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Building on insights from the theory of integrable lattices, the integrability is claimed for nonlinear replica σ

models derived in the context of real symmetric random matrices. Specifically, the fermionic and the bosonic
replica partition functions are proven to form a single (supersymmetric) Pfaff-KP hierarchy whose replica limit
is shown to reproduce the celebrated nonperturbative formula for the density-density eigenvalue correlation
function in the infinite-dimensional Gaussian orthogonal ensemble. Implications of the formalism outlined are
briefly discussed.
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Introduction. Perhaps the most comprehensive and unifying
quantitative description of disordered and quantum chaotic
systems can be achieved by using field-theoretic methods.
Since the 1970s, a number of such field-theoretic frameworks
have been devised. Having different mathematical status and
physical areas of applicability, they all rest on the concept
of functional field integrals and are known as nonlinear σ

models [1–6].
In the context of disordered systems, three major for-

mulations of nonlinear σ models exist: the replica [1–3],
the supersymmetry [4,5], and the Keldysh [6] σ models.
Of these, the replica is the earliest [1,2,7] and the most
controversial invention that continues to challenge [8–10]
both mathematical and theoretical physicists. Decades after
debuting in condensed matter physics, an operationally trans-
parent and controllable treatment of replica field theories is
barely available [11] even in the mathematically simplest
yet physics motivated setup provided by the random matrix
theory [12] (RMT). Indeed, it took nearly 20 years to extract
some nonperturbative results out of replicas, in both the
RMT limit [13] and beyond it [14]. More precisely, adopting
the ideas of replica symmetry breaking originally devised
in the theory of spin glasses [10], the authors of Ref. [13]
managed to show that the fermionic variation [2] of replicas is
capable of producing partially nonperturbative RMT results for
the microscopic two-point density-density spectral correlation
function

R
(β)
2 (ω) � − 1

β(πω)2
+ 2�2(1 + 2/β)

(2πω)4/β
cos(2πω)

+ δβ,4

2(2πω)4
cos(4πω). (1)

Equation (1) describes two-point eigenvalue correlations in
“infinite-dimensional” real symmetric (β = 1), complex Her-
mitian (β = 2), or quaternion-real self-dual (β = 4) random
matrices whose spectrum was unfolded so as to make the
mean level spacing unity, � = 1. On the formal level, R(β)

2 (ω)
corresponds to the thermodynamic limit

R
(β)
2 (ω) = lim

N→∞
R

(β)
2 (E1,E2; N )

R
(β)
1 (E1; N )R(β)

1 (E2; N )
, (2)

where E1,2 = E ± ωR
(β)
1 (E; N )/2, and a set of finite-N

eigenvalue correlation functions is defined as follows:

R(β)
p (E; N ) =

〈
p∏

α=1

Tr δ(Eα − H)

〉
GβEN

. (3)

Here, E stands for a set of energy variables, E = (E1, . . . ,Ep),
while angular brackets 〈· · ·〉 denote averaging over the
Gaussian orthogonal (β = 1), unitary (β = 2), or symplectic
(β = 4) ensemble of random matrices specified by the normal
probability density ∝ exp(−Tr H2) on the space MN (Fβ)
of Hermitian N × N matrices with real (F1 = R), complex
(F2 = C), or quaternion-real (F4 = H) entries.

The validity of Eq. (1), summarizing achievements of the
early fermionic replica research, is restricted [15] to the energy
scales in excess of the mean level spacing, ω � � = 1.
Notably, several attempts [8,9] to reproduce the same result
from bosonic replicas did not bear fruit. Yet, within the
supersymmetry technique [4], the same task of computing
the density-density correlation function in the RMT setting
was accomplished [4,16] in less than a year and with greater
rigor. For the Dyson β = 1 symmetry class (which will be
a focus of this Rapid Communication), the truly nonpertur-
bative eigenvalue density-density correlation function reads
[16,17] (ω > 0)

R
(1)
2 (ω) = δ(ω) + 1 −

(
sin(πω)

πω

)2

− ∂

∂ω

(
sin(πω)

πω

)∫ ∞

ω

dt
sin(πt)

πt
. (4)

Sadly, heuristic approaches to nonlinear replica σ models have
so far failed to produce the result of such generality.

One of the reasons behind this misfortune of replicas
is that they are much more quality demanding in making
various approximations and, consequently, are more involved
operationally wise. Such a vulnerability can be attributed to
the continuous geometry underlying replica field theories.
The latter derives from the very idea of constructing replica
generating functionals which associates a physical observable
of interest with the n → 0 limit of a collective matrix field
Q arising as a result of imaginary n-fold replication of the
original physical system. Since the dimension of Q is an
integer, dim(Q) ∝ n, taking the replica limit becomes quite an
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adventure [8,9,11,13]. For instance, the p-point Green function

G(β)
p (E; N ) =

〈
p∏

α=1

Tr (Eα − H)−1

〉
GβEN

(5)

can formally be recovered from the replica limit

G(β)
p (E; N ) = lim

n→±0

1

np

∂p

∂E1 · · · ∂Ep

Z̃(β)
n (E; N ), (6)

where Z̃
(β)
n (E; N ) is either a fermionic (n > 0) or a bosonic

(n < 0) representation of the replica partition function

Z(β)
n (E; N ) =

〈
p∏

α=1

detn(Eα − H)

〉
GβEN

. (7)

The two representations can be derived from Eq. (7) by using
standard field-theoretic methods [2,8,13]. Alternatively, one
may appeal to the RMT duality relations [18] which yield,
e.g., the fermionic replica partition function (n > 0) in the
form

Z̃
(β,+)
|n| (E; N ) ∝ e(2/β)Tr[E⊗1n]2

∫
[DQ] e−(β/2)Tr Q2

× detNQ e−2i Tr[Q(E⊗1n)]. (8)

Here, an integral runs over the matrix field Q ∈ Mnp(F4/β)
of dimension dim(Q) = np. The bosonic replica partition
function (n < 0) whose derivation is more intricate and
delicate [19] also admits a dual matrix representation [18–21]
akin to Eq. (8).

The necessity of performing a limiting procedure in the
matrix dimension [Eqs. (6) and (8)] highlights an unusual
continuous geometry of replica field theories; it ruins a
classic notion of matrix, raising both conceptual problems [22]
regarding mathematical foundations of nonlinear replica σ

models and operational problems of dealing with weird objects
where the plain intuition often refuses to work.

To avoid running into an underdeveloped concept of
spaces of rational dimension [22], one first performs replica
calculations for an integer number of replicas in a hope
to implement the replica limit n → 0 at a later stage after
seeking an analytic continuation away from n integers. For
such a continuation to be grounded, one should start with
an exact integer-n result. The latter had been unavailable
in the early replica studies [13] that heavily relied on the
existence of a large spectral parameter ω/� � 1 required
to justify approximate saddle-point calculation of the replica
partition function. The above inequality restricted the domain
of applicability of Eq. (1), while an approximate character of
integer-n calculations led to its questioned [9] mathematical
status.

The status of nonlinear replica σ models was dramatically
uplifted in Refs. [23–25] where both fermionic and bosonic
versions of zero-dimensional replica field theories were shown
to be exactly solvable for the β = 2 symmetry class. The theory
of Painlevé transcendents [26], the Toda lattice [27], and asso-
ciated τ functions [28] lie at the heart of the exact approach to
replicas in the elaboration [23–25]. Later, a complementary—
supersymmetric—formulation of replicas was introduced by
Splittorff and Verbaarschot [29]. These authors have argued
that the replica limit can efficiently be implemented on the level

of the supersymmetric Toda lattice equation whose positive
and negative branches describe fermionic and bosonic partition
functions, respectively. Supersymmetric replicas have greatly
simplified calculations of β = 2 spectral correlation functions
through a remarkable fermionic-bosonic factorization [29,30].

In this Rapid Communication, we take one more step
towards a comprehensive understanding of the integrable
structures of nonlinear replica σ models by presenting an
integrable theory of a supersymmetric variation of zero-
dimensional replica field theories for the β = 1 symmetry
class that so far denied a nonperturbative treatment. Focusing
on the Gaussian orthogonal ensemble (GOE) and building on
the theory of Pfaff-KP τ functions [28], we shall show that
supersymmetric replicas do produce a nonperturbative result
Eq. (4) for the GOE two-point density-density correlation
function.

Density-density correlation function from supersymmetric
replicas. Specifying the GOEN by the normal probability
density ∝ exp(−N Tr H2) on MN (F1), we look for a large-N
limit of the replica partition function Z(1)

n (E1,E2; N ) whose
energy variables E1,2 are rescaled as described beneath Eq. (2).
A sometwhat lengthy calculation [31] based on the methods
described in Refs. [21,32,33] shows that both fermionic and
bosonic partition functions admit the large-N factorization

Z̃
(±)
|n| (ω; N ) = N2n2

(4e)∓|n|N ẑ
(±)
|n| (ω), (9)

where ẑ(+)
m (ω) is the fermionic partition function,

ẑ(+)
m (ω) = c(+)

m

m∏
k=1

∫ 1

−1
dλk

(
1 − λ2

k

)
e−iπωλk

∣∣�λ
m

∣∣4
. (10)

while ẑ(−)
m (ω) is the bosonic one,

ẑ(−)
m (ω) = c(−)

m

2m∏
k=1

∫ ∞

1

dλk√
λ2

k − 1
ei(πω/2)λk

∣∣�λ
2m

∣∣. (11)

Here, ω �→ ω + i0 is assumed to have an infinitesimally
small positive imaginary part, �λ

m = ∏m
j>k(λj − λk) is the

Vandermonde determinant,

c(+)
m = (2π )mG(1/2)

24m2
m!

�(m + 1/2)

G(2m + 3/2)

m∏
j=1

�(2m + 2j )

�3(2j )
, (12)

and

c(−)
m = πm

22m2 (2m)!

1∏2m
j=1 �2(j/2)

. (13)

The notation G(z) stands for the Barnes G-function.
In order to recover the two-point density-density cor-

relation function [Eq. (2)] in infinite-dimensional GOE,
R2(ω) = (1/2π2)Re g(ω) − 1/2, through the replica limit for
the corresponding two-point Green function

g(ω) = − lim
n→0

1

n2

∂2

∂ω2
ẑ

(±)
|n| (ω), (14)

one has to find a proper nonperturbative representation of either
fermionic [23] or bosonic [25] partition functions, or opt for
supersymmetric replicas [29]. It is the latter route that will be
explored below.
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To make a forthcoming presentation transparent, we first
quote our main analytic result. Let ẑn(ω) be a supersymmetric
replica partition function,

ẑn(ω) =

⎧⎪⎨
⎪⎩

ẑ
(−)
|n| (ω), n < 0;

1, n = 0;

ẑ
(+)
|n| (ω), n > 0.

(15)

For all n integers (both positive and negative), the following
nonlinear recursive differential equation of the Pfaff-KP type
holds: (

∂3

∂ω3
− 2n

ω

∂2

∂ω2
+ 2n

ω2

∂

∂ω

)
log ẑn(ω)

+ 2

(
∂

∂ω
log ẑn(ω)

)(
∂2

∂ω2
log ẑn(ω)

)

= π4n2(2n + 1) ω
ẑn−1(ω) ẑn+1(ω)

ẑ2
n(ω)

×
(

4n + ω
∂

∂ω
log

ẑn+1(ω)

ẑn−1(ω)

)
. (16)

Equation (16), whose derivation will be sketched below, is
central to implementing the replica limit Eq. (14). Indeed,
assuming that Eq. (16) stays valid for n real, we introduce a
small-n expansion

log ẑn(ω) = nf1(ω) + n2f2(ω) + O(n3) (17)

and substitute it into Eq. (16) to realize that f ′′
1 (ω) should be

set to zero [34] to ensure the existence of the limit Eq. (14).
Further, we make use of the boundary conditions for ẑ

(−)
|n| (ω)

at ω → ∞ [see Eq. (11)] to figure out that f ′
1(0) = −iπ .

Finally, we combine Eqs. (14) and (17) to observe the relation
g′(ω) = −f ′′′

2 (ω) and subsequently derive from Eq. (16):

g′(ω) = −2iπ

ω2
+ π4ω2ẑ

(+)
1 (ω) ẑ

(−)
1 (ω)

∂

∂ω
log

ẑ
(−)
1 (ω)

ẑ
(+)
1 (ω)

. (18)

Hence, the Green function can solely be expressed in terms of
the replica partition function for one fermionic [ẑ(+)

1 (ω)] and
one bosonic [ẑ(−)

1 (ω)] flavor. Such a “factorization property”
was first observed in Ref. [29] in the context of supersymmetric
replicas for β = 2 matrix models.

To complete the evaluation of R2(ω), we use Eqs. (10)
and (11) to find out

ẑ
(+)
1 (ω) = − 4

π2ω
S ′(ω), (19)

ẑ
(−)
1 (ω) = i

2(πω)

∫ ∞

1

dt

t
ei(πω)t , (20)

where S(ω) = sin(πω)/(πω). Equations (18)–(20) imply

R′
2(ω) = 1

π

∂

∂ω
Re

i

ω + i0

− ∂

∂ω

(
S2(ω) + S ′(ω)

∫ ∞

ω

dt S(t)

)
(21)

or, equivalently,

R2(ω) − R2(∞) = δ(ω) −
(

S2(ω) + S ′(ω)
∫ ∞

ω

dt S(t)

)
.

(22)

Setting R2(∞) to unity concludes our replica derivation of
the celebrated nonperturbative formula [Eq. (4)] for the two-
point density-density correlation function in infinite-
dimensional GOE.

Supersymmetric Pfaff-KP equation. Since the derivation
of the supersymmetric Pfaff-KP equation [Eq. (16)] is quite
tedious, below we only sketch its main idea leaving the details
for a separate publication. We proceed in four steps.

(i) First, we define the fermionic and the bosonic τ functions
given by

τ̂
(+)
2m (s; t) = 1

m!

m∏
k=1

∫ 1

−1
dλk

(
1 − λ2

k

)
e2sλk+2V (t;λk )

∣∣�λ
m

∣∣4
(23)

and (Re s > 0)

τ̂
(−)
2m (s; t) = 1

(2m)!

2m∏
k=1

∫ ∞

1

dλk√
λ2

k − 1
e−sλk−V (t;λk)

∣∣�λ
2m

∣∣,
(24)

respectively. Here, s = −iπω/2, while V (t; λ) = ∑∞
j=1 tj λ

j

is a deformation potential parametrized by infinitely many
parameters t = (t1,t2, . . .). To make a connection with the
supersymmetric replica partition function ẑn(ω), we also
construct the supersymmetric τ function

τ̂2m(s; t) =

⎧⎪⎨
⎪⎩

τ̂
(−)
2|m|(s; t), m < 0;

1, m = 0;

τ̂
(+)
2|m|(s; t), m > 0

(25)

such that the following projection relation holds:

ẑn(ω) = τ̂2n(s = −iπω/2; 0). (26)

(ii) Second, we utilize the formalism by Adler and van
Moerbeke [28] to claim the existence of a single
“supersymmetric” Pfaff-KP hierarchy coherently constraining
both fermionic [Eq. (23)] and bosonic [Eq. (24)] τ functions.
Its first [Pf KP1] and second [Pf KP2] equations, respectively,
read [31]

(
∂4

∂t4
1

+ 3
∂2

∂t2
2

− 4
∂2

∂t1∂t3

)
log τ̂2m + 6

(
∂2

∂t2
1

log τ̂2m

)2

= 12
τ̂2m−2 τ̂2m+2

τ̂ 2
2m

, (27)

(
∂4

∂t3
1 ∂t2

− 3
∂2

∂t1∂t4
+ 2

∂2

∂t2∂t3

)
log τ̂2m + 6

(
∂2

∂t2
1

log τ̂2m

)(
∂2

∂t1∂t2
log τ̂2m

)
= 6

τ̂2m−2 τ̂2m+2

τ̂ 2
2m

∂

∂t1
log

τ̂2m+2

τ̂2m−2
. (28)
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Nonlinear differential operators in the left-hand side of
Eqs. (27) and (28) are known as the first and the second
Kadomtsev-Petviashvili operators [30]. Equations (27)
and (28) are the β = 1 analogs of supersymmetric Toda lattice
equations previously discovered [29,30] in the context of
β = 2 replica field theories.

(iii) Third, given the invariance of τ̂
(±)
2m under the change of

integration variables λk �→ μk + ε(μ2
k − 1)μq+1

k in Eqs. (23)
and (24), we observe [31] that the supersymmetric τ

function Eq. (25) satisfies an infinite set of Virasoro constraints
(q � −1)[

L̂(1)
q+2(t) − L̂(1)

q (t) + s

(
∂

∂tq+3
− ∂

∂tq+1

)

− (q + 2)
∂

∂tq+2

]
τ̂2m(s; t) = 0, (29)

where

L̂(1)
q =

∞∑
j=1

j tj
∂

∂tq+j

+ 1

2

q∑
j=0

∂2

∂tj ∂tq−j

+ 1

2
(q + 1)

∂

∂tq
(30)

is the β = 1 Virasoro operator [28]. Equation (29) assumes
that ∂/∂t1 = ∂/∂s; the operator ∂/∂t0 should be interpreted as
∂/∂t0 = 2m.

(iv) Fourth, we combine Eq. (26) with the three low-
est Virasoro constraints (q = −1, 0, and +1) to project
[(Pf KP1) + (s/2n)(Pf KP2)] log τ̂2n(s; t) onto the hyperplane
t = 0. Lengthy but straightforward calculations yield [31]
the sought Pfaff-KP equation for the supersymmetric replica
partition function ẑn(ω). This completes our derivation of
Eq. (16).

Conclusions. In this Rapid Communication, we have shown
how the ideas of integrability can be utilized to formulate
a nonperturbative theory of β = 1 zero-dimensional replicas
in their supersymmetric elaboration. Although a particular
emphasis was placed on the GOE random matrices, the
formalism outlined is quite general and should equally apply
to other random matrix models (including those appearing in
various RMT formulations of quantum chromodynamics), for
both β = 1 and β = 4 symmetry classes which are dual to
each other. Yet, we believe that an understanding of formal
structures lurking behind zero-dimensional replica σ models
that was accumulated during the past decade takes us one
step closer to formulating exact replica theories for more
realistic matrix models (e.g., random banded matrices) and
physical systems. In connection to the latter, we wish to
mention a recent breakthrough [35,36] in rigorization [37] of
heuristic replicas devised in the context of one-dimensional
disordered polymers. Concerned with the statistics of free
energy fluctuations of a directed polymer, the authors of
Refs. [35,36,38] used a Bethe ansatz solution of a replicated
system of attractive bosons [39] to derive a set of Tracy-
Widom laws for the free energy distribution. Interestingly,
while the formalism developed in Refs. [35,36] is opera-
tionally different from ours (see also Refs. [23,25,29]), the
underlying concept of both approaches—integrability of a
corresponding replicated system—appears to be precisely
the same. Given this observation, will it be possible to
establish a formal correspondence between the two replica
frameworks?
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