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Critical avalanches and subsampling in map-based neural networks coupled with noisy synapses
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Many different kinds of noise are experimentally observed in the brain. Among them, we study a model of
noisy chemical synapse and obtain critical avalanches for the spatiotemporal activity of the neural network.
Neurons and synapses are modeled by dynamical maps. We discuss the relevant neuronal and synaptic properties
to achieve the critical state. We verify that networks of functionally excitable neurons with fast synapses present
power-law avalanches, due to rebound spiking dynamics. We also discuss the measuring of neuronal avalanches by
subsampling our data, shedding light on the experimental search for self-organized criticality in neural networks.
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The hypothesis of self-organized critical (SOC) neural
networks is based on theoretical considerations made in the
1990’s [1–3] and supported by experimental data obtained
in the last decade [4–9]. In particular, the observation of
neuronal avalanches motivated the search for computational
models presenting this phenomenon [10–13]. The key interest
in these simulations is to find what are the conditions for
the occurrence of power laws in the size and duration
distributions of avalanches. Moreover, some authors showed
that the critical state may optimize the dynamical (input)
range [10,14], the memory and learning processes [11], and
the computational power of the brain [5–7]. However, up to
now, the computational models rely on very simplified neuron
models such as branching processes [8,15–17] or cellular
automata [9,10].

Besides these simple approaches, neurons may be modeled
by differential equations [18], such as the integrate-and-fire
model [19,20], or by discrete time maps [21,22]. Here,
we use the extended Kinouchi-Tragtenberg neuron (KTz)
map [23,24], which is a discrete time system with behavior
similar to the Hindmarsh-Rose model [25]. KTz presents a
very rich set of dynamical behaviors (excitability, bursting,
cardiaclike spikes, refractoriness, postsynaptic potential sum-
mation, etc.) with a minimal set of parameters (see Fig. 1
and Refs. [21,23,24,26]). Appropriately chosen map-based
models can sometimes be more efficiently solved than dif-
ferential equation-based models [22,26]. The main advantage
of choosing a model such as KTz is that it provides a good
trade-off between dynamical complexity and computational
efficiency.

We connect the KTz neurons with a chemical synapse
map [23] in order to build a coupled map lattice [27]. The idea
of noise in the brain is not new [28,29], but it is frequently
modeled by a background external stimulus in the neuron
membrane potential [16,30]. In contrast, here we explore
the effect of noise in the synaptic coupling, a well known
experimental fact [31–35].

We focus our attention in a square lattice of linear size
L, even though recent findings point to a brain organized in
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a complex network [36–38]. Although not realistic, square
lattices may provide insights and expected behaviors of this
kind of system when going to a more complex topology. For
examples of this approach, see Refs. [11,30,39–41].

Concerning the experimental data for neuronal avalanches,
we recall that it is generally subsampled, since only a small
fraction f of the neurons of the studied brain region is actually
recorded. In such a case, the statistical distributions generated
by the sampled neurons may not reproduce the distributions of
the entire network activity. Thus, we analyze the full and the
subsampled data of our distributions of neuronal avalanches
with the same algorithm utilized to detect neuronal avalanches
experimentally [9,42]. Data subsampling is not always an issue
[43].

The model. Each KTz neuron, labeled by an index i =
1, . . . ,N , is given by the three-dimensional map

xi(t + 1) = tanh

[
xi(t) − Kyi(t) + zi(t) + vi(t)

T

]
,

yi(t + 1) = xi(t),
zi(t + 1) = (1 − δ)zi(t) − λ [xi(t) − xR] ,

(1)

where xi(t) represents the membrane potential of the ith
neuron (fast dynamics), yi(t) is the return variable, zi(t)
is an adaptive variable (e.g., related to slow currents that
govern the refractory period and bursting phenomena), and
t is the time step (ts). The parameter δ is the inverse recovery
time of z(t), K and T are parameters of the fast subsystem
that define spiking, resting, and spiking-resting coexistence
regimes [21]. The parameters λ and xR control the slow
spiking and bursting dynamics [23]. All the currents received
by the neuron, whether synaptic currents or external stimuli,
are summed up in vi(t) = I ext

i + ∑
j I

syn
ij .

Chemical synaptic currents are modeled by [23]

I
syn
ij (t + 1) =

(
1 − 1

τ1

)
I

syn
ij (t) + hij (t),

(2)

hij (t + 1) =
(

1 − 1

τ2

)
hij (t) + Jij (t)�(xj (t)),

where I
syn
ij (t) is the synaptic current from neuron j (presynap-

tic) to neuron i (postsynaptic), hij (t) is an auxiliary variable
for creating more complex synapses (e.g., double-exponential
functions), τ1 and τ2 are time constants for I

syn
ij and hij ,
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FIG. 1. Examples of KTz behaviors [Eq. (1)] for K = 0.6,
Ii(t) = 0. When not specified, T = 0.35 and δ = λ = 0.001. (a) Fast
spiking (xR = −0.2, T = 0.45); (b) subthreshold oscillations (xR =
−0.5, T = 0.45); (c) slow spiking (xR = −0.62, δ = λ = 0.003);
(d) slow bursting (xR = −0.6); (e) fast bursting (xR = −0.45);
(f) chaotic bursting (xR = −0.4, T = 0.322); (g) cardiaclike spiking
(xR = −0.5, T = 0.25). x(t) is the membrane potential in arbitrary
units.

Jij (t) is the coupling parameter (Jii = 0), and �(x) is the
step (Heaviside) function. Thus, if we start with I syn = h = 0,
the h variable is activated when the membrane potential is
depolarized above zero (which we define as an effective spike
duration). This produces an activation of the I syn current,
which has a form of a discrete alpha function (for τ1 = τ2)
or a discrete double exponential (for τ1 �= τ2). Notice that the
above equations are not used to describe the time evolution
of synaptic conductances (as usual) but the evolution of
synaptic currents, which is also an acceptable procedure in
computational neuroscience [44].

Throughout this Brief Report, we call inhibitory the
synapses adjusted with parameter Jij (t) < 0, although one
must bear in mind that, in such a case, the neurons are adjusted
in a functionally excitable regime. Thus, the synapses do not
inhibit one cell’s neighbors. Instead, they may fire rebound
spikes [18].

In the homogeneous case, Jij (t) = J , any network (whether
regular or complex) of excitable neurons with reciprocal
synapses and free boundary conditions presents a discontin-
uous bifurcation transition described by the order parameter
M/N (see Fig. 2). Here, M is the number of neurons that
fired due to a single delta stimulus and N = L2 is the total
number of neurons in the network. Then M/N is the fraction
of neurons that participated in the avalanche.

FIG. 2. Fraction of neurons activated by a delta stimulus of
intensity I = 0.1 in a lattice with L = 20 and neurons in regime I
and (a) inhibitory synapses or (b) excitatory synapses. J−

th = −0.174
(J +

th = 7.64 × 10−3) is the threshold value below (above) which
the network is completely activated and it has been determined
computationally. It depends only on the neuron parameters.

We show in Fig. 2(a) the case of inhibitory synapses, in
which there is a threshold J = J−

th < 0 that separates the state
in which all the neurons take part in the avalanche (J < J−

th )
from the state in which only the stimulated neuron, or a few
neighbors, responds (J > J−

th ). A similar transition may occur
for excitatory synapses for J = J+

th > 0 [Fig. 2(b)].
It is clear from Fig. 2 that the homogeneous model cannot

achieve a critical distribution of avalanches, because they are
all of size s = 1 or N (disregarding the small steps in the phase
transition, which are independent of N ). Thus, motivated by
the synaptic noise present in the brain, we propose the coupling
Jij (t) = J + εij (t). In the case of inhibitory synapses, J <

0 and εij (t) ∈ [R; 0], since J−
th < 0. This models a uniform

noise, different for every connection j → i in the network, of
maximal amplitude |R|, such that |J + R| > |J−

th |. Then, the
coupling fluctuates near J−

th in an uncorrelated manner.
The noise allows the elements of the network to be

either strongly correlated (when |Jij (t)| > |J−
th |) or weakly

correlated (when |Jij (t)| < |J−
th |). These fluctuations spread

and dissipate the avalanches. If there is too much noise
(|J + R| � |J−

th |), the avalanches will propagate and dissipate
in a completely random fashion; on the other hand, if there
is a very small noise (|J + R| → |J−

th |), then the avalanches
will soon be dissipated. The balance happens exactly in the
critical point (Jc,Rc) in which the avalanches are power-law
distributed. This mechanism will be depicted further in Fig. 4.

We can define the probability that |Jij (t)| > |J−
th |:

p = J + R − J−
th

R
. (3)

The same holds for excitatory synapses (J > 0), where εij (t) ∈
[0; R]. The synaptic parameters J and R are, in principle, our
control parameters that are adjusted such that there is a nonzero
p. For convenience, we utilize p, instead of R, as a control
parameter.

Results. We plot the avalanche distributions as cumulative
distribution functions. This representation provides a clearer
visualization of the data, since it is a continuous function of
its variables, it has very reduced noise, its precision does not
depend on the size of the bins of the distribution’s histogram,
and it has a better defined cutoff [45]. Here, s is the amount
of spikes in an avalanche and t is the amount of time windows
during which the avalanche took place. A given data set with
probability distribution function P (s) = Bs−α and cutoff Z

(B is constant) corresponds to a cumulative distribution

F (s) = A + B

α − 1
s−α+1, (4)

such that A = −BZ−α+1/(α − 1) [46] and F (s) is the proba-
bility of measuring any value greater than s.

All results refer to square lattices of linear size L with
free boundary conditions and nearest neighbor couplings.
The initial conditions for all neurons are the fixed points
(x∗,y∗,z∗) for a given set of parameters. The initial conditions
[I syn

ij (0),hij (0)] for the synapses are set to zero.
Some dynamical features of neurons and synapses have

revealed themselves to be very important for the occurrence
of critical avalanches, especially the size of the refractory
period and the synapse’s characteristic times. If the synapse
takes longer to excite the neighbor than the duration of the
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refractory period of the presynaptic neuron, then the wave
of activity propagates forward and backward in the network,
producing self-sustained activity in the form of spiral waves.
This reasoning guided us in choosing the following neuron
and synapse sets of parameters.

For each simulation, all neurons and synapses have the
same parameters. We examine two different excitable regimes:
(I) xR = −0.7, λ = 0.008—neurons can be excited either by
positive and by negative inputs, which generates rebound
spikes—and (II) xR = −0.9, λ = 0.1—which can be excited
only by positive inputs, having a bigger refractory period than
regime (I). The remaining parameters of the neurons are always
K = 0.6, T = 0.35, and δ = 0.001.

The synapses are fast (time constants τ1 = τ2 = 2 time
steps), whereas the spike half duration takes ≈6 time steps
[23]). If we use a typical value of 1 ms for the half duration,
we can set the time scale (1 time step or 1 ts = 1/6 ms) and get
τ1 ≈ 0.33 ms, which is also typical for fast synapses [44]. We
studied inhibitory (J < 0) and excitatory (J > 0) synapses for
regime I, and excitatory synapses for regime II.

The network is always stimulated in a randomly chosen
site. To separate the time scales, we impose that each stimulus
happens only after the end of the previous avalanche. The
stimulus takes place during 1 ts (a delta stimulus) with intensity
Iext sufficient to produce a spike. We use Iext = 0.1 for regime
I and Iext = 0.4 for regime II. The simulation is divided in time
windows of 20 ts each. These windows are used to count the
spikes in the avalanches, just as in the experimental protocol
[9,42].

Avalanche size cumulative distributions F (s) ∼ s−α+1 for
L = 15, 20, and 30 are shown in Fig. 3(a), whereas the duration
cumulative distributions F (t) ∼ s−τ+1 are shown in Fig. 3(b),
both for neurons in regime I with excitatory by rebound
synapses. Fitting Eq. (4) to the curves in Fig. 3 gives α = 1.35,
τ = 1.50, and a spatial cutoff Zs = Lγ , with γ = 2.46 ± 0.02.
Since the avalanches propagate as fragmented spiral [41,47]
waves, we expect γ > 2, as the same neuron may participate
more than once in a given avalanche.

Figure 4(a) shows the existence of a critical region for
−0.100 � J � −0.15, since the distributions for J = −0.100
and −0.15 show a cutoff power-law shape [Eq. (4)]. On the
other hand, Fig. 4(b) shows that for J = −0.05 the small

(a) (b)

FIG. 3. Simulation data for (a) avalanche size cumulative dis-
tributions and (b) avalanche duration cumulative distributions for
neurons in regime I, J = −0.15, p = 0.3, and L = 15 (– · –), L = 20
(- - -), and L = 30 (· · ·). Fitting Eq. (4) to every L gives exponents α =
1.35, τ = 1.50, and a spatial cutoff Zs = Lγ , with γ = 2.46 ± 0.02.
The fitting is shown in Fig. 6. Remember that N = L2.

(a) (b)

FIG. 4. Avalanche size cumulative distributions for neurons in
regime I, p = 0.3, L = 15 (N = 225), and different values of J . (a)
Critical regimes for J = −0.100 (�) and J = −0.150 (�); lines are
Eq. (4) fits of the data, yielding α = 1.15 (—) and α = 1.35 (– –),
respectively. (b) Subcritical regime for J = −0.050 (- -•- -) and
supercritical regime for J = −0.164 (—�—); the lines are intended
only to guide the eyes.

avalanches prevail, characterizing a subcritical regime, while
for J = −0.164 the large and small avalanches become almost
equally likely, which is the signature of a supercritical regime
[13]. Notice that, here, by adjusting J with fixed p, we also
adjust R [as discussed earlier when Eq. (3) was introduced].

Regarding excitatory synapses (J > 0), Fig. 5 show the
cumulative distributions of the avalanche sizes for regimes I
and II. None of the curves may be fit by Eq. (4), so there is no
critical behavior. In fact, these results agree with other authors
who have shown that in purely excitatory networks, the cutoff
is much smaller than the network size [8].

Reference [9] conjectures that a power-law activity distribu-
tion should become a lognormal distribution when the activity
measurement is subsampled. If the lognormal distribution
[Eq. (5)] is valid only below a cutoff, s < Z, then its cumulative
distribution function F (s) takes the form of Eq. (6):

P (s) = C

sσ
√

2π
exp

{
−

[
log (s) − μ√

2σ

]2
}

, (5)

F (s) =C

2

{
erf

[
log (Z) − μ√

2σ

]
− erf

[
log (s) − μ√

2σ

]}
, (6)

(a) (b)

FIG. 5. Avalanche size cumulative distributions for neurons in
(a) regime I and (b) regime II for excitatory synapses, L = 20 (N =
400), and for different excitation probabilities p. Parameters are (a)
J = 0.0057 and (b) J = 0.058.

024701-3



BRIEF REPORTS PHYSICAL REVIEW E 88, 024701 (2013)

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102

C
um

ul
at

iv
e 

di
st

., 
F(
s)

Avalanche size, s

L=20; p=0.3; J=-0.15;

(a)

100 101 102 103

D
istribution, P(s)

Avalanche size, s

(b)

f = 1.00
f = 0.30
f = 0.10
f = 0.04

FIG. 6. Simulation data (symbols) and fitted curves (lines) for (a)
the cumulative distributions and (b) the distribution functions of the
network activity. Neurons are in regime I, with L = 20, p = 0.3, and
J = −0.15. f = 0.04 (
), f = 0.10 (•), f = 0.30 (�), f = 1.00
(�). f = 1.00 is fitted by (a) Eq. (4) and by (b) P (s) = Bs−1.35; the
other fractions are fitted by (a) Eq. (6) and (b) Eq. (5).

where C, μ, σ , and Z are fitting constants and F (s) is the
probability of measuring any value greater than s.

We simulated the fractions f = 0.04, 0.10, 0.30, and
1.00 (the latter is a full sample). The cumulative distribution
function is shown in Fig. 6(a), whereas the distribution function
is shown in Fig. 6(b). The subsampled data (symbols) in these
figures are fitted by Eqs. (5) and (6) (lines), whereas the full
sample data is fitted by Eq. (4) [Fig. 6(b)] and its respective
distribution [Fig. 6(a)].

As expected, the lognormal distribution fitted well the
subsampled P (s) data in Fig. 6(b) [9], mainly for f = 0.04.
Moreover, the error-function fit in Fig. 6(a) definitely shows

that the smaller the fraction f , the more accurate is the fit.
The regime of small f is exactly the one we are interested
in, because, for current in vivo measurements, only a small
fraction of the neurons of a mammal’s brain, for instance,
would be recorded.

Concluding remarks. Since rebound spikes are delayed
compared to excitatory spikes, we could only produce power-
law avalanches with excitatory by rebound synapses (Figs. 3
and 4). Otherwise, the avalanches are much smaller than
the network size (Fig. 5). We also showed that synaptic
noise is a way of generating critical avalanches (one would
expect it for the same reason that disorder may change a
first order phase transition into a second order one [48,49]).
Therefore, criticality may be a product of the stochasticity in
synaptic interactions, as the noise dissipates the activity just
as the inhibitory synapses do in excitatory-inhibitory balanced
models [50–52].

Our map-based model presents an out of equilibrium phase
transition which we conjecture, following Bonachela et al.
[39], to pertain to the dynamical percolation universality class.
Our next efforts will be to unveil the critical region in the p × J

plane, to study different topologies and heterogeneous net-
works (mixing excitatory with inhibitory directed synapses).
We may also add an extra dynamical rule in the noise amplitude
R in order to self-adjust it towards the critical region.
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financial support from the NAP-USP program and from
CNAIPS-USP, and M.G.S. was partially supported by CAPES
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