional model, one has tc = 4.932, comparable to
Monte Carlo simulations tc = 4.512 [46].

TABLE I. Reduced critical temperatures tc for the present model
in some limiting cases, for the square (c = 4) and simple cubic (c = 6)
lattices, according to exact results [21,45], Monte Carlo simulations
[46], series expansion [47–49], the present values, and the usual
(one-spin) mean-field approach (mostly from Ref. [40]). The errors
from Monte Carlo and series are in the next (not shown) two digits.

c = 4/c = 6 Present Usual MFA

D → ∞ 2.269/4.512 [46] 2.885/4.932 4/6
D = 0, η = 0 1.693 [47]/3.196 [48] 2.065/3.439 2.667/4
D = 0, η = 1 0 [21]/3.000 [49] 1.492/2.949 2.667/4

In the one-dimensional limit, the present approximation
reproduces the exact result for the critical temperature, tc = 0,
even for the anisotropic Heisenberg model in the presence of
the crystal field. In addition, for η = 0 one further obtains
the exact mean value of the quadrupole moment q in one
dimension. This assures us that, at least for the 1D model,
the present approach reproduces the exact results for all
values of D and η. One should also say that for the spin-
1/2 two-dimensional isotropic Heisenberg model (where the
crystal field is unimportant since it is just a constant in the
Hamiltonian) one also gets the exact result coming from
the Mermin and Wagner theorem tc = 0 [21]. Despite the
fact that for spin-1 one does not reproduce the Mermin and
Wagner result for the two-dimensional model, we believe that
the comparison depicted in Table I shows that the present
pair approximation is clearly an improvement over the usual
mean-field procedure previously done on this model.

C. Location of tricritical and tetracritical points

As will be discussed in the next section, the model defined
by the Hamiltonian (1) exhibits tricritical and tetracritical
points in some particular ranges of the parameters of the
Hamiltonian. In order to locate these multicritical points,
besides the first- and second-order lines, we have resorted
to a Landau-like expansion of the free energy (15). For the
present case we arrive at the following expansion

βf = f0 + 1
2a

‖
2(t,D,η)m2

‖ + 1
4a

‖
4(t,D,η)m4

‖ + 1
6a

‖
6m

6
‖

+ 1
2a⊥

2 (t,D,η)m2
⊥ + 1

4a⊥
4 (t,D,η)m4

⊥ + 1
6a⊥

6 m6
⊥, (38)

where f0 is a regular function and a
‖
2 , a

‖
4 , a

‖
6 , a⊥

2 , a⊥
4 , and

a⊥
6 are coefficients depending on t,D,η. Tricritical points

on the transition lines separating the parallel ordered and
paramagnetic phases are given by

a
‖
2(t,D,η) = 0, a

‖
4(t,D,η) = 0, and a

‖
6 > 0.

The above coefficients have been analytically calculated and
their expressions are given in the Appendix. On the other
hand, tricritical points on the transition lines separating the
perpendicular ordered and paramagnetic phases are given by

a⊥
2 (t,D,η) = 0, a⊥

4 (t,D,η) = 0 and a⊥
6 > 0.

It turns out, as we shall see in the next section, that we do not
find any tricritical point along this transition line.

Finally, the tetracritical point is given when

a
‖
2(t,D,η) = a⊥

2 (t,D,η) = 0 and a
‖
4 > 0, a⊥

4 > 0.
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The expression for a⊥
2 is also given in the Appendix. In this

particular case, the tetracritical point looks like a bicritical
point in the temperature versus crystal-field plane, because we
are considering zero external magnetic fields.

III. NUMERICAL RESULTS

The numerical results of the one-dimensional and the
three-dimensional versions of the model will be presented,
including the thermodynamics and the global phase diagrams
as a function of the parameters of the Hamiltonian. The results
for the two-dimensional model are qualitatively similar to
those for the cubic lattice.

A. One-dimensional model

For the 1D model, c = 2, the above equations give no
ordering either along the z axis or in the xy plane for any values
of η and D. One always has m‖ = m⊥ = 0 with no transition
at finite temperatures. This is indeed what one expects for this
model. One should say that this is not accomplished by the
simple mean-field approach, because it does not distinguish
the dimension of the lattice, giving always a finite transition
temperature for any value of c. Even more recent results
obtained from the Green’s function method were not able to
describe such behavior, and the critical temperature of the 1D
model only vanishes when η = 1 and D = 0 [50]. Note that
when η = 0, one has the classical 1D Blume-Capel model
which has no phase transition. As we increase η from zero,
this increasing tends to destroy the z-axis order, which is
already disordered, so no transition can be achieved in this
case. In addition, for η = 0 we get the exact free energy and
the exact quadrupole moment q = 〈Sz

i
2〉 as obtained from the

transfer matrix formalism. The exact quadrupole as a function
of temperature for η = 0 is shown in Fig. 1(a) for several values
of the crystal field. From what has been discussed above, we
believe the present results for η > 0, shown in Figs. 1(b)–1(d),
can be considered near to the exact ones. Unfortunately, in this
case, the 1D model is nonintegrable for spin-1.

0 5 10
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0.4

0.6

0.8

1

D/J =  5
D/J =  1
D/J =  0
D/J = -1.01
D/J = -5

0 2.5 5 7.5 10
0

0.2

0.4

0.6

0.8

1

D/J =  5
D/J =  1 
D/J =  0
D/J = -1
D/J = -5

0 0.5 1 1.5 2 2.5 3
0.4
0.5
0.6
0.7
0.8
0.9

1 η = 0
η = 0.8
η = 1
η = 1.1
η = 1.5

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1
η = 1
η = 1.4
η = 1.5
η = 2
η = 3

η = 0

D/J = 0

η = 1

D/J = 1

q

t

(a) (b)

(c) (d)

FIG. 1. (Color online) Quadrupole moment of the 1D model,
c = 2, for several values of the Hamiltonian parameters.

It is interesting now to analyze the behavior of the 1D
quadrupole and see what can be learned from the improved pair
approximation. As Fig. 1(b) shows, for the isotropic model,
η = 1, the quadrupole is ordered at zero temperature as soon
as one has an easy-axis asymmetry for D/J > 0, while the
quadrupole decreases when one has an easy plane for D/J <

0. For D/J = 0, the full isotropic case, the quadrupole is
always disordered q = 2/3. The corresponding behavior of q

for several values of the anisotropy η is shown in Fig. 1(c) for
D/J = 0. Here the situation is quite similar to that of Fig. 1(b),
with η < 1 favoring the z axis and η > 1 favoring the xy plane.
In Fig. 1(d) for D/J = 1, which already favors the z axis, one
can see a higher value of η (in this case 1.4 < η < 1.5) in
order to favor the xy plane.

B. Three-dimensional model

In this section, we present the numerical results of the
behavior of the magnetization m = 〈Sz

i 〉, the pair correlation
function on the xy plane 〈Sx

i Sx
j + Sx

j S
y

j 〉, and the global phase
diagrams as functions of the parameters of the Hamiltonian
for the 3D model. The results for the two-dimensional model
are qualitatively the same.

1. Magnetization and pair correlation function

In Fig. 2 we show the parallel and perpendicular magneti-
zations as a function of the reduced temperature t = kBT /J ,
for several values of η, for the 3D model and D/J = 0. In
Fig. 2(a), we have η < 1 and the stable phase is the one with
an Ising-like ordering along the z direction and exhibiting
a continuous phase transition as the temperature is increased.
One also notes that as the anisotropy is decreased, the quantum
fluctuations increase and the critical temperature is lowered.
The spin components tend to lie more in the xy plane as
η → 1. On the other hand, in Fig. 2(b), where η > 1, the
stable phase is the one with a perpendicular ordering. Now,
by increasing η, the easy-plane tendency of the ordering is
enhanced and, as a consequence, the critical temperature is also
increased. However, one can see a reentrant behavior where a
second continuous transition takes place at low temperatures.
This reentrancy will become clearer when discussing the

0 1 2 3 40
0.2
0.4
0.6
0.8

1

m||
η = 0
η = 0.5
η = 0.8
η = 1

0 1 2 3 4 5 6 7
t

0
0.2
0.4
0.6
0.8

1

m⊥
η = 1.1
η = 1.4
η = 1.7
η = 2.0

(a)

(b)

FIG. 2. (Color online) (a) Parallel m‖ and (b) perpendicular m⊥
magnetizations as a function of the reduced temperature t = kBT /J ,
for D/J = 0, c = 6, and several values of the anisotropy η.
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0 1 2 3 4 50
0.2
0.4
0.6
0.8

1

m||
D/J → ∞
D/J = 2.0
D/J = 1.0
D/J = 0

0 1 2 3
t

0
0.2
0.4
0.6
0.8

1

m⊥
D/J = -1.0
D/J = -2.0
D/J = -4.0
D/J = -6.0

(b)

(a)

FIG. 3. (Color online) (a) Parallel m‖ and (b) perpendicular m⊥
magnetizations as a function of the reduced temperature t = kBT /J ,
for η = 1, c = 6, and several values of the crystal field D/J .

phase diagrams. Figure 3 depicts the magnetizations for η = 1
and various values of the crystal field. In this case, two
continuous transitions are seen for negative values of D. These
reentrancies are not found in the usual mean-field approach.

The nearest-neighbor pair correlation function in the xy

plane is shown in Fig. 4 for D/J = 0 and various values of η.
For η > 1, the easy-plane situation, this correlation function
decreases as the temperature increases, because the system is
already ordered in the plane. On the other hand, for η < 1,
the easy-axis case, the in-plane correlation function increases
as the temperature increases, since the temperature tends to
destroy the order along the z direction, favoring in this case
the xy plane. The inset in Fig. 4(a) shows the special case
η = 1, where we have a coexistence of both ordered phases,
along the z direction and in the xy plane. The pair correlation
functions behave differently in each phase, becoming equal at
the tetracritical temperature (see discussion below).

2. Global phase diagrams

Figure 5 displays the global phase diagram in the reduced
critical temperature versus reduced crystal-field plane, in the

0 1 2 3
1

1.1

1.2

1.3

1.4 η = 1.01
η = 1.5
η = 2
η = 3

0 1 2 30

0.05

0.1

0.15

0.2
η = 0.5
η = 0.8
η = 0.9
η = 0.99

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

1

<S
x iSx j +

 S
y iSy j> 0

t

η=1

(a)

(b)

z
xy

FIG. 4. (Color online) In-plane nearest-neighbor pair correlation
function as a function of the reduced temperature for the 3D model
and D/J = 0 for several values of η. (a) η > 1 and (b) η < 1. The
inset in (a) shows the results for η = 1 for the ordered phase in the z

direction and xy plane.

-2 0 2 4 6 8
D/J

0

1

2

3

4

5

tc

η = 0
η = 0.1
η = 0.2
η = 0.3 -3 -2.9 -2.8 -2.7

0.5

1

1.5

m||

disorder

disorder

FIG. 5. (Color online) Global phase diagram in the reduced
temperature versus crystal field for several values of the anisotropy
η � 0.3, in the 3D lattice with c = 6. The dotted lines refer to
first-order transitions and the others lines (continuous, dashed, and
dotted-dashed) refer to second-order phase transitions. The circles
represent the tricritical points. The transition is always from the stable
parallel ordered phase with m‖ �= 0 to the disordered phase. The inset
shows the low-temperature region on a finer scale.

3D limit, for several values of the anisotropy η. One can see that
as soon as η < 0.33 the phase diagram is quite similar to that
of the classical Blume-Capel model, presenting second- and
first-order transition lines separated by a tricritical point. In the
limit D/J → ∞ all curves go to the same result tc = 4.932,
as discussed in the text. Apart from the reentrancy at low
temperatures, which is clearly depicted in the inset, for this
range of anisotropy the quantum effects seem not to be enough
to change the character of the transition, and the perpendicular
ordered phase is never stable. The anisotropy can only stabilize
the perpendicular phase when η > 0.33. This is in contrast to
the simple mean-field approach, where the perpendicular order
is always stable as soon as η > 0 [40].

-4 -3 -2 -1 0
D/J

0

1

2

3

tc

c = 6disorder

m||

m⊥

FIG. 6. Global phase diagram in the reduced temperature versus
crystal-field plane for η = 0.4, in the 3D lattice with c = 6. The
continuous lines refer to second-order phase transitions and the dotted
line refers to first-order transition. The circle represents the tricritical
point and the squares represent the critical endpoints. m‖ is the parallel
ordered phase and m⊥ is the perpendicular ordered phase.
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D/J

0

1
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4
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-1.136 -1.132 -1.128 -1.124

0

0.005

0.01

0.015

c = 6
η = 0.8disorder

m⊥

m⊥

m||
disorder

FIG. 7. Global phase diagram in the reduced temperature versus
crystal-field plane for η = 0.8, in the 3D lattice with c = 6. The
continuous lines refer to second-order phase transitions and the dotted
line refers to first-order transition. The squares represent the low-
temperature critical endpoint and the diamond represents the tetracrit-
ical point. m‖ is the parallel ordered phase and m⊥ is the perpendicular
ordered phase. The inset shows a closer view of the low-temperature
region.

For 0.33 < η < 0.49 the phase diagram looks like the
one shown in Fig. 6. In addition to the tricritical point, one
has two critical endpoints in the first-order transition line
separating the parallel and perpendicular ordered phases. As
η increases, the tricritical and the high-temperature critical
endpoint approach one another and eventually, for η > 0.49,
they coalesce in a tetracritical point. The phase diagram in this
range of anisotropy is depicted in Fig. 7.

For η = 1 the first-order transition line separating the per-
pendicular and the parallel phases is a straight vertical line at
D/J = 0, as shown in Fig. 8 together with a comparison with
the usual mean-field approximation (or one-spin approach)
[40]. One can see that the critical temperature from the pair
approximation is systematically below the mean-field results

-20 -10 0 10 20
D/J

0

1

2

3

4

5

6

tc

MFA
Present

FIG. 8. (Color online) Phase diagram in the reduced temperature
versus crystal-field plane for η = 1, in the 3D lattice with c = 6,
according to the present approach in comparison to the MFA. The
continuous and dashed lines refer to second-order phase transitions
and the dotted lines refer to first-order transition. The diamonds
represent the the tetracritical point.

0 0.2 0.4 0.6 0.8 1
η

-3

-2.5

-2

-1.5

-1

-0.5

D/J

c = 6
t = 0

FIG. 9. Reduced crystal field D/J as a function of the anisotropy
η, at zero temperature T = 0, for the 3D model.

by taking just one-spin cluster. The reentrancy only occurs for
the pair approximation. Similar results are obtained for other
values of η > 1, with the slope of the first-order transition line
between the ordered phases becoming positive in this range.

All of the above results refer to the 3D model with
coordination number c = 6. The same holds for the two-
dimensional model. It means that in this case, for spin S = 1,
one does not get the Mermin and Wagner result Tc = 0 for
η = 1 and D = 0. However, we believe the approach is suitable
for the 3D system, mainly when we compare the critical
temperatures, as depicted in Table I.

C. Quantum phase diagram T = 0

From Figs. 5–8, we note that for each anisotropy there
exists a value for the crystal field D/J in which there is a
transition at t = 0. This transition happens to be of first order
and it is illustrated in Fig. 9. One can find neither a second-
order quantum phase transition nor a quantum tricritical point
according to the present pair procedure, in contrast to the
simple mean-field approach where there is always a quantum
phase transition at zero temperature. It should be stressed,
however, that there is a rigorous proof of the existence of
only first-order phase transitions at low temperature and large
anisotropy for the XXZ model [51].

IV. CONCLUDING REMARKS

The anisotropic spin-1 XXZ quantum Heisenberg model
in a crystal field has been studied according to a variational
approach for the free energy by using a pair approximation.
This procedure enables one to get the ordering along the
z direction and in the xy plane as well. Earlier pair-like
approaches on the same system could only take into account
the parallel ordering.

As expected, the one-dimensional model has no phase
transition and the quadrupole moment so obtained is expected
to be close to the exact one for η > 0. So, contrary to the
simple mean-field approximation, the present pair approach
can distinguish the dimensionality of the lattice and much
more novel information is obtained regarding the free energy
and quadrupole moment for c = 2.

From the free energies one gets the complete phase
diagrams for dimensions greater than unity, which are indeed
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much richer than those from the simple mean-field procedure.
The diagrams exhibit second- and first-order transition lines
and tricritical and tetracritical points, as well as critical
endpoints. Although for the spin-1 case we do not reproduce
the Mermin-Wagner theorem in the two-dimensional case, we
believe the results are appropriate for the three-dimensional
model. Of course, as it is still a mean-field approach, it should
be necessary to use more reliable methods to corroborate
the reentrancies observed in some range of the Hamiltonian
parameters.
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APPENDIX

In this Appendix we present the expressions for the
coefficients a

‖
2(t,D,η), a

‖
4(t,D,η), and a⊥

2 (t,D,η) appearing
in the Landau expansion for the free energy [Eq. (38)] in

Sec. II C. Before writing these coefficients, we will define the
following variables:

ε = Zp

2‖(0)

2eβ(D+γ
‖
2 )[cosh(βJη) + 2eβ(J+D+γ

‖
2 )]

,

A = 2eβ(D+γ
‖
1 )

Zf

1‖(0)
, B = A

6
− A2

2
,

I = eβ(D+γ
‖
2 )[cosh(βJη) + 8eβ(J+D+γ

‖
2 )],

where Zf

1‖(0) and Zp

2‖(0) are given by Eqs. (26) and (27).
So, we can write

a
‖
2 = (1 − c)

2A
− cε

2
,

a
‖
4 = B(c − 1)

4A4
− cIε4

2Zp

2‖(0)
+ cε2

4
,

a⊥
2 = 2c[eβ(D+γ ⊥

1 ) − 1]

(1 − c)(D + γ ⊥
1 )Zf

1⊥(0)
−

∑
i e

−βδi 
i

Zp

2⊥(0)
,

where Zf

1⊥(0), Zp

2⊥(0), and
∑

i e
−βδi 
i are given by Eqs. (33),

(34), and (32), respectively.
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