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Growth rate degeneracies in kinematic dynamos
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We consider the classical problem of kinematic dynamo action in simple steady flows. Due to the adjointness
of the induction operator, we show that the growth rate of the dynamo will be exactly the same for two types
of magnetic boundary conditions: the magnetic field can be normal (infinite magnetic permeability, also called
pseudovacuum) or tangent (perfect electrical conductor) to the boundaries of the domain. These boundary
conditions correspond to well-defined physical limits often used in numerical models and relevant to laboratory
experiments. The only constraint is for the velocity field u to be reversible, meaning there exists a transformation
changing u into −u. We illustrate this surprising property using S2T2 type of flows in spherical geometry inspired
by [Dudley and James, Proc. R. Soc. London A 425, 407 (1989)]. Using both types of boundary conditions, it is
shown that the growth rates of the dynamos are identical, although the corresponding magnetic eigenmodes are
drastically different.
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The growth of magnetic fields due to dynamo action, both in
astrophysical bodies and in laboratory experiments, is expected
to depend not only on the details of the flow field, but also on
the conditions on the magnetic field applied at the boundaries.
In the laboratory there are two physically important limits:
perfectly conducting, implying no normal field, and normal
field, otherwise infinite permeability, where the tangential field
at the boundary is zero. These conditions are so different that
one might expect that the dynamo properties would be quite
different in the two cases. In general this is true, but there is an
important class of flows for which this is not the case. We call
these reversible flows, defined as follows: consider the group
D of transformations which leave the boundaries invariant;
then a velocity field u(x) is reversible if u(x) = −u(d · x),
for some d ∈ D. In other words, one can reverse the direction
of the flow by an appropriate transformation. Then the main
result of this paper can then be stated as follows.

Consider a steady flow of an electrically conducting fluid of
constant magnetic diffusivity η, contained in a volume V and
delimited by boundaries S. Providing that the velocity field is
reversible in the above sense, the growth rate of the kinematic
dynamo will be exactly the same whether the boundaries are
made of a perfect electrical conductor or have an infinite
magnetic permeability. In fact, the whole spectrum of growth
rates will be identical. This remarkable result is due to the
adjointness property of the induction operator as discussed
previously [1–4]. It should be noted that there is no statement
about the relation between the respective eigenfunctions, and
indeed as seen below these might differ considerably in the
two cases.

This result is formally proved as follows: We begin with an
eigenfunction for the growing magnetic field B satisfying the
perfectly conducting boundary condition B · n = 0, where n
is the unit vector normal to the surface S. The electric field
must be normal to the boundaries and the tangential electric
current vanishes there, (∇ × B) × n = 0 on S. The equation
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for the magnetic potential can be written using the Weyl gauge
as

s A = u × B − η∇ × B, (1)

where s is the complex growth rate and A is the magnetic
vector potential defined by ∇ × A = B. Since we have
u · n = B · n = (∇ × B) × n = 0 on the boundary S, the
cross product of Eq. (1) with n implies that A × n = 0 on
S. Then if we multiply the complex conjugate of Eq. (1) by
a solenoidal vector field Q = ∇ × P , and integrate over the
entire domain V , we obtain after integrating by parts∫

V

B∗ · (s∗ P + u × Q + η∇ × Q) dV

= −s∗
∫

S

(P × A∗) · n dS − η

∫
S

(B∗ × Q) · n dS, (2)

where s∗ is the complex conjugate of s. The first surface
integral on the right-hand side of Eq. (2) vanishes since
A × n = 0 at the boundaries. The second surface integral van-
ishes providing that we specify Q × n = 0 at the boundaries.
This last condition trivially implies that the normal electric cur-
rent associated with Q vanishes on S, i.e., (∇ × Q) · n = 0.
The expression in parentheses on the left-hand side of Eq. (2)
is then the operator on P adjoint to the original operator (1).
Assuming that the eigenvectors B form a complete set, and
taking the curl of this expression we obtain the following
equation

s∗ Q = −∇ × (u × Q) − η∇ × ∇ × Q, (3)

which is the induction equation for the solenoidal vector Q
with u replaced by −u; now however Q satisfies the infinite
magnetic permeability condition Q × n = (∇ × Q) · n = 0
at the boundaries. This shows that interchanging the boundary
conditions and reversing the direction of the velocity field
gives the same spectrum. In consequence the growth rates as a
function of the magnetic Reynolds number Rm will be the same
for both sets of boundary conditions. Note that the change in
the direction of the velocity field for the adjoint problem has
been known for a long time [1]. The problem was to find the
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appropriate choice of boundary conditions for both the original
and the adjoint problem [4]. Since most of the studies were
motivated by the geodynamo problem, the external boundary
condition for the original problem corresponded to a vacuum.
In that case, the general boundary condition for the adjoint
problem is unknown apart from some particular cases [2].
The present demonstration shows that the adjoint boundary
conditions associated with a perfect electrical conductor is an
infinite magnetic permeability, both of them corresponding to
clear physical limits.

We now illustrate our result in spherical coordinates (r,θ,φ).
The choice of the coordinate system is not important, and
one could equally choose Cartesian or cylindrical coordinates.
We focus here on the spherical case as the differences in the
magnetic eigenmodes when varying the boundary conditions
are the most striking. We consider an incompressible flow in
a spherical shell defined by α < r < 1. Kinematic dynamos
driven by simple flows are a classical problem in dynamo
theory, and many examples have been considered in the past
(see, for example, Ref. [5] and references therein for the
case of a full sphere). The objective is here to compare
kinematic dynamo action in two different flows with the two
different types of boundary conditions mentioned previously.
The velocity field is first written using a poloidal-toroidal
decomposition, thus ensuring incompressibility,

u = ∇ × ∇ × (Ser ) + ∇ × (T er ), (4)

where T is the toroidal component whereas S is the poloidal
component, and er is the unit vector in the radial direction.
Each of these scalars is then projected onto spherical harmon-
ics, for example, for the poloidal component,

S =
∑

Sm
l (r)Ym

l (θ,φ), (5)

where the sum is carried over integers such that l � m � 0, and
Ym

l (θ,φ) is the classical spherical harmonic of azimuthal wave
number m and Legendre function order l. The flows we con-
sider in this Rapid Communication are defined as follows: all
coefficients Sm

l (r) and T m
l (r) are zero except the ones for which

l = 2. This type of flow is often referred as to a S2T2 flow. In
the azimuthal direction, all coefficients are zero except for one
particular azimuthal wave number M for which we impose

SM
2 (r) = sin2

(
π

r − α

1 − α

)
, (6)

T M
2 (r) = 8 sin2

(
π

r − α

1 − α

)
. (7)

The factor 8 in Eq. (7) is arbitrarily introduced to minimize
the critical magnetic Reynolds number for dynamo action to
occur. This choice of radial structure is compatible with an
impenetrable (S = 0) and no-slip (T = ∂S/∂r = 0) boundary
condition for the velocity field. We consider two possibilities
for the azimuthal dependence: M = 0 and M = 2. These two
flows are naturally labeled S0

2T
0

2 and S2
2T 2

2 , respectively.
The first flow has been studied in details in various

geometries since it is a simple model of the mean flow
in the VKS experiment [6,7]. The flow corresponds to two
axisymmetric helical cells in each hemisphere with net helicity
throughout the domain, i.e., H = ∫

V
u · ∇ × udV �= 0. Note,

FIG. 1. (Color online) Illustration of the S2T2 velocity fields
considered in this paper. These flows are characterized by an
azimuthal wave number m = 0 (top) or m = 2 (bottom) and a
Legendre polynomial order of l = 2. The aspect ratio is α = 0.4.
The isosurfaces show the velocity magnitude at 75% of its maximum
value. The streamlines are randomly initiated inside one of the
hemisphere. The dark and thick streamlines correspond to large
velocity magnitude, whereas bright and thin streamlines correspond
to low velocity magnitude. The axisymmetric flow on the top is not
reversible whereas the flow on the bottom is.

however, that our conclusion does not depend on the presence
or not of net kinetic helicity in the system. This flow is not
reversible as defined earlier. An illustration of this steady
flow can be found on Fig. 1. Due to the axisymmetry of the
flow, Cowling’s theorem [8] forbids growing axisymmetric
magnetic fields, and the different azimuthal wave numbers of
the magnetic field are decoupled.

The second flow is similar to the flow first studied by the
authors of Ref. [9] in the geodynamo context, albeit there is
no inner core in their case. It corresponds to a four cells flow
with net kinetic helicity. Due to its symmetries, this flow is
reversible (a rotation of π/2 around the vertical axis changes
u in −u), and a visualization for the particular aspect ratio α =
0.4 is shown on Fig. 1. This simple type of flows is known to
be a very efficient kinematic dynamo without an inner core [5].

In order to check our finding concerning the growth rate
of kinematic dynamo action and its dependence on magnetic
boundary conditions, we need to solve the induction equation
with a prescribed velocity field. While this problem is linear
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and could be reduced to an eigenvalue problem, the relatively
large three-dimensional resolution required here to solve the
induction equation makes the equivalent initial value problem
much easier to handle. As a consequence, the induction
equation is solved using the numerical code PARODY. This
code was originally written by Dormy [10] and later improved
by Aubert [11]. PARODY has been benchmarked against
other numerical codes in the context of a convectively
driven dynamo problem [12]. Although the code is able to
solve the full set of magnetohydrodynamics equations in the
Boussinesq approximation, we use only the induction equation
solver throughout this paper. The solenoidal magnetic field is
written using a poloidal and toroidal decomposition, and both
poloidal and toroidal scalars are then projected onto spherical
harmonics, as in Eq. (5). The radial functions Bt

m
l (r) for the

toroidal field and Bp
m
l

(r) for the poloidal field are represented
by their discretized values on a nonuniform radial grid. The
grid is denser close to the inner and outer boundaries in order to
accurately resolve boundary effects. The radial derivatives are
computed using second-order finite differences. In the case
of a perfectly conducting boundary condition, the poloidal
and toroidal components of the magnetic field must verify the
following constraint for all l,m:

∂2Bp

∂r2
+ 2

r

∂Bp

∂r
= 0, (8)

∂Bt

∂r
+ 1

r
Bt = 0. (9)

Note that due to the solenoidality of the magnetic field, these
conditions directly imply that Bp = 0 at the boundaries. In the
case of an infinite magnetic permeability, the corresponding
boundary conditions are

∂Bp

∂r
+ 1

r
Bp = 0, (10)

Bt = 0. (11)

The time-stepping is achieved using a semi-implicit Crank-
Nicholson scheme for the diffusive term and a second order
Adams-Bashforth scheme for the advective term. The typical
resolution is 480 points in the radial direction, and a spherical
harmonic decomposition truncated at l,m < 64. In the case
of the S0

2T 0
2 flow, since all azimuthal magnetic modes are

decoupled, only the most unstable m = 1 mode is considered.
We first compute the growth rate of the magnetic energy

varying the magnetic Reynolds number defined here as

RM = Umax(1 − α)

η
, (12)

where Umax is the maximum velocity in the spherical shell.
We here consider a particular aspect ratio of α = 0.4, but
our results do not qualitatively depend on this particular
choice. For the flows defined by Eqs. (6) and (7), we have
Umax = 32.98 for M = 2 and Umax = 29.07 for M = 0. The
induction equation is then solved from an initial magnetic seed.
After a rapid transient phase during which the initial condition
is forgotten, the magnetic energy is exponentially growing or
decaying. We compare in Fig. 2 the results obtained varying
the boundary conditions from perfectly conducting to perfectly
insulating on both boundaries and for the two different flows.
As expected from the previous demonstration, the kinematic
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FIG. 2. (Color online) Growth rate of the magnetic energy
versus magnetic Reynolds number in the case of homogeneous
boundary conditions. The square symbols correspond to the perfectly
conducting case where B · r = 0 at both boundaries, whereas the
cross symbols correspond to the perfectly insulating case where
B × r = 0. The results are shown for the aspect ratio α = 0.4. For
the S0

2T
0

2 flow, only the growth rates associated with the m = 1 mode
are shown.

growth rates do not depend on the boundary conditions for
the S2

2T 2
2 flow. The critical magnetic Reynolds number is

approximately RM ≈ 40 in this case. The fact that the growth
rates are exactly equal for both types of boundary conditions
is even more surprising looking at the corresponding magnetic
eigenmodes. We show in Fig. 3 an illustration of the magnetic
eigenmodes close to the onset of dynamo action. As expected
due to the effect of the boundary conditions, the magnetic
topology is significantly different in both cases. The growth
rate associated with these two eigenmodes is however exactly
the same.

The growth rates for the two types of boundary conditions
are, however, clearly distinct for the nonreversible S0

2T 0
2

flow (see Fig. 2). Since the azimuthal magnetic modes are
decoupled, we only show the growth rates associated with the
most unstable mode m = 1. In that case, a dynamo is observed
in the case of perfectly conducting boundary conditions,
whereas no dynamo at all is found with an infinite magnetic
permeability. As already mentioned, this flow shares some
similarity with the mean velocity field of the VKS experiment.
The effect of the magnetic boundary conditions on the dynamo
threshold of von Kármán swirling flows has been studied by
the authors of Ref. [13]. The lack of dynamo in the infinite
magnetic permeability case is due to the presence of the large
inner core in our case. As the size of the core is reduced, we
recover the dynamo observed by several studies, with a strong
equatorial dipole.

We also considered different flows corresponding to dif-
ferent spherical harmonics, radial structures, and spherical
shell aspect ratios, and the conclusion remains qualitatively

031001-3



RAPID COMMUNICATIONS

B. FAVIER AND M. R. E. PROCTOR PHYSICAL REVIEW E 88, 031001(R) (2013)

FIG. 3. (Color online) Magnetic eigenmodes close to the onset for kinematic dynamo action driven by the S2
2T

2
2 reversible flow. Left: The

boundary conditions are perfectly conducting (no normal field). Right: The boundary conditions correspond to a pseudovacuum (no tangent
field). In both cases, the magnetic field is dominated by a strong m = 1 mode. The magnetic field lines are initiated randomly in the spherical
shell. The dark and thick magnetic field lines correspond to large magnetic field amplitude, whereas bright and thin lines correspond to low
magnetic field magnitude. The growth rate associated with these two eigenmodes is exactly the same.

the same. The previous result is also valid in the case of
different boundary conditions at each boundary. If the inner
core is perfectly conducting whereas the outer core is perfectly
insulating, the growth rate of the kinematic dynamo will be the
same if we reverse the boundary conditions configuration and
the direction of the reversible flow.

Finally, we considered different types of flows in different
geometries. For example, one can consider the flow resulting
from rotating convection in the Boussinesq approximation just
above onset. In that case, the resulting steady flow in a plane
layer model can correspond to square or hexagonal patterns
[14], which are all reversible. We solved the induction equation
for both patterns and also found that the eigenvalue spectrum
is the same when varying the boundary conditions from a
perfect conductor to an infinite magnetic permeability. More
details about kinematic dynamo action in such flows and the
effect of boundary conditions can be found in Ref. [15]. Note
also that we have only discussed steady velocity fields up to
now. However, it seems that this result also holds for time
periodic flows as long as the reversibility condition is valid at
all times. So far, we have only checked this result numerically
by allowing the amplitude of the flow to be time dependent

(not shown here) but a more general demonstration should be
accessible.

To conclude, we show in this Rapid Communication that
providing that a flow is reversible (as defined at the beginning
of this Rapid Communication), kinematic dynamo action will
be the same with two different types of boundary conditions:
the boundary can be either perfectly conducting, so that
magnetic field lines are tangent to the surface, or can be of
infinite magnetic permeability, so that magnetic field lines
reconnect perpendicularly to the surface. We verified this
observation in spherical and Cartesian geometries for various
types of flows. While there is only a simple constraint on
the velocity field for this result to be true, the required
symmetry is, however, unlikely to be verified in a more realistic
turbulent context. It would therefore be interesting to consider
the departure from this exact result in the experimentally
relevant situation where small-scale velocity fluctuations are
not reversible whereas the mean flow is.

The authors would like to thank Emmanuel Dormy and
Toby S. Wood for valuable comments and suggestions. B.F.
thanks the Cambridge Newton Trust for financial support.

[1] P. H. Roberts, J. Math. Anal. Appl. 1, 195 (1960).
[2] R. D. Gibson and P. H. Roberts, in Magnetism and the Cosmos,

edited by W. R. Hindmarsh, P. H. Roberts, F. J. Lowes, and
S. K. Runcorn (Oliver and Boyd, Edinburgh, London, 1967),
p. 108.

[3] M. R. E. Proctor, Astr. Nachr. 298, 19 (1977).
[4] M. R. E. Proctor, Geo. Astro. Fluid Dyn. 8, 311

(1977).
[5] M. L. Dudley and R. W. James, Proc. R. Soc. London A 425,

407 (1989).

[6] R. Monchaux, M. Berhanu, M. Bourgoin, M. Moulin,
Ph. Odier, J.-F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis,
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