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Large-amplitude oscillations in the rectangular Fermi accelerator
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Exponential energy growth in a rectangular billiard with an oscillating bar has been clearly demonstrated
earlier. Using the log-normal approximation, analytical estimates for the energy growth rate have also been
provided. However, these analytical estimates are valid only when the amplitude of oscillation of the bar is small.
In this paper, for larger oscillation amplitude, the log-normal approximation is numerically shown to be invalid
and analytical estimates are obtained for the true energy growth rate in the case of very large particle velocities
or small bar length. It is also shown that when everything else remains constant, the length of the bar which gives
rise to maximum energy growth rate decreases as the oscillation amplitude increases and the true value of this
maximizing length is also smaller than what is predicted by the log-normal approximation. Thus, the rectangular
Fermi accelerator forms a very good example of a contemporary research problem where the limitations of the
log-normal approximation can be easily appreciated.
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I. INTRODUCTION

The Fermi acceleration model was originally proposed
by Fermi [1] and later refined by Ulam [2] to explain the
acceleration of cosmic rays observed by Hess [3]. This concept
has also found immense applications in areas like collisional
heating in plasma rf sheaths [4] and models of nuclear
fission [5]. The one-dimensional (1D) Fermi-Ulam model [6,7]
consists of a particle elastically bouncing between two rigid
walls, one of which is fixed and the other of which oscillates
periodically. If both the walls are fixed, then the total energy of
the particle remains constant, but if one of the walls is moving,
the particle gains or loses energy with each collision with this
moving wall. It is now well known that for the 1D Fermi-Ulam
model, the particle cannot gain energy unboundedly if the wall
motion is smooth. However, it has been shown that unbounded
energy growth can be achieved when the particle motion takes
place in the presence of potentials [8,9] or if one introduces a
relativistic factor in the equations of motion [10]. Nonsmooth
motion and stochastic fluctuations may also lead to unbounded
energy growth [11], which is typically polynomial in time [12].

In the case of two-dimensional (2D) Fermi accelerators with
smoothly oscillating walls, it has been shown that unbounded
energy growth can be achieved if the frozen billiard [13] is
chaotic [14–20] or pseudointegrable [21,22]. The quantum
mechanical oscillating chaotic billiards play an important role
in the modeling of mesoscopic devices [23]. It has also been
shown numerically that there can be a very slow unbounded
energy growth even when the static billiard is integrable [24].
In the case of pseudointegrable billiards, it has been predicted
that the energy growth is not only unbounded but can also be
exponential [22]. In one special case of a rectangular billiard
with an oscillating bar in between, it has been shown both
analytically and numerically that the energy growth is indeed
exponential with a predictable and finely controllable energy
growth rate [21]. The static version was previously introduced
in Refs. [25,26] and has been used to study weak mixing along
filamented surfaces [27]. Robust exponential energy growth
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has also been demonstrated in a billiard with adiabatic motion
of a piston [28].

In Ref. [21], an estimate for the energy growth rate of
particles in the rectangle with bar was obtained by using the
log-normal distribution, which is a widely used approximation
for random multiplicative processes. Though this approxima-
tion is valid for small oscillation amplitudes of the bar, it
fails to predict the energy growth rate when the oscillations
become large. In particular, the true energy growth rate is
much lower than the rate predicted by making the log-normal
approximation. The goal of this paper is to analyze the energy
growth rate for large amplitude oscillations of the bar in more
detail and point out important differences from the case of
small amplitude oscillations.

In Sec. II, a derivation of the known energy growth rate
in a rectangle with bar is briefly described for the sake of
completion. A detailed description of the energy growth rate in
this Fermi accelerator can be found in Ref. [21]. In Sec. III, the
main results of this paper are presented and their implications
discussed. The paper is finally concluded with Sec. IV.

II. RECTANGLE WITH BAR

Consider a rectangular billiard with a bar as shown in
Fig. 1. To achieve acceleration, let the bar oscillate slowly: s =
f (θ ) = f + f̃ (θ ), θ ∈ [0,2π ], θ = ωt where 〈f̃ (θ )〉 = 0.
The vertical velocity of the bar is V (t) = ṡ = ωf ′(θ ). Let
θn = ωtn be the phase of the bar at the collision time, (xn,yn) be
the location of the particle at time tn, and (un,vn) be the velocity
vector of the particle immediately after the nth collision. The
particle undergoes elastic collisions from all the boundaries.
Since all wall motions are purely vertical, the horizontal speed
u = |un| remains a constant of motion, whereas the vertical
speed changes when the particle collides with the moving bar:

vn+1 = 2ωf ′
n − vn when {yn = fn,xn ∈ [0,λ]} (1)

where fn = f (θn) and f ′
n = f ′(θn).

Since the horizontal speed stays constant, the time the
particle spends oscillating above or below the bar is Tλ =
2λ/u, and the time to return to a vertical section after
completing one cycle around the rectangle is TL = 2L/u.
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FIG. 1. (Color online) Rectangular billiard, of length 2L and
height 2 units, with a vertically oscillating horizontal bar of length 2λ

in between. A particle moves within this rectangular region, undergo-
ing elastic reflections from the walls and the horizontal bar. Since the
bar is oscillating, collisions with it change the energy of the particle.

Hence, the phase shift of the bar after time Tλ is θλ = 2ωλ/u

and the phase shift of the bar after a full revolution of the
particle is θL = 2ωL/u.

As shown in Ref. [21], the motion of particles in this
rectangle with bar can be modeled as a random process, with
the particle up and down positions being independent random
variables. If it is also assumed that the probability to fall into the
upper part at the entry phase θ is proportional to the normalized
y-interval length, [1 − f (θ )]/2, and is independent of the
history of the previous rounds, then μ, the expected value of
gain in the kinetic energy in one cycle around the rectangle for
a single-particle trajectory that enters the bar with the phase θ

and horizontal velocity u can be estimated as

μθ = E[v̄2/v2]

= 1 − f (θ )

2

(
1 − f (θ )

1 − g(θ )

)2

+ 1 + f (θ )

2

(
1 + f (θ )

1 + g(θ )

)2

� 1, (2)

where g(θ ) = f (θ + θλ). The expected value of the energy
gain after N cycles is given by

E

[
v2(NTL)

v2(0)

]
= μθ1 · μθ2 · · · μθN

= exp

[
N∑

i=1

ln μθi

]

= exp

[
N

2π

∫ 2π

0
ln μθdθ

]
= exp

[
Rθλ

t
]
, (3)

assuming that θi are distributed uniformly over [0,2π ]. Thus,
for a finite ensemble of K initial conditions, the observed
average energy growth is〈

v2(t)

v2(0)

〉
= exp

(
Rθλ

t
) + O

(
σ√
K

)
, (4)

where σ denotes the standard deviation of v2(t)/v2(0).

Similarly, the expectation value of the logarithmic gain can
be shown to be positive

mθ = E[ln(v̄2/v2)]

= [1 − f (θ )] ln
1 − f (θ )

1 − g(θ )
+ [1 + f (θ )] ln

1 + f (θ )

1 + g(θ )
� 0, (5)

which implies

E

[
ln

v2(NTL)

v2(0)

]
= mθ1 + mθ2 + · · · + mθN

=
N∑

i=1

mθi

= N

2π

∫ 2π

0
mθdθ := Mθλ

t. (6)

Equation (2) implies an exponential energy growth for the
expected value of the particle’s energy (ensemble average),
whereas Eq. (5) implies that almost every initial condition also
produces an exponentially accelerating trajectory. Assuming
that the additive process of Eq. (6) leads to a normal
distribution, it can be shown using the properties of the
log-normal distribution [29] that

RLN = Mθλ
+ 0.5S2

θλ
, (7)

where S2
θλ

t is the variance of ln v2(NTL)
v2(0) and the subscript LN

stands for log-normal. If s = f̃ (θ ) = a sin θ and |a| � 1, it
can be shown using Eqs. (5), (6), and (7) that

Rθλ
≈ 3Mθλ

≈ 6λω

Lθλ

a2 sin2 θλ

2
� 0, (8)

implying an exponential energy growth for an ensemble of
particles. The rate Rθλ

given by Eq. (8) has a global maximum
at θλ = θmax where

θmax = tan(0.5θmax) ≈ 2.35. (9)

A phase space interpretation of this exponential energy
growth based on a comparison with the 1D Fermi-Ulam
model has been presented in Ref. [30]. An important point
to note in this context is that though the energy growth rate
predicted by the above random walk model is quite accurate,
a verification of the basic assumptions of this model requires
further investigation. For example, it has been assumed that the
probability of the particle going above the bar is proportional
to the normalized y-interval length, [1 − f (θ )]/2. Though
this assumption is reasonable because the system under
consideration is ergodic, strictly speaking, ergodicity comes
into play only over very long intervals of time or over large
ensembles. Another assumption made in the above model is
that the probability of the particle going above or below the
bar in each cycle is independent of the previous cycles. This
assumption also rests on the property of ergodicity and is
strictly valid only in the long-time or large ensemble limit. It
is for this reason that the above random walk model fails to
correctly predict the energy growth rate of each trajectory but
correctly captures the energy growth rate of a large ensemble
of particles.
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FIG. 2. This figure shows the dependence of Rθλ
, Mθλ

, and RLN on
θλ. The two subplots (a) a = 0.1 and (b) a = 0.6 show the remarkable
difference between Rθλ

and RLN as a increases. In panel (a), Rθλ
≈

RLN ≈ 3Mθλ
for a = 0.1, but in panel (b), when a = 0.6, we can

clearly see that Rθλ
is much smaller than RLN , which in turn is lower

than 3Mθλ
.

III. LARGE AMPLITUDE OSCILLATIONS

In the previous section, a derivation of the exponential
energy growth rate of particles in a rectangle with bar has been
briefly presented (for details, see Ref. [21]). In this section,
we consider the case of large amplitude oscillations of the bar
and show that the log-normal approximation does not hold
when a is large. For large a, we also show that the value of θλ

which maximizes Rθλ
is substantially lower than the value of

θλ which maximizes Mθλ
or RLN .

A. True energy growth rate

A method for integrating Eq. (3) exactly is not known
to the author and recourse must be taken to a perturbative
expansion with the smallness parameter being the oscillation
amplitude, a. However, this perturbative expansion would be
practically meaningful only when a is small since otherwise a
large number of terms will be required. Also, when a is large,
the perturbative expansion may not converge at all. The result
of numerical integration of Eq. (3) to obtain the dependence
of Rθλ

on θλ is shown in Fig. 2. As can be clearly seen, though
for a small value of a = 0.1 we have Rθλ

≈ RLN ≈ 3Mθλ
,

for a large value of a = 0.6 Rθλ
is much smaller than both

RLN , which in turn is smaller than 3Mθλ
. This shows that

the log-normal approximation is valid only for small values
of a, and for larger values of a, we need to solve Eq. (3)
explicitly.

The fact that for large values of a, the true energy growth
rate is much smaller than what is predicted by the log-normal
approximation is clear from Fig. 3. This figure is not obtained
by exactly simulating the Fermi accelerator but by simulating
the equivalent random process described in Sec. II. The full
simulation for the Fermi accelerator could not be done for
such large values of a since the energy growth rate is too large
in this case and the computation reaches its accuracy limits
for very small values of t . In Fig. 3, curve (a) shows the true
energy growth rate for the rectangle with bar. Curve (b) has an
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FIG. 3. This figure shows the logarithmic energy growth (with
base e) for a = 0.6. Curve a is the true energy growth rate, Rθλ

, for
an ensemble of 1000 particles in the rectangle with bar. Curve b has
an energy growth rate of Mθλ

and curve c has an energy growth rate,
RLN , as predicted by the log-normal approximation. As can be clearly
seen, right from t = 0, the ensemble energy grows at a much lower
rate than predicted by the log-normal approximation.

exponential energy growth rate equal to Mθλ
and curve (c) has

an exponential energy growth rate equal to RLN . As can be
clearly seen, the true energy growth rate, Rθλ

, is much lower
than that given by RLN .

For large values of a, though it is difficult to analytically
integrate Eqs. (3) and (6) for arbitrary values of θλ, it can be
shown that for small values of θλ

Rθλ
= 2λω

L

[
3a2θ3

λ

4
√

1 − a2
+ 3

(
θλ − 7θ3

λ

12

)
(1 −

√
1 − a2)

− 9θ3
λ

4

(
1 + a4 + a2 − 2

2
√

1 − a2

)
+ O

(
θ5
λ

)]
(10)

and

Mθλ
= 2λω

L

[
a2θ3

λ

4
√

1 − a2
+

(
θλ − 7θ3

λ

12

)
(1 −

√
1 − a2)

+O
(
θ5
λ

)]
(11)

and

S2
θλ

= 4Mθλ
+ 2λω

L

[
θ3
λ

(
8 − 13a4 − 8a2 + 16

2
√

1 − a2

)
+ O

(
θ5
λ

)]
.

(12)

In the above equations, it can be clearly seen that for large a,
the expressions for Rθλ

and 3Mθλ
are almost the same except

for the last term in Eq. (10). It is this term that leads to a lower
energy growth rate than what is predicted by the log-normal
approximation. On comparing Eqs. (10), (11), and (12), we
find that the difference between Rθλ

and RLN = Mθλ
+ 0.5S2

θλ
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FIG. 4. This figure shows the dependence of θmax on the amplitude
of oscillation, a. As can be seen, θmax is almost constant for Mθλ

but
decreases with increase in a for both Rθλ

and RLN .

is given by

Rθλ
− RLN

2λω/L
= −9θ3

λ

4

(
1 + a4 + a2 − 2

2
√

1 − a2

)

− θ3
λ

2

(
8 − 13a4 − 8a2 + 16

2
√

1 − a2

)
+ O

(
θ5
λ

)
= −θ3

λ

(
25

4
− 17a4 − 25a2 + 50

8
√

1 − a2

)
+ O

(
θ5
λ

)
,

(13)

which is always negative and O(a4) and thus is not negligible
if the oscillation amplitude, a, is large. Equation (13) also
shows that Rθλ

< RLN , implying that the true energy growth
rate is much lower than that predicted by the log-normal
approximation for large a.

B. Maximizing value of θλ

In Fig. 2, it can also be seen that the value of θλ at which Rθλ

and RLN take their maximum values varies with a. However,
the value of θλ at which Mθλ

takes its maximum value is almost
constant and does not depend on a. A plot of the value of θλ

at which Rθλ
, Mθλ

, and RLN take their maximum values for
different values of a is shown in Fig. 4. As can be seen in the
figure, for larger values of a, Rθλ

and RLN take their maximum
values for smaller values of θλ. Also, for a given value of a,
θmax(Rθλ

) < θmax(RLN ). Since θλ = 2ωλ/u, this implies that
when everything else remains same, the bar length for which
the true ensemble energy growth is maximum is lower than
that predicted by the log-normal approximation.

The dependence of θmax on a for Rθλ
has been found to

fit well to a fourth-order polynomial with a root mean square
error (RMSE) of 0.000285,

θmax

π

∣∣∣∣
Rθλ

= −0.7877a4 + 1.497a3 − 1.072a2

+ 0.0136a + 0.7425.

Fitting the curve to a third-order polynomial gives an RMSE
of 0.00167, which is much higher, and fitting to a fifth-order
polynomial gives an RMSE of 0.000274, which is very close to
the RMSE of a fourth-order fit. Thus, for all practical purposes,
a fourth-order fit of θmax for Rθλ

is good enough. Similarly, the
dependence of θmax on a for RLN is also found to fit well to
another fourth-order polynomial,

θmax

π

∣∣∣∣
RLN

= −0.1363a4 − 0.06412a3 − 0.02703a2

− 0.0181a + 0.7442,

with an RMSE of 0.0002755. Fitting this curve to a third-order
polynomial gives an RMSE of 0.0003896 and a fifth-order fit
gives an RMSE of 0.0002802, implying that a fourth-order fit
is good enough in this case too. This shows that the functional
form for θmax is same for both Rθλ

and RLN , but the actual
values of θmax are very different in these two cases for larger
values of a.

IV. CONCLUSION

In this paper, it has been shown that the true energy growth
rate of an ensemble of particles in the rectangular Fermi
accelerator is lower than what is predicted by the log-normal
distribution. This can be clearly understood by considering a
simple binomial random process. For any given θ in Eq. (2),
let the probability of the particle going up or down the bar be
p and q = 1 − p respectively, and let the gain of energy of the
particle if it goes up or down be z1 and z2 respectively. If a is
small, then z1 ≈ z2 and p ≈ q = 1/2. Under these conditions,
the log-normal distribution is a valid approximation for the
random multiplicative process, but when a is large, p � q and
z1 � z2. As was shown in Ref. [31], in this case the log-normal
approximation can give incorrect estimates for the mean of the
product of random variables. It must be noted that there is
no critical value of the oscillation amplitude beyond which
the corrections become important. The corrections gradually
become larger as the oscillation amplitude is increased. The
presence of a critical value, if any, will depend on the particular
application being considered.

Though the limitations of the log-normal approximation
are quite well known [31], this paper provides an example of
a contemporary research problem where these limitations can
be easily appreciated.
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