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Existence of stable autoresonance (AR) with continuously growing energy is directly connected with the
inherent property of nonlinear systems to remain in resonance when the driving frequency varies in time.
However, the physical mechanism underlying the transformation of bounded oscillations into AR remains unclear.
As this paper demonstrates, the emergence of AR from stable bounded oscillations is basically analogous to the
transition from quasilinear to nonlinear oscillations in the time-invariant oscillator driven by an external harmonic
excitation with constant frequency, and AR can occur as a result of the loss of stability of the so-called limiting
phase trajectory. We obtain the parametric threshold, which determines the transition from bounded oscillations
to AR in the time-dependent system. The accuracy of the obtained approximations is confirmed by numerical
simulations.
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I. INTRODUCTION

The phenomenon of the permanent growth of energy in
a classical anharmonic oscillator subject to slow variations
of forcing and/or resonant frequencies is referred to as
autoresonance (AR). After first studies for the purposes of
particle acceleration [1,2], AR has become a very active field
of research. Theoretical approaches, experimental evidence,
and applications of AR in different fields of natural science,
from plasmas to planetary dynamics, are reported in numerous
papers [2]; additional theoretical and computational results
can be found in Refs. [4–6]; recent advances in this field are
discussed, e.g., in Refs. [3,7–9].

It was noticed [10] that the physical mechanism behind
autoresonance can be interpreted as adiabatic nonlinear phase-
locking between the system and the driving signal. However,
to the best of the authors’ knowledge, the mechanism causing
the transition from bounded oscillations to AR has not been
reported in the literature.

The results presented in this work clearly indicate that
the emergence of AR is similar to the transition from small
(quasilinear) to large (nonlinear) oscillations in the system with
constant parameters and constant excitation frequency. We
demonstrate that AR occurs due to the loss of stability of the so-
called limiting phase trajectory (LPT) of small oscillations. It is
shown that a critical parameter, which determines a boundary
between small and large oscillations in the time-invariant
system, may be treated as a lower threshold of autoresonance
in the oscillator with slowly varying parameters. Furthermore,
it is demonstrated that the threshold parameter numerically
obtained, e.g., in Refs. [11,12] is unacceptable in the problem
examined in this paper. Conditions of the transition from small
to large oscillations in the time-independent Duffing oscillator
is used to derive the critical sweeping rate. The obtained
analytical estimates are proved to be very close to the results
of numerical simulations. Unlike previous investigations [3],
systems with both linear and nonlinear-in-time detuning laws
are examined.

It is important to note that the Duffing system is chosen
for illustrative purposes. The qualitative features of the results

hold true for a large class of nonlinear oscillators with slowly
time-varying frequencies.

II. THE MODEL

For brevity, we consider the time-dependent Duffing oscil-
lator with the constant excitation frequency. The equation of
motion is given

d2u

dt2
+ [1 − εζ (τ1)]u + 8εau3 = 2εF cos t, (1)

where ε > 0 is a small parameter of the system, τ1 =
εt, ζ (τ1) = s + bτn

1 . The initial conditions u = 0, v =
du/dt = 0, at t = 0, determine the so-called limiting phase
trajectory of system Eq. (1), corresponding to the maximum
possible energy transfer from the source of energy to the
oscillator.

Asymptotic solutions of Eq. (1) for small ε are derived using
the multiple scale method [13]. We introduce the complex-
conjugate variables ϕ and ϕ∗,

ϕ = (v + iu)e−it , ϕ∗ = (v − iu)eit , (2)

and then construct the function ϕ in the form of the asymptotic
series,

ϕ(t,τ1) = ϕ0(τ1) + εϕ1(t,τ1) + ε2 . . . ,τ1 = εt, (3)

with the main slow term ϕ0(τ1) satisfying the equation (see,
e.g., Refs. [14,15])

dϕ0

dτ1
+ i

[
ζ (τ1) − 3α

∣∣ϕ2
0

∣∣]ϕ0 = −iF, ϕ0(0) = 0. (4)

Consider the case of s > 0, α > 0. The change of variables

τ = sτ1, ψ(τ1) = λ−1ϕ0(τ1), λ = (s/3α)1/2 (5)

and rescaling β = b/sn+1, f = F/sλ = F
√

3α/s3 reduce
Eq. (4) to the two-parameter equation for the complex-valued
envelope ψ :

dψ

dτ
+ i(1 + βτn − |ψ |2)ψ = −if, ψ(0) = 0. (6)
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FIG. 1. (Color online) Phase portraits (top row) and envelopes (bottom row) for systems with weak [column (a)], moderate [column (b)],
and strong [column (c)] nonlinearity.

The polar representation ψ = aei
 transforms Eq. (6) into the
system for the real envelope a > 0 and phase 


da

dτ
= −f sin 
,

(7)
d


dτ
= −(1 + βτn) + a2 − a−1f cos 
,

with initial conditions a(0) = 0, 
(0) = −π/2. It follows
from Eqs. (2)–(5) that the quantities λa(τ/s) and 
(τ/s)
provide the main approximations for the real-valued envelope
and the phase of the solution of Eq. (1).

If s < 0, α < 0, then the change of variables τ = |s|τ1,
ψ(τ1) = λ−1ϕ0(τ1), λ = |s/3α|1/2, and the transformations
β = b/|sn+1|, f = F/|sλ| convert Eq. (4) into the complex-
valued equation similar to Eq. (6). In what follows, we examine
in detail the case of s > 0, α > 0.

For better understanding of the emergence of the unbounded
modes, we first consider the underlying time-invariant system,
namely,

da

dτ
= −f sin 
,

(8)
d


dτ
= −1 + a2 − a−1f cos 
,

with initial conditions a(0) = 0, 
(0) = −π/2 corresponding
to the LPT. Figure 1 clearly demonstrates the “limiting”
property of the LPTs in the time-invariant system. It is
seen that the LPT represents an outer boundary for a set of
closed trajectories encircling the stable center in the phase
plane (
, a).

It was proved [14] that there exist two critical relationships
that define the boundaries between different types of solutions
of system Eq. (8). Using our notations, these critical values
can be rewritten as

f1 =
√

2/27 ≈ 0.2721, f2 = 2/
√

27 ≈ 0.3849. (9)

In Fig. 1, it is shown that the threshold f1 corresponds to
the boundary between small and large oscillations, namely,
at f = f1 the LPT of small oscillations coalesces with the
separatrix going through the homoclinic point on the axis 
 =
− π [Fig. 1(b)]. This implies that the transition from small to
large oscillations occurs due to the loss of stability of the LPT
of small oscillations. At f = f2, the stable center on the axis

 = − π vanishes due to the coalescence with the homoclinic
point, and only a single stable center remains on the axis 
 =
0 [Fig. 1(c)].

By definition [15], conditions f < f1, f1 < f < f2 and
f > f2 characterize quasilinear, moderately nonlinear, and
strongly nonlinear systems, respectively.
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FIG. 2. (Color online) Plots of a(τ ) (left
column) and phase portraits (right column) for
system Eq. (7); top row: f = 0.28,β = ±0.007;
bottom row: f = 0.34,β = ±0.07. Plots of the
LPTs in the corresponding time-invarinat sys-
tems (solid lines) are shown for comparison.

III. ANALYSIS OF AUTORESONANCE

In this section, the system with α > 0 (hard nonlinearity),
s > 0, and linear detuning βτ is considered in detail. Nu-
merical results for a quasilinear system with f1 < f < f2 are
presented in Fig. 2. It is seen that in the first half-cycle of
oscillations, the envelope a(τ ) is very close to the LPT of the
time-independent system; in the case of β > 0 detuning βτ is
increased with an increase of τ , thereby shifting the system to
the domain of small oscillations; in the case of β < 0, detuning
is decreased and, thus, shifts the system to the domain of large
oscillations. The projection of the trajectory a(τ ) onto the
phase plane (a,v) represents the spiral orbit with an attracting

focus (a = a0, v = 0), where a0 = lima(τ ) as τ → ∞. The cal-
culation of the limiting value a0 is suggested in Refs. [15,16].

Figure 3 depicts the emergence of AR from stable bounded
oscillations under changes of the rate β > 0. It is seen that
initially the shape of small oscillations is close to the LPT of
quasilinear oscillations, while the shape of AR is similar to the
LPT of the system with moderate nonlinearity. It follows then
that the transition from bounded to unbounded oscillations
in the system with slowly varying frequency is of the same
nature as the transition from small to large oscillations in the
system with constant parameters; namely, it occurs due to the
destruction of the LPT of quasilinear oscillations.

FIG. 3. (Color online) Transitions to AR in system Eq. (7) with different values of f and detuning βτ ; the cycle of oscillations in the
time-independent system (dashed line) is demonstrated for comparison.
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FIG. 4. (Color online) Transition from
bounded oscillations to AR in system Eq. (7)
with f = 0.28 and the quadratic-in-time detun-
ing laws βτ 2 (left) and βτ 3 (right).

As seen in Fig. 3, under very slow sweep the transition from
bounded oscillations to AR takes place if the parameter f is
close to the critical value f1. It is shown that at f = 0.274, the
transition occurs at 0.001 < β < 0.002; the difference between
f and f1 = 0.2721 is less than 1%; at f ≈ 0.28 the transition
takes place at 0.006 < β < 0.007; the difference between f

and f1 is less than 2.8%. On the other hand, for f = 0.34, the
critical rate 0.061 < β < 0.062; the difference between f and
f1 is about 20%. This implies that the inequality

f > f1 (10)

can be interpreted as the necessary condition of the emergence
of AR.

Figure 4 indicates that the transition from bounded to
unbounded oscillations in systems with nonlinearly time-
dependent detuning follows the same scenario as in the
previous example; that is, AR occurs after the destruction of
the LPT of small oscillations.

The obtained numerical results motivate the derivation
of an analytical threshold between bounded and unbounded
oscillations. First, we recall the reported results. The change of
variables � = |β|−1/4ψ , τ̃ = |β|1/2(τ + 1/β), μ = |β|−3/4f

reduces Eq. (6) to the Schrödinger-type equation

d�

dτ̃
+ i(τ̃ − |�|2)� = −iμ, �(τ̃0) = 0, (11)

where τ̃0 = |β−1/2|signβ. It was found numerically [11,12]
that in this system autoresonance occurs for μ > μth = 0.41.
The threshold μth = 0.41 was first treated as independent of
τ̃0 [11] but a more thorough study [12] demonstrated that for
τ̃0 > 0 or, by definition, β > 0 the threshold value μth grows
significantly when τ̃0 increases or β decreases. Thus, even if we
omit a discussion of the applicability of a numerically found
threshold to a large class of physical problems, we should
underline that this threshold is unusable in the problem under
consideration, wherein the effect of small values of β > 0 is
examined.

IV. CRITICAL RATE

In this section, we evaluate the rate β, at which the transition
from bounded to unbounded oscillations occurs. We show
that admissible values of β obtained from the above defined
threshold μth = 0.41 significantly exceed the rate found by
numerical simulations.

In order to evaluate the critical rate, we employ the fact that
for sufficiently small τ the solution a(τ ) of system Eq. (7) is
very close to the LPT of the time-independent system Eq. (8).
We recall that the LPT of the moderately nonlinear (f1 <

f < f2) time-invariant systems has a distinctive inflection
at τ = T ∗ [Fig. 3(b)]. We introduce the time-dependent
parameter f̃ (τ ) = f/(1 + βτn)3/2 such that f̃ (0) = f > f1.
The analysis numerical results presented in Figs. 2–4 allows
one to conclude that an adiabatically varying system in which
f̃ (0) > f1 gets captured into the domain of small oscillations
if f̃ (T ∗) < f1. Under this assumption, the critical rate is
given by

β∗ = (T ∗)−n[(f/f1)2/3 − 1]. (12)

If β < β∗, the system admits the persistence of AR. In order
to check the correctness of Eq. (12), we calculate the critical
rate β∗ in the system with linear-in-time detuning (n = 1).
First, the instant T ∗ is defined from the obtained numerical
results. In the next step, the analytical estimate of T ∗ and the
respective value β∗ will be derived.

We recall that the point of inflection is determined by the
conditions da/dτ �= 0, d2a/dτ 2 = 0. It follows from Eq. (8)
that the latter condition corresponds to d
/dt = 0; i.e., the
envelope a(τ ) achieves the point of inflection when the phase

 achieves its minimum (Fig. 5).

We find from Fig. 5 that T ∗ ≈ 6.5 for f = 0.274; this
yields β∗ ≈ 0.00075, though the computational result gives
0.001 < β < 0.002. Then, T ∗ ≈ 5 and β∗ ≈ 0.004 for f =
0.28, while the numerical simulation gives 0.006 < β <

0.007. Note that for f = 0.28 the threshold parameter μth =
|βth|−3/4f = 0.41 yields βth = (f/μth)4/3 = 0.577, which is
vastly larger than the real threshold rate. In a similar way,
we find that for f = 0.34 the critical rate β∗ = 0.053, while
the numerical simulation gives 0.061 < β < 0.062. Note that
at f = 0.34 the inflection of the curve a(τ ) is practically
indistinguishable, but the phase has the pronounced minimum
at T ∗ ≈ 3 (Fig. 5).

It is important to note that, in contrast to the results reported
in Refs. [11,12], Eq. (12) defines the critical rate for systems
with both linear and nonlinear-in-time detuning laws. For
example, in the case of quadratic detuning βτ 2 and f =
0.28, we find β∗ = 0.0008; at the same time, the numerical
simulation gives 0.001 < β < 0.002 (Fig. 4).

The analytical derivation of the inflection time T ∗ and the
point of inflection a∗, 
∗ is built upon the results obtained in
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FIG. 5. (Color online) Envelopes a(τ )
and phases 
(τ ) for different values of the
parameter f .

Ref. [14]. We recall that system Eq. (8) is integrable; the first
integral of motion takes the form

K = a

(
a3

4
− a

2
− f cos 


)
= 0. (13)

Using Eq. (13) to exclude 
, we obtain the equation for the
variable a(τ ),

d2a

dτ 2
1

+ ψ(a) = 0, (14)

with initial conditions a = 0, da/dτ1 = f , at τ1 = 0. The
function ψ(a) is given by

ψ(a) = a

4

(
a2

2
− 1

)(
3a2

2
− 1

)
= d�

da
,

(15)

�(a) =
∫ a

0
ψ(x)dx = a2

8

(
a2

2
− 1

)2

.

It follows from Eq. (14) that the point of inflection a∗ is defined
by the condition ψ(a∗) = 0; i.e.,

a∗ =
√

2/3 = 0.8165. (16)

The respective value of the phase 
∗ can be found from the
condition d
/dτ = 0. It is easy to derive from Eqs. (8) and
(16) that cos 
∗ = a∗[(a∗)2 − 1]/f , where a∗[(a∗)2 − 1] =
−0.2721 = −f1; therefore,

cos 
∗ = −f1/f. (17)

Figure 6 depicts the potential �(a). Since the maximum
of �(a) is defined by the condition d�/da = ψ(a) = 0, the

FIG. 6. (Color online) Plot of the potential �(a); the dashed line
depicts the potential barrier.

potential barrier (the dashed line) goes through the point of
inflection a = a∗. It follows then that the sought time T ∗
equals the time T ∗

1 needed to reach the potential barrier. The
latter parameter was approximately calculated in Ref. [14].
Using our notations, we obtain from Ref. [14] that

T ∗
1 ≈ 3 ln

(
f 2 − f 2

1

)1/2

f − f1
= 3

2
ln

f + f1

f − f1
. (18)

For example, in the cases f = 0.274 and f = 0.28, we obtain
the approximations T ∗

1 ≈ 7.48 and T ∗
1 ≈ 5.9, which exceed

the corresponding numerical values T ∗ (Fig. 5) for 15%. It
follows then that the substitution of T ∗

1 for T ∗ into Eq. (12)
gives the rate β∗

1 < β∗. Therefore, detuning with rate β <

β∗
1 < β∗ allows the occurrence of autoresonance.

V. CONCLUSIONS

The emergence of autoresonance in the slowly time-
dependent Duffing oscillator was investigated using the con-
cept of LPT. It was shown that the emergence of AR from
stable bounded oscillations is similar to the transition from
small to large oscillations in the time-invariant oscillator driven
by an external harmonic excitation with constant frequency,
and AR results from the loss of stability of the so-called
limiting phase trajectory separating the domains of small
and large oscillations. The LPT concept allows finding the
critical parameters, which determine the change of bounded
oscillations to AR with continuous growth of energy.

Note that the considered Duffing model was chosen only
for illustrative purposes. The obtained results can be extended
to a more general case of the arrays of nonlinear oscillators.
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