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Extending the recent work on models with spatially nonuniform nonlinearities, we study bright solitons
generated by the nonpolynomial self-defocusing (SDF) nonlinearity in the framework of the one-dimensional
(1D) Mufioz-Mateo—Delgado (MM-D) equation (the 1D reduction of the Gross-Pitaevskii equation with the
SDF nonlinearity), with the local strength of the nonlinearity growing at |x| — oo faster than |x|. We produce
numerical solutions and analytical ones, obtained by means of the Thomas-Fermi approximation, for nodeless
ground states and for excited modes with one, two, three and four nodes, in two versions of the model, with
steep (exponential) and mild (algebraic) nonlinear-modulation profiles. In both cases, the ground states and the
single-node ones are completely stable, while the stability of the higher-order modes depends on their norm (in
the case of the algebraic modulation, they are fully unstable). Unstable states spontaneously evolve into their

stable lower-order counterparts.
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I. INTRODUCTION

The experimental realization of the Bose-Einstein con-
densates (BECs) of dilute atomic gases [1-3] allows the
investigation of a great many fascinating phenomena, such
as the Anderson localization of matter waves [4,5], production
of bright [6-9] and dark solitons [10], dark-bright complexes
[11], vortices [12] and vortex-antivortex dipoles [13-16],
persistent flows in the toroidal geometry [17,18], skyrmions
[19], emulation of gauge fields [20] and spin-orbit coupling
[21], quantum Newton’s cradles [22], and so on. This subject
has been greatly upheld by the use of the Feshbach-resonance
(FR) technique, i.e., the control of the strength of the inter-
atomic interactions by externally applied fields [23-25], which
opens the possibility to implement sophisticated nonlinear
patterns. In particular, the management of localized solutions
of the Gross-Pitaevskii equation (GPE) [26] by means of the
spatially inhomogeneous nonlinearity, which may be created
by external nonuniform fields that induce the corresponding
FR landscape, has attracted a great deal of interest in theoretical
studies [27-36].

In this vein, the existence of bright solitons in systems
with purely repulsive, or self-defocusing (SDF) nonlinearity,
in the absence of external linear potentials, was recently
predicted [37]. This result is intriguing because the existence of
such solutions, supported by SDF-only nonlinearities, without
the help of a linear potential, was commonly considered
impossible. In the setting introduced in Ref. [37], the system
is described by a nonlinear Schrodinger (NLS) equation with
the SDF cubic term, whose strength increases in space rapidly
enough towards the periphery. The discovery of bright solitons
in this setting has ushered studies of solitary modes in other
models with spatially growing repulsive nonlinearities, both
local [38—43] and nonlocal [44]. More specifically, in Ref. [38]
it was demonstrated that spatially inhomogeneous defocusing

1539-3755/2013/88(2)/025201(5)

025201-1

PACS number(s): 05.45.Yv, 03.75.Lm, 42.65.Tg

nonlinear landscapes modulated as 1+ |r|*, with @« > D in
the space of dimension D, support stable fundamental and
higher-order bright solitons, as well as localized vortices, with
algebraically decaying tails. Further, it was shown in Ref. [39]
that bimodal systems with a similar spatial modulation of
the SDF cubic nonlinearity can support stable two-component
solitons, with overlapping or separated components. Work [40]
addressed the possibility of supporting stable bright solitons
in one- and two-dimensional (1D and 2D) media by the SDF
quintic term with a spatially growing coefficient. In Ref. [41],
it was predicted that a practically relevant setting, in the form
of a photonic-crystal fiber whose strands are filled by an
SDF nonlinear medium, gives rise to stable bright solitons
and vortices. Asymmetric solitons and domain-wall patterns,
supported by inhomogeneous defocusing nonlinearity, were
reported in Ref. [42]. Going beyond the limits of BEC and
optics, in Ref. [43] self-trapped ground states were predicted
to occur in a spin-balanced gas of fermions with repulsion
between the spinor components, provided that the repulsion
strength grows from the center to periphery, in combination
with the usual harmonic-oscillator trapping potential acting
in one or two transverse directions. A very recent result
demonstrates that the 2D isotropic or anisotropic nonlinear
potential, induced by the strength of the local self-repulsion
growing ~r*, can efficiently trap fundamental solitons and
vortices with topological charges 1 and 2 in the dipolar
BEC, with the long-range repulsion between dipoles polarized
perpendicular to the system’s confinement plane [45].

In the present work, we address the existence of stable
bright solitons in the framework of the nonpolynomial Mufioz-
Mateo—Delgado (MM-D) equation [46,47] (see also Ref. [48]),
which is a 1D reduction of the full three-dimensional (3D)
GPE for cigar-shaped condensates with repulsive interatomic
interactions. Because of the repulsive sign of the intrinsic
nonlinearity, the MM-D equation drastically differs from
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the nonpolynomial NLS equation derived as a result of the
dimensional reduction for the self-attractive BEC [49]. In
this work, we consider the spatially modulated nonpolynomial
nonlinearity whose strength increases rapidly enough towards
the periphery, similarly to what was originally introduced in
Ref. [37] for the cubic SDF nonlinearity. Results are obtained
analytically by means of the Thomas-Fermi approximation
(TFA) and in a numerical form.

II. THE THEORETICAL MODEL
We start with the GPE written in 3D as

it s V2w 4+ ()N|\IJ|2‘~II+1 2y + v
h— = —— r —mw s
a1 2m & ML L

(1)

where W(r,r) is the mean-field wave function, V? is the
Laplacian, g(r) is the spatially dependent local coefficient
of the self-repulsive nonlinearity, and w, is the strength of
the harmonic-oscillator (HO) trapping potential applied in the
transverse plane, (y,z), while m and N are the atomic mass and
the number of particles, respectively. In Refs. [50] and [46] it
has been shown that the effective 1D equation governing the
axial dynamics of cigar-shaped condensates with the repulsive
interatomic interactions can be derived as a reduction of the
3D equation (1),

2 g2y
lha—ltp = ;l E; > thoiy1+4a(x)N|y| 24, 2)
with a(x) > 0 being the s-wave scattering length, whose
dependence on axial coordinate x may be imposed by
means of the FR management. The corresponding 3D wave
function is approximated by the factorized ansatz, W =
Y(x,t)®(ry,n(x,t)), where n; is the axial density, n; =
N [ [dydz|¥(x,y,z)|?, and ®(r|,n) is the transverse wave
function satisfying the equation [see Eq. (15) of Ref. [46]]

=2 1, —\= _ =
<—§V +§rl+47ran1|cl>| )CD:;LLCD, 3)
written in scaled variables 7, =r, /a,, ® =a, P, and w, =
w1 /hw, . Here uy = wu,(n) is the local chemical potential,
anda; = «/h/mw, is the confinement length in the transverse
direction. Equation (3) admits explicit approximate solutions
in the limit cases of an; < 1 and an; > 1, treating @ as the
Gaussian ground state of the HO potential or the TFA wave
function [46].
Finally, Eq. (2) is transformed into a scaled form,

1+olel*e, “4)

where o (x) = 4a(x)/a, . Stationary solutions to Eq. (4) with
(longitudinal) chemical potential u are looked for, as usual,

Q(x,1) = p(x)e ™. ®)

The application of the TFA, which neglects the kinetic-
energy term [26] , to Eq. (4) immediately yields

21
‘»b%FA = Mng (6)
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provided that the chemical potential takes the values i > 1.In
the same approximation, the norm (scaled number of atoms)
of the condensate is

+00 dx
Ntea = (1> — )/ (7
o o)
provided that o (x) grows at |x| — oo faster than |x/|, to secure
the convergence of the integral. In fact, the latter condition
is the exact one which is necessary and sufficient for the
existence of physically relevant self-trapped modes in the
MM-D equation.

The results produced by the TFA in the form of Eq. (6)
were used as the initial guess for finding numerically exact
stationary solutions by means of the well-known method of the
imaginary-time integration, in the framework of which the con-
vergence of stationary solutions may be related to their stability
against small perturbations in real time [51]. As characteristic
examples, we use two different axial nonlinearity-modulation
profiles,

op(x) =1 + x°, )

cf. Refs. [37-40]. Below, these two profiles are referred to as
Cases A and B, respectively.

The stability of the self-trapped modes was investigated in
the framework of the linearized equations, taking the perturbed
solutions as

@ = {p(x) + [v(x) + wx)]e™ + [v*(x) — w(x)]e ™ }e™,
)

where v(x) and w(x) are small perturbations and XA is the
respective eigenvalue. The ensuing linear-stability eigenvalue
problem was solved by means of the Fourier collocation
method, as described in Ref. [51].

First, we have analyzed the stability for the ground-state
solutions produced by the TFA (used as the initial guess for the
numerical stationary solutions). It has been found that they are
stable for all . > 1; see further details below. It is also worth
noting that, as follows from Eq. (7) and corroborated below by
numerical results, the families of the ground-state modes obey
the anti-Vakhitov-Kolokolov (anti-VK) criterion, dN/du >
0, which is a necessary stability condition for localized modes
supported by SDF nonlinearities [52] (the VK criterion per se,
relevant to the usual solitons supported by the self-focusing
nonlinearity [53,54], has the opposite form, dN /du < 0).

oa(x) = cosh?(2x);

III. NUMERICAL RESULTS

The integration in imaginary time was carried out by means
of the split-step code, which was composed to restore the
original norm of the solution at the end of each step of marching
forward in imaginary time. The dispersive part of Eq. (4)
was handled by means of the Crank-Nicolson algorithm with
spatial and temporal steps Ax = 0.04 and Ar = 0.001.

To find higher-order stationary solutions with nodes, the
Gram-Schmidt orthogonalization was performed at the end
of each time step. The ground-state and higher-order solutions
were, thus, obtained using the Hermite-Gaussian input profiles
of orders n = 0,1,2,3,4. To check the correctness of the sta-
tionary solutions, we have also reproduced them by means of
the standard relaxation method, concluding that the solutions
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FIG. 1. (Color online) The model with the nonlinearity-
modulation function o5(x) = cosh?(2x). (a) Chemical potential s
versus norm N for the ground-state solution, ¢ (the yellow curve
with circles); the first excited state, ¢, (the red curve with box-shaped
symbols); the second-order mode, ¢, (the green curve with diamond
symbols); the third-order mode, ¢; (the blue curve with triangles);
and the fourth-order mode, ¢4 (the cyan curve with inverted triangles).
The dashed line shows the TFA prediction for the ground state; see
Eqgs. (6) and (7). Profiles of stationary solutions produced by the
imaginary-time integration method: ¢ (b), ¢; (c), ¢ (d), @3 (e),
and ¢, (f), with norms N = 1 (dashed lines), N = 3 (long-dashed
lines), and N =5 (solid lines). In panel (b), the corresponding
TFA-predicted shapes are shown by chains of circles (N = 1), boxes
(N = 3), and diamonds (N = 5).

obtained by use of both techniques were indistinguishable.
Finally, the stability was checked via the real-time simulations
of the perturbed evolution of input profiles to which random
noise was added at the 5% amplitude level, as well as through
the computation of the stability eigenvalues for perturbed
solution taken as in Eq. (9).

A. Case A
As stated above, the exponential modulation profile of the
nonlinearity coefficient, corresponding to o4 (x) in Eq. (8), is
suggested by its counterpart that was used with the quintic
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FIG. 2. (Color online) The model with o4(x) = cosh?(2x). The
largest instability growth rate, Az, produced by the linear-stability
analysis based on Eq. (9) versus the norm of the unperturbed solution,
for the second-order mode, ¢, (a); third-order mode, ¢; (b); and the
fourth-order one, ¢, ().

PHYSICAL REVIEW E 88, 025201 (2013)

09 (b)a 0.9
(a)ézl ﬁo'é ( )2 Hgg
= 03 x0 :
) 0 =2 0
-4 -4

5000 10000 5(%00 10000
t

0.9
©4 06
X 0.3
-2 R ] I ()
—4

0 5(200 10000

FIG. 3. (Color online) The model with o5(x) = cosh®(2x): The
real-time evolution of perturbed modes of orders k = 2 (a), k = 3 (b),
and k = 4 (c) with norm N = 1. In panels (a) and (b) the solutions
are stable, while in (c) ¢4 is unstable, decaying into ¢,.

nonlinearity in Ref. [40]. In Fig. 1(a) we display the relation
between the chemical potential i and norm N for stationary
solutions ¢y of different orders (number of nodes) k, obtained
with this profile. Typical examples of the stationary modes are
shown in Figs. 1(b)-1(f).

All the solution branches satisfy the above-mentioned
anti-VK criterion. We have checked that, in agreement with
this fact, the ground-state modes, ¢y, are stable for all © > 1.
However, for higher-order modes this criterion is necessary but
not sufficient for the stability. We have, thus, found that the
first excited state, ¢, is fully stable, while higher-order ones,
¢2.3.4, are stable only in specific regions (we have checked
this up to the value of the total norm N = 15). This trend (the
full stability of the ground and first excited states and partial
instability of the higher-order ones) is similar to that featured
by the model with the spatially growing local strength of the
cubic SDF nonlinearity [37].

Results of the linear-stability analysis, based on Eq. (9),
are presented in Fig. 2, which displays the largest real part of
the eigenvalue, Ag, versus the norm for solutions ¢, (a), ¢3
(b), and ¢4 (c). It is seen that the instability sets in with the
increase of the norm. As examples, in Figs. 3 and 4 we show the
density profiles, |1/ (x)|?, for N = 1 and N = 5, respectively,
generated in the direct simulations of the perturbed evolution
of the input states ¢,, ¢3, and ¢4, with the addition of 5%
random noise. The results agree with the predictions of the
linear-stability analysis, cf. Fig. 2.

Direct simulations confirm the predictions of the linear-
stability analysis, as shown in Figs. 3 and 4. All unstable
higher-order modes (at least, up to norm N = 15) are
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FIG. 4. (Color online) The same as in Fig. 3 but for norm N = 5.
The solution is stable in (a) and unstable in (b) and (c).
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FIG. 5. (Color online) The same as in Fig. 1 but for the
nonlinearity-modulation function og(x) = 1 + x5.

spontaneously transformed into stable modes of lower orders
(with fewer nodes). In particular, the unstable ¢4 mode in
Fig. 4(c) decays into ¢, although mode ¢, is stable here, too.
In some other cases, the unstable mode decays directly to the
ground state, ¢, although the stable ¢; mode exists, too.

B. Case B

The algebraic (mild) modulation of the nonlinearity coeffi-
cient is represented by og(x) from Eq. (8). For this version of
the model, the chemical potential w is shown, as a function of
norm N, in Fig. 5(a) for different modes ¢ [the prediction of
the TFA for the ground state, given by Eq. (6), is shown by the
dashed line].

Numerical simulations confirm the stability of all the
ground-state solutions, ¢, for all © > 1. However, the stability
regions for higher-order modes differ from the version of the
model corresponding to oa(x) in Eq. (8), as concerns the
instability regions for higher-order modes. In this case, too,
we have checked the stability for N < 15, concluding that ¢,
is completely stable, while ¢, 3 4 are unstable at all values
of the norm. Similarly to Case A, but much faster, unstable
solutions decay into lower-order stable states, ¢o or ¢;. As
typical examples, in Fig. 6 we display a stable single-node
solution, ¢, and the spontaneous transformation of multinode
solutions into lower-order states, for N = 5. In the model with
the modulated local strength of the cubic self-repulsive term,
the mild algebraic form of the modulation also gives rise to
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FIG. 6. (Color online) The same as in Fig. 4 but for og(x) =
1 4+ x°. (a) The stable evolution of mode ¢, . [(b), (c), and (d)] Unstable
evolution of modes ¢,, ¢3, and ¢4, respectively.

solitons families which are less stable than their counterparts
obtained in the model with the steep exponential modulation,
cf. Refs. [38] and [37].

IV. CONCLUSION

We have shown that the MM-D equation, which is the
1D nonpolynomial reduction of the 3D GPE with the self-
repulsive cubic nonlinearity, supports stable fundamental and
higher-order self-trapped modes (‘“solitons”), provided that the
local strength of the nonlinearity grows faster than |x| at |x| —
0o. We have studied in detail two nonlinearity-modulation
patterns, one steep (exponential) and one mild (algebraic).
In both models, the ground state (which was approximated
analytically by means of the TFA) and the single-node excited
state are completely stable, while the stability of higher-order
(multinode) excited modes depends on their norm and differs in
the two models. In direct simulations, the evolution of unstable
modes always leads to their spontaneous transformation into
stable ones of lower orders.

It may be interesting to extend the analysis for fundamental
solitons and solitary vortices in the 2D setting, with the
tight confinement acting in the transverse direction and the
nonlinearity strength growing along the radius, r, faster
than r2.
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