
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 88, 030401(R) (2013)

Non-mean-field behavior of critical wetting transition for short-range forces
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Critical wetting transition for short-range forces in three dimensions (d = 3) is reinvestigated by means of
Monte Carlo simulation. Using an anisotropic finite size scaling approach, as well as approaches that do not rely
on finite size scaling, we show that the critical wetting transition shows clear deviation from mean-field behavior.
We estimate that the effective critical exponent νeff

‖ = 1.76 ± 0.08 for J/kT = 0.35 and νeff
‖ = 1.85 ± 0.07 for

J/kT = 0.25. These values are in accord with predictions of Parry et al. [Phys. Rev. Lett. 100, 136105 (2008)].
We also point out that the anisotropic finite size scaling approach in d = 3 requires additional modification in
order to reach full consistency of simulational results.
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Understanding interfacial properties of fluids is impor-
tant for many applications including adsorption in porous
materials [1], nanofluidic devices [2], and design of super-
hydrophobic surfaces [3]. The common problem pertinent
to these research areas is the prediction and control of the
wetting properties of surfaces. The introduction of patterns
on the nanoscale leads to substantial changes in wettability
and creates a host of new effects [4–6]. While the wetting
phenomena at planar surfaces is well understood [7], there
is one notable exception. Critical wetting has been a long-
standing and stubbornly difficult problem to understand.

Renormalization group calculations based on a local inter-
facial Hamiltonian [8,9] predict that the critical wetting tran-
sition for short-range forces is strongly nonuniversal. When
temperature T approaches the wetting temperature Tw, the
critical exponent characterizing the divergence of the parallel
correlation length, ξ‖ ∼ (Tw − T )−ν‖ , depends on a nonuniver-
sal dimensionless wetting parameter, ω = kT

4π�ξ 2 , where k is
Boltzmann’s constant, � is the interfacial stiffness (or surface
tension for simple liquids), and ξ is the correlation length in
the phase that wets the wall. For the case of the Ising model in
three dimensions (d = 3) one has 1/2 < ω < 2, which leads to

ν‖(ω) = (
√

2 − √
ω)−2 . (1)

Surprisingly, subsequent simulation studies [10–12] showed
only minor deviations from mean-field value, νMF

‖ = 1. In
order to reconcile theory and simulation Parry et al. [13]
proposed a new nonlocal (NL) interface Hamiltionian which
removed various intrinsic inconsistencies of previous ap-
proaches. Reanalysis of the NL model showed the appearance
of another diverging length ξNL = √

lξ ∝ √
ln ξ‖, which cuts

some of the interfacial fluctuations for small film thicknesses
l. This in turn leads to a reduction in the effective value of the
wetting parameter ωeff , and to an effective exponent νeff

‖ .
Very recently a new anisotropic finite size scaling (AFSS)

theory which should be suitable for studying wetting transi-
tions in general was proposed [14,15]. These authors have
suggested that the previous [10–12] estimates for the location
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of the critical wetting transition need a revision, however,
the critical exponent has not been determined. In this Rapid
Communication we reconsider this approach and show that
the critical wetting transition for short-range forces in d = 3
shows clear deviations from mean-field theory. We also give
evidence that the AFSS theory is problematic in d = 3, which
was not anticipated before [14,15].

We consider simple-cubic Ising L × L × D systems with
two free surface layers L × L, and periodic boundary condi-
tions in two remaining directions. The local order parameter
of the corresponding phase transition is a pseudospin variable
si = ±1 at lattice site i. The Hamiltonian for the system is

H = −J
∑

bulk

sisj − H
∑

bulk

si − H1

∑

k∈surf 1

sk − HD

∑

k∈surf D

sk,

(2)

where J is the bulk exchange constant and H is the bulk
field. Surface fields H1 and HD act only on the first and
last layer, respectively. In order to avoid effects connected
to capillary condensation we select “antisymmetric” walls,
i.e., H1 = −HD < 0. During the course of simulation several
quantities were accumulated, including the average absolute
value 〈|m|〉 of the magnetization m = (L2D)−1 ∑

i si , suscep-
tibility χ ′ = L2D(〈m2〉 − 〈|m|〉2)/kT , and the fourth order
cumulant U4 = 1 − 〈m4〉/3〈m2〉2. When the system is in the
partial wetting regime, the interface is bound to the wall
k = 1 or k = D with equal probability. Consequently, 〈|m|〉
is nonzero in the thermodynamic limit. On the other hand, for
the wet state the interface is unbound from either of the walls
and wanders around the middle of the system. Consequently,
〈|m|〉 is zero for D → ∞. The systems were simulated using
a highly efficient multispin coding algorithm [16]. In order
to overcome critical slowing down near the critical wetting
point we applied a hyperparallel tempering technique [17] and
simulated many systems at the same time, and allowed for
frequent swaps between them. Statistical effort was at least
5 × 107 spin flips per site.

Within the AFSS approach the thermodynamic limit D →
∞ must be taken in a special way, keeping the generalized
aspect ratio C = Dν‖/ν⊥/L (or, alternatively C∗ = D/Lν⊥/ν‖)
constant [14,15]. The scaling ansatz for the order parameter

030401-11539-3755/2013/88(3)/030401(4) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.136105
http://dx.doi.org/10.1103/PhysRevE.88.030401


RAPID COMMUNICATIONS

PAWEŁ BRYK AND KURT BINDER PHYSICAL REVIEW E 88, 030401(R) (2013)

-0.91 -0.9 -0.89 -0.88
H

1
/J

0.3

0.4

0.5

0.6

0.7

<
|m

|>

D=12
D=14
D=16
D=18

-0.91 -0.9 -0.89 -0.88
H

1
/J

0.3

0.4

0.5

0.6

0.7

U
4

D=12
D=14
D=16
D=18

-0.62 -0.6 -0.58 -0.56 -0.54
H

1
/J

0.2

0.3

0.4

0.5

<
|m

|>

D=24
D=28
D=32
D=36

-0.62 -0.6 -0.58 -0.56 -0.54
H

1
/J

0.3

0.4

0.5

0.6

0.7

U
4

D=24
D=28
D=32
D=36

J/kT=0.35

J/kT=0.35

(a) (b)

J/kT=0.25

J/kT=0.25

(c) (d)

FIG. 1. (Color online) Average absolute magnetization 〈|m|〉, and
cumulants U4, vs surface field H1/J . Parts (a) and (b) show the
results evaluated at J/kT = 0.35 and for the generalized aspect ratio
C∗ = 2.8854, while parts (c) and (d) show the results calculated for
J/kT = 0.25 and for C∗ = 5.770 78. System sizes D are given in
the figure.

probability distribution is given by

PD,L(m) = ξ
β/ν‖
‖ P̃ (C,L/ξ‖,mξ

β/ν‖
‖ ), m → 0, ξ‖ → ∞,

(3)
where P̃ is a scaling function, whereas β is the order
parameter critical exponent. For d = 3, β = 0 while the
exponent for the transverse correlation length ν⊥ = 0. Con-
sequently we keep fixed the generalized aspect ratio of the
form C∗ = D/ ln(L).

Following earlier papers [10–12,14] we keep the tempera-
ture constant (which keeps fixed the bulk correlation length)
and vary the surface field H1. The calculations were carried
out for two temperatures: J/kT = 0.35 with C∗ = 2.8854,
and J/kT = 0.25 with C∗ = 5.77078, and for several lateral
system sizes.

Figure 1 shows the plots of the average absolute mag-
netization and the cumulant vs H1 calculated for the two
temperatures. Unlike the case of d = 2, where both 〈|m|〉
and U4 exhibit rather well-defined unique intersection points,
here the cumulants hardly intersect and the intersections of
〈|m|〉 have not converged to a unique location either. The
nonexistence of intersection points is not as serious a problem,
as it looks at first sight. Finite size can cause a shift as well as
a rounding of a transition. Both should scale in the same way,
should a straightforward application of finite size scaling work.
However even then it is possible that the amplitude prefactor
for the shift is much larger than the rounding. In such case one
would find no intersections for the cumulant.

The large statistical effort together with hyperparallel tem-
pering technique yielded accurate, smooth data allowing for an
estimation of the exponent νeff

‖ . It has been established [14,15]
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FIG. 2. Estimation of the effective critical exponent νeff
‖ using

the AFSS approach. Plots show the maximum slope of the average
absolute magnetization [∂〈|m|〉/∂(H1/J )]max and the maximum slope
of the cumulant [∂U4/∂(H1/J )]max vs linear system size L. Parts (a)
and (b) denote the results obtained for J/kT = 0.35, while parts (c)
and (d) are for J/kT = 0.25.

that [∂〈|m|〉/∂(H1/J )]max ∝ L1/νeff
‖ , giving a very convenient

way of determination of the critical exponent νeff
‖ . Likewise,

a similar relation holds for cumulants, [∂U4/∂(H1/J )]max ∝
L1/νeff

‖ . Figure 2 shows the plots of the maximum slopes of
〈|m|〉 and U4 vs L. We find that for both temperatures νeff

‖
is clearly different from the mean-field value νMF

‖ = 1, and
attains values slightly below 2.

Figure 3(a) shows a log-log plot of the position of maximum
susceptibility χ ′ vs L−1νeff

‖ for J/kT = 0.25. We find that the
value of the surface field for the wetting transition H1w =
−0.616 ± 0.002. Such a very good fit would not be possible
if the mean-field value νMF

‖ = 1 was used instead. Further
consistency checks are displayed in Figs. 3(b) and 3(c). We
find a good scaling of the cumulants [cf. Fig. 3(b)] with the
estimated value of the effective exponent. Quite surprisingly,
the plot of 〈|m|〉 vs (H1 − H1w)L1/νeff

‖ does not collapse [cf.
Fig. 3(c)]. Similar results were found for J/kT = 0.35 [18].
It seems that there exists additional finite-size effects that
should be applied to the ordinate variable 〈|m|〉. These effects
do not exist in d = 2. The comparison of the diverging
length scales indicates that for d = 3 there is still one more
divergence, leq/ξ⊥ ∝ √

ln τ [19], where leq is the equilibrium
film thickness, and τ is the distance from the transition.
In contrast, for d = 2 this ratio is constant. It is tempting
to speculate that the fact that the cumulants do collapse is
connected with the fact that these additional finite-size effects
cancel out, since U4 is a ratio of moments of magnetization.
Unfortunately, at present we do not see a straightforward way
of incorporating this effect into the AFSS framework.
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FIG. 3. (Color online) (a) Estimation of the critical surface field
for the wetting transition H1w , for J/kT = 0.25. The plot shows
the log-log plot of the position of the maximum susceptibility χ ′

vs L
−1/νeff

‖ . The intercept with L
−1/νeff

‖ = 0 yields H1w . (b) Scaling

plot of U4 vs (H1 − H1w)L1/νeff
‖ obtained using H1w = −0.616 and

νeff
‖ = 1.97. (c) Scaling plot of 〈|m|〉 vs (H1 − H1w)L1/νeff

‖ obtained
using H1w = −0.616 and νeff

‖ = 1.97.

In view of the above it is natural to seek other evidence
of the non-mean-field behavior of critical wetting in d = 3,
which would not resort to the AFSS approach. It has been
demonstrated [10,11] that the “surface layer susceptibility”
χs = Dχ ′ ∝ ξ 2

‖ . It follows, that when plotting χs vs H1 −
H1w for several system sizes, the regions unaffected by finite-
size effects should exhibit the same slope equal to 2νeff

‖ . This
provides additional estimation of the parallel correlation length
exponent, independent of finite-size scaling. Figures 4(a) and
4(b) demonstrate that for both temperatures the slope of χs in
the region free of finite-size effects is a bit less than 4, which
is consistent with previous estimates for νeff

‖ .
As a final check, in Figs. 4(c) and 4(d) we show log-log

plots of the surface susceptibility vs. nonzero bulk field
H evaluated at the critical surface fields H1w, for the two
temperatures in question. The calculations presented here
were carried out using the “symmetric” boundary conditions,
i.e., H1 = HD in order to follow exactly the computational
procedure presented in the first simulational studies on critical
wetting [10–12]. In such a system wetting films develop inde-
pendently on both walls. During the simulations we monitor
surface layer susceptibility, χs = ∂m1/∂H = L2D(〈m1m〉 −
〈m1〉〈m〉). Since χs ∼ H−1/2νeff

‖ for H > 0 at H1 = H1w, the
slope gives information about the universality class of the
wetting transition [11]. The mean-field behavior would imply
a slope of −0.5 and such was the conclusion of the early
reports. However, when the calculations are performed for
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FIG. 4. (Color online) (a), (b) Plots of the mixed surface suscep-
tibility vs (H1 − H1w)J . (c), (d) Plots of χs vs bulk field H calculated
for H1 = H1w . The results were obtained using symmetric system
H1 = HD and for system sizes given in the figure.

the new estimations of the critical surface fields H1w, we
observe clear deviations from mean-field exponents, again
consistent with values obtained by different methods. The
final values of νeff

‖ are obtained by averaging the exponents
resulting from four different methods. Putting together all the
results we estimate that νeff

‖ = 1.76 ± 0.08 for J/kT = 0.35
and νeff

‖ = 1.85 ± 0.07 for J/kT = 0.25. Once the exponents
are determined, we are able to calculate the effective wetting
parameter. We obtain ωeff = 0.44 ± 0.03 and 0.46 ± 0.02 for
J/kT = 0.35 and 0.25, respectively.

Our results indicate that the early conclusions about the
mean-field behavior of critical wetting in d = 3 can be traced
back to the inaccurate estimation of the critical surface field
H1w. This is not to say that those simulations were wrong.
Simply, using the computing resources available almost
30 years ago it was not possible to arrive at the correct
conclusions. It is now clear that sizes like L = 50 [10,11]
were far too small. The fact that even for the lateral system size
L = 504 we reach roughly only half of the full nonuniversal
value of ν‖ ≈ 3.7 is in accordance with theoretical conjecture
of Parry et al. [13] about very slow crossover to the asymptotic
regime. We estimate that the system sizes required to see
in simulations the full nonuniversal behavior of critical
wetting must be of the order of tens of thousands of lattice
spacings.

In conclusion, we have carried out accurate Monte Carlo
simulations of critical wetting transition in d = 3. We have
found clear deviations from mean-field behavior. We estimate
that the effective critical exponent νeff

‖ = 1.71 ± 0.1 for
J/kT = 0.35 and νeff

‖ = 1.76 ± 0.17 for J/kT = 0.25. Our
results clearly support the nonlocal Hamiltonian model [13]
and together with Ref. [20] (where related effects due to ξNL

for complete wetting were studied) provide strong evidence
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towards the validity of this approach. We have also found
that the understanding of finite-size effects on critical wetting
in d = 3 is still incomplete: Analytical guidance to find the
proper extension of the AFSS approach to cope with the weak
logarithmic divergence of the perpendicular correlation length
remains a future challenge, to reach a full understanding of the

simulation results. Thus, a long-standing puzzle may finally
be close to its resolution.
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