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Isotropic model for cluster growth on a regular lattice
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There exists a plethora of mathematical models for cluster growth and/or aggregation on regular lattices.
Almost all suffer from inherent anisotropy caused by the regular lattice upon which they are grown. We analyze
the little-known model for stochastic cluster growth on a regular lattice first introduced by Ferreira Jr. and Alves
[J. Stat. Mech. Theo. & Exp. (2006) P11007], which produces circular clusters with no discernible anisotropy.
We demonstrate that even in the noise-reduced limit the clusters remain circular. We adapt the model by
introducing a specific rearrangement algorithm so that, rather than adding elements to the cluster from the outside
(corresponding to apical growth), our model uses mitosis-like cell splitting events to increase the cluster size. We
analyze the surface scaling properties of our model and compare it to the behavior of more traditional models. In
“1 + 1” dimensions we discover and explore a new, nonmonotonic surface thickness scaling relationship which
differs significantly from the Family-Vicsek scaling relationship. This suggests that, for models whose clusters
do not grow through particle additions which are solely dependent on surface considerations, the traditional
classification into “universality classes” may not be appropriate.
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I. INTRODUCTION

On-lattice models for cluster aggregation have been studied
for at least the last 50 years. One of the earliest, originally
designed to simulate tumor formation, is known as the Eden
model [1,2] and comes in three versions, A, B, and C [3].
In each version particles are added to the surface of the
cluster incrementally. On-lattice cluster aggregation models
like Eden’s have been used to represent biological phenomena
such as wound healing [4], slime mold growth [5], and, more
recently, in vitro growth of tumor monolayers [6,7].

Some models of cluster aggregation can be classified into
universality classes (UCs) depending on the surface scaling
properties of their aggregates. For example, version C of
the Eden model has scaling characteristics which are most
similar to those of the Kardar-Parisi-Zhang (KPZ) UC [3,8].
The continuum equation associated with the KPZ UC predicts
circular clusters [8]. However, when Eden clusters are realized
on a regular lattice there is an inherent anisotropy that does not
diminish as the clusters grow larger [9] (see Suppl. Fig. 1(a),
in the Supplemental Material (SM) [10]); the shape of large
on-lattice Eden clusters is dominated by the underlying lattice
anisotropy [see Suppl. Fig. 1(b)]. Such artificial anisotropy
is clearly an undesirable property for any on-lattice cluster
growth model.

Several related models have attempted to reduce the effects
of this inherent, regular-lattice-induced anisotropy by altering
or completely revising the cluster aggregation algorithms.
However, few of these attempts have been shown to produce a
truly isotropic cluster aggregation model. In this paper we
adapt and analyze a little-known cluster formation model,
model II of Ferreira and Alves [11], so that cluster growth
is driven by random elemental division and rearrangement
events on a square lattice. We demonstrate the isotropy of
the model in both the noisy and the noise-reduced limits by
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considering both a bespoke anisotropy measure and a more
standard series decomposition of the surface. The elemental
division mechanism we introduce can also be thought of
as being more akin to biological growth than the surface
addition rules employed by many Eden-derived models of
cluster aggregation. Moreover, the clusters produced have the
desirable properties of being concave and hole-free. We go
on to investigate the scaling properties of this aggregation
model and find that the traditional techniques of classification
into UCs are not sufficient. A new surface scaling relationship
which may be more appropriate for this cluster aggregation
model is suggested. We conclude by employing the revised
model with the explicit elemental division algorithm to act
as the lattice on which a position-jump model of diffusion is
implemented. This model of diffusion on a growing domain is
compared both qualitatively and quantitatively to a continuum
model of the same process, with good agreement being found
in the mean field.

II. MEASURING ANISOTROPY

In order to accurately determine the anisotropy of a cluster
it is important to have a method of measurement which is
itself free of lattice artifacts. Although box-counting methods
such as those employed by Meakin [12] can be useful
in characterizing large-scale anisotropies, they may suffer
from anisotropy themselves. As such we consider a bespoke
measure, the “angular surface anisotropy”. This is given by
the normalized square of the distance to the surface from the
center of the cluster in a particular direction [9,13]: for each
surface element, i, calculate the angle, φi , subtended by the
x axis and the line connecting the center of the seed particle
(or center of mass, translating the cluster so that this lies at
the origin) to the element’s center (see Fig. 1). Also, calculate
the element’s distance from the seed or center of mass, ri (see
Fig. 1). The angular surface anisotropy in direction θk is then
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FIG. 1. (Color online) Measuring the anisotropy of particle
aggregates. In this example cluster elements of the aggregate are rep-
resented by black squares. The angle to the x axis, φi , and the distance
from the seed particle [center (red) square], ri , are determined for each
element. In each segment of the circle the mean square distance of the
centers of mass of the surface elements [(green) stars] is calculated
and then normalized to find the “angular surface anisotropy”.

given by

P (θk) = 1

N
θk
s

Ns∑
i=1

r2
i Iθk−δθ<φi<θk+δθ , (1)

where the sum is over the Nθk
s = ∑Ns

i=1 Iθk−δθ<φi<θk+δθ surface
elements with angles in the appropriate region [θk − δθ,θk +
δθ ] [(green) stars in Fig. 1]. I represents the indicator function.
The K values of θk are chosen so as to cover the entire circle.
This necessarily defines δθ = π/K . We choose K to be a
power of two [14] and θ1 = 0 in order to capture the anisotropy
that might be caused by the square lattice. The angular surface
anisotropy is normalized by dividing P (θk) by

∑K
k=1 P (θk) for

each value of k.
In order to quantitatively analyze the angular surface

anisotropy, P (θ ), we can consider a Fourier decomposition of
the curve. Fourier modes with large coefficients will indicate
larger contributions to the overall anisotropy from that mode.
For example, for a cluster with positive axial anisotropy we
would expect to see a large positive quadrupole (coefficient of
the fourth Fourier mode).

III. SOME ANISOTROPIC MODELS

In order to get a better idea of the anisotropy of small
clusters, “noise reduction” can be employed [9]. Noise
reduction is a useful tool for reducing finite-size effects which
can sometimes obscure inherent anisotropy in small clusters.
(See the SM for a detailed description.) The Eden model
exhibits anisotropy in both the noisy and the noise-reduced
limits (see Suppl. Figs. 1 and 2, respectively).

There have, however, been several Eden-like cluster
aggregation models which purport to produce isotropic clus-
ters. Paiva and Ferreira [15], for example, have found on-lattice
versions of the Eden A and C models which are isotropic (see
Fig. 2). Growth events, in these models, depend on the neigh-
borhood of the free space into which a new element is to be po-
sitioned. Their technique for ensuring anisotropy is inspired by
an isotropic, on-lattice version of diffusion-limited aggregation
by Bogoyavlenskiy [16]. In Bogoyavlenskiy’s model, growth
at a selected site is implemented with probability Pi = i2,
where i is the number of occupied nearest neighbors of the
growth site. However, this choice of occupancy-dependent
probability was found to produce diagonal anisotropy in the
diffusion-limited aggregation clusters [17]. Instead Alves and
Ferreira [17] suggested growth probabilities given by

Pk =
(

i

n

)ν

, (2)

where n is the lattice coordination number (i.e., number
of possible neighbors of a lattice site), ν is an adjustable
parameter, and i, as before, is the number of occupied nearest
neighbors of a site selected for growth. The majority of
the work in this method is finding the value of the tunable
parameter, ν, which minimizes the anisotropy. Paiva and
Ferreira [15] do this by recognizing that the scaling behavior
of the Eden model is affected by the lattice anisotropy. They
reason that if they can find an exponent ν = νc, in Eq. (2),
for which the growth parameter, β, of the on-lattice model
is as close as possible to its predicted value, 1/3, then this
will be the value that produces the most isotropic clusters.
Using this method they find νc ≈ 1 for version C of the Eden
model and νc ≈ 1.72 for version A of the model, although they
do not provide any quantitative comparisons of the clusters’
anisotropy for these values other than visually comparing the
cluster border with a circle.
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FIG. 2. (Color online) Anisotropy of the “isotropic” Eden C model of Paiva and Ferreira [15]. (a) The angular surface anisotropy, P (θ ),
of the isotropic Eden C model displays no clear periodicity. (b) A typical noise-reduced (m = 60) isotropic Eden cluster. (c) Angular surface
anisotropy, P (θ ), of the noise-reduced clusters. A clear diagonal anisotropy is present. Clusters were grown to N = 105 elements and anisotropy
values are averaged over 200 repeats.
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We have explicitly tested Eden clusters grown with the
relevant νc values for anisotropy. In the full model it is clear
that the anisotropy of the model is reduced [cf. Fig. 2(a) and
Suppl. Fig. 1(b)]. No periodicity is evident and the maximum
anisotropy value is well below 1%, in comparison to the ∼2%
anisotropy exhibited by the original Eden C model. However,
the noise-reduced version of the model (m = 60) shows a
clear positive diagonal anisotropy [see Figs. 2(b) and 2(c)]
of around 40% and a negative axial anisotropy of around
20%. These anisotropies are confirmed when considering the
Fourier decomposition of P (θ ) (see Sec. IV B in the SM).
Similar results are observed for the noise-reduced version of
the “isotropic” Eden A model (results not shown). Clearly
the randomness of the order of addition of the particles
is important in the isotropic Eden models of Paiva and
Ferreira [15] to maintain isotropy. In addition to these on-
lattice cluster models there have also been a variety of isotropic
off-lattice versions of the Eden model [18–20], with which
we do not concern ourselves further in this on-lattice-focused
paper.

Recently Drasdo [7] introduced an on-lattice model of
cluster growth via mitosis in order to model tumor growth.
An element of the cluster is chosen randomly to be a division
candidate, and, providing it is within distance �R of an
unoccupied lattice site, it divides. Division is such that the
two daughter elements are positioned adjacent to each other
and the elements of the cluster are rearranged so that the empty
site nearest to the original parent element is filled. Although it
produces circular-looking clusters [see Fig. 3(a)], this model is
also inherently anisotropic. Large clusters can show a periodic
variation in anisotropy (indicative of an inherent anisotropy)
and a peak anisotropy of about 1.5–2% [Fig. 3(b)]. Note that
this is of a similar magnitude, but with inverse orientation, to
the anisotropy found in the Eden model: in Drasdo’s model
the positive bias is in the diagonal directions and the negative
bias in the axial directions. The dominant nature of the axial
and diagonal anisotropies in Drasdo’s model is confirmed by
considering the Fourier decomposition of P (θ ) (see Sec. IV C
in the SM). In the noise-reduced limit, the cluster anisotropy
is even more evident [7]. It should be noted, however,
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FIG. 3. (Color online) Anisotropy of clusters of the Drasdo
model. (a) A typical example of a cluster grown using the algorithm
of Drasdo with k = 10. The cluster displays slightly flatter edges
in the axial directions. (b) Angular surface anisotropy, P (θ ). Clear
diagonal anisotropy of the clusters is evident. Clusters were grown
to N = 105 elements and anisotropy values are averaged over
200 repeats.
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FIG. 4. (Color online) Rearrangement protocol for division in a
random direction from a random parent interval. (a) An element of
the cluster is chosen randomly to divide (checked pattern), and a
uniformly distributed random angle is used to determine the direction
in which the element will divide. A line [(blue) arrow] is drawn
from the parent interval in this direction until the first free site is
encountered [white square with (green) boundary]. (b) Elements
(various patterns) are pushed in this direction in such a way that
one of them occupies the free lattice site. The daughter interval (also
checked) is placed on the lattice site adjacent to the original parent
interval in the direction of division.

that [7] also gives an analog of his model on a “Dirichlet
lattice” [6]. In this case there is no observable anisotropy to the
clusters [6,7].

IV. A MORE ISOTROPIC MODEL OF
CLUSTER AGGREGATION

We adapt the model of Ferreira and Alves [11] to include a
specific particle rearrangement algorithm. This rearrangement
algorithm mimics the reorganization of cells in a biological
cluster upon mitosis of an internal cell. The revised algorithm
proceeds as follows: an element of the cluster is randomly
selected to divide. A uniformly distributed random number
(representing a clockwise angle with the x axis) between 0
and 2π (the “direction of division”) is then generated [see
Fig. 4(a)]. Upon division a daughter element is placed on a
lattice site neighboring the parent interval in the direction of
division and other elements are displaced sequentially to make
room. Displaced elements follow the direction of an arrow,
drawn from the center of the parent element in the direction of
division to a neighboring lattice site. Elements are sequentially
displaced in this way until a free lattice site is encountered [see
Fig. 4(b)]. The resulting model is similar to Drasdo’s but is
less anisotropic, even in the noise-reduced limit. In addition,
the specific rearrangement algorithm engenders a biological
realism in the model. In particular, the algorithm can now be
used to represent a discrete underlying growing domain for an
on-lattice position-jump model of a reaction-diffusion process
(see Sec. VI).

Figure 5 demonstrates the values of the anisotropy metric,
P (θ ), produced by this model in both the noisy and the noise-
reduced regimes. For a strongly anisotropic cluster we might
expect to see a periodic variation in the anisotropy metric as a
result of the strong contribution of a single multipole. Since,
for the noisy cluster [Fig. 5(a)], there is no clear periodicity
to the values of the angular surface anisotropy metric, P (θ ),
we suggest that the model is more isotropic than previously
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FIG. 5. (Color online) Anisotropy of clusters grown by elements
dividing in random directions. (a) Angular surface anisotropy,
P (θ ). (b) Angular surface anisotropy for the noise-reduced variant of
the model with m = 60. Clusters were grown to N = 105 elements
and anisotropy values are averaged over 200 repeats.

proposed models of on-lattice cluster growth. We employ a
Fourier decomposition of P (θ ), in Sec. IV D of the SM, in
order to investigate this suggestion further. Furthermore, for
the noise-reduced variant of the model with parameter m = 60
[see Fig. 6(b) for a sample cluster], we find that the clusters
appear even more isotropic than their random counterparts
with a lower overall anisotropy of maximum absolute value
around 0.3%. There do appear to be periodic variations in the
anisotropy values, however, we found variations of comparable
magnitude for a truly circular cluster [see Suppl. Fig. 3(d)].
The anisotropy of the noise-reduced clusters is also analyzed
further in Sec. IV D in the SM.

This model has the added benefit that it is more computa-
tionally efficient than Drasdo’s since every element selected to
divide produces a daughter element, which increases the size
of the cluster rapidly. In Drasdo’s model (especially for large
cluster sizes) a large amount of time is spent selecting sites
that are unable to divide because of their distance from the
surface. Hence growth is retarded at long times. The slowing
of growth in the model is related to saturation of the surface,
which allows the classification of the Drasdo model into a UC.

V. SURFACE SCALING AND UNIVERSALITY CLASSES

The UC of an aggregate has traditionally been determined
by considering the surface scaling properties of aggregates

FIG. 6. (Color online) Examples of clusters grown using the
algorithm of Ferreira and Alves [11]. (a) A typical example of
such a cluster which looks relatively circular, displaying no obvious
anisotropy. (b) A typical example of a cluster grown with the
noise-reduced variant of the model with m = 60. Clusters were grown
to N = 105.

grown in a “1 + 1”–dimensional strip geometry. In the strip
geometry clusters are grown from a base layer of l seed
particles incorporating periodic boundary conditions on the
vertical boundaries. The width of an aggregate, w, is defined
to be some measure of the standard deviation of the height
of the surface particles. For a large class of models the width
is found to increase initially as a power law in the effective
height, ĥ = N/l (where N is the number of particles), and
then to level off to a value which is dependent on the length of
the substrate upon which the aggregate is grown. The effective
height at which the surface levels off can also be shown to
depend, as a power law, on the length of the substrate, l. These
relationships are summarized by the Family-Vicsek scaling
relation [21]:

w(l,ĥ) ∼ lαf

(
ĥ

lz

)
, f (x) ∼

{
xβ, x � 1,

const, x � 1.
(3)

The growth exponent, β, characterizes the initial increase in
surface width, while the roughness exponent, α, captures the
dependence of surface roughness at saturation on substrate
length. The dynamic exponent z determines the relationship
between saturation height and substrate length. The three
scaling exponents are related by z = α/β. Determining these
exponents enables us to classify models into UCs. Each
class has its own characteristic stochastic partial differential
equation of the form

∂ĥ(x,t)

∂t
= F + η(x,t), (4)

where F is the average rate of particle arrival at site x
and η(x,t) is zero-mean, uncorrelated noise which models
random fluctuations in the deposition process [22]. Implicitly,
by searching for the scaling coefficients which characterize a
model into a particular UC, we are assuming that the surface
width will eventually saturate, which, as we discover, is not
necessarily a valid assumption.

Upon analyzing the model of Ferreira and Alves [11]
using traditional scaling techniques, it appears to exhibit a
classic power-law dependence of surface width on domain
length, l [Fig. 7(a)], and effective height, ĥ [Fig. 7(b)], in the
appropriate limits. This might lead us to conclude that the
model follows the classic Family-Vicsek scaling relationship,
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FIG. 7. (Color online) Scaling of the surface width of random
direction mitosis clusters in “1 + 1” dimensions. (a) Variation of
w(l,∞) (i.e., ĥ � l) with domain length, l, for the random directional
mitosis model. The dashed (black) line plotted for comparison has
gradient 1/8. (b) Variation of w(∞,ĥ) (i.e., l � ĥ) with effective
height, ĥ. Descriptions as for 7(a). The dashed (black) line plotted for
comparison has gradient 1/3.
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FIG. 8. (Color online) Evolution of the surface width for model
II of Ferreira and Alves [11] for different system sizes. (a) The
surface exhibits an initial power-law dependence on effective height
but quickly peaks, then falls, and, finally, plateaus at the saturation
value, wcap(l). (b) Evolution of the surface width rescaled according
to Eq. (5). Axis labels are shorthand where w̃ = w(ĥ,l)/lαĥβ and
h̃ = ĥ/ lγ . A tight collapse of the data points can be seen. In (a) and
(b), (blue) triangles correspond to system size l = 10; (red) squares,
to l = 20; (green circles), to l = 40; and (black) diamonds, to l = 80.

Eq. (3). However, by studying the scaling behavior of the
surface we can see that the surface width exhibits a much
more complicated, nonmonotonic dependence on the effective
height. Figure 8(a) shows the variation of interface width with
effective height for four values of domain length. We calcu-
late critical exponents α = 0.15 ± 0.07 and β = 0.35 ± 0.07.
When the surface width is rescaled (using the Family-Vicsek
scaling relationship) by the critical exponents, derived from
the scaling relationships displayed in Fig. 7, the data do not
collapse onto themselves as they do for the Eden model (Suppl.
Fig. 8). This suggests a different functional form for the scaling
relationship for this model.

The fact that the surface width saturates at all is an artifact
of the periodic boundary conditions of the strip geometry.
Division events with shallow division angles displace large
numbers of elements and effectively explore the surface
in search of the lowest empty lattice site to occupy. This
effect introduces the surface correlations required to reduce
surface width, while division events with steep division angles
effectively increase the surface width. When the average

surface height is low, particles chosen for division are at or
near the surface a large proportion of the time. This reduces
the effect of shallow division events since the surface cannot
be explored fully and hence the surface width grows beyond
its saturation value. As the effective height increases, a higher
proportion of division events is initiated sufficiently far below
the surface for shallow angle division events to allow surface
exploration. This explains the nonmonotonic behavior of the
surface width displayed in Fig. 8(a). In a similar division model
where only elements on the bottom-most layer are allowed to
divide (in analogy to model I of Ferreira and Alves [11]),
this nonmonotonicity is not observed since the surface width
cannot grow beyond its saturation value (data not shown).

The surface thickness of these aggregates no longer obeys
the Family-Vicsek scaling relationship. Instead we propose
that the thickness obeys a new scaling relationship:

w(l,ĥ) ∼ lαĥβf

(
ĥ

lγ

)
. (5)

In order for the scaling of the saturation thickness, wcap, to be
correct we must choose α = 0.15, the value of the roughness
exponent found previously. In this case we also choose γ = α

and β = 1 in order to achieve a tight collapse of the data points
[see Fig. 8(b)].

We also investigated the surface scaling properties of this
model in a full two-dimensional geometry. The findings of
this investigation are presented in Fig. 9. The width is found
to grow with critical exponent β = 0.22 ± 0.07 (which is in
approximate agreement with the value found by Ferreira and
Alves [11]). The small oscillations of the local slopes about
the average value of β in Fig. 9(c) demonstrate that the value
we have found for β is a reliable one. This value of β differs
from the value of the growth exponent in the strip geometry,
β = 0.35 ± 0.07.

An even more stark difference between the strip geometry
and the full two-dimensional geometry is the saturation
behavior of the surface. In the strip geometry the surface
was found to saturate with roughness coefficient α ∼ 0.15,
but in the two-dimensional geometry the surface width does
not appear to saturate. Figure 9(a) demonstrates unbounded
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FIG. 9. (Color online) Scaling of the surface width for model II of Ferreira and Alves [11] in two dimensions. (a) Variation of surface width,
w(l,R), with average cluster radius, R, for clusters up to N = 106 particles. Simulations are averaged over 20 repeats. Saturation of the surface
width is not evident. The dashed (black) line is plotted for comparison and has gradient 1/5. (b) Evaluation of the roughness exponent, α, using
the method of local gradients [22]. The mean value is plotted as the horizontal dashed (blue) line. (c) Evaluation of the growth exponent, β,
using the method of local gradients. The mean value is plotted as the horizontal dashed (blue) line. Note the log scale on each of the x axes.
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growth of the surface width for clusters of up to N = 106

particles. We should expect the surface width not to saturate
since additions to the surface are completely uncorrelated. A
consistent value for the roughness exponent, α, is unobtainable
[see Fig. 9(b)]. Since the critical exponent describes the scaling
of the surface thickness with a local length scale at saturation,
wcap ∼ lα , the inability to determine α is consistent with our
hypothesis that the surface width does not saturate.

VI. COMPARISON OF REACTION-DIFFUSION MODELS
ON A GROWING LATTICE

Although the traditional methods of analyzing and classify-
ing surface scaling are not sufficient for the model of Ferreira
and Alves [11], this does not prevent us from utilizing the
isotropic properties of the model. After the introduction of
a specific element rearrangement algorithm in Sec. IV we
can now employ the domain cluster aggregation model of
Ferreira and Alves [11] in order to simulate discrete, stochastic
reaction-diffusion processes on a radially growing domain
in two dimensions. This can be quantitatively compared to
an equivalent continuum model for the same process on a
deterministically growing domain. This is a natural extension
of the work, in one dimension, of Baker et al. [23] and Yates
et al. [24] into higher dimensions. The simulations might
mimic a biological tissue (a tumor, for example) which is
growing radially and upon which a reaction-diffusion process
is taking place [25].

For demonstrative purposes we consider a purely diffusive
process in the current work, but note that the incorporation
of reactions or an external signaling profile to which particles
can respond would be straightforward [23,26,27]. We allow
particles to diffuse on an initially (approximately) circular
domain tesselated with a square lattice. The domain grows as
described in Sec. IV, with an element being chosen to divide
from all the currently available elements with equal probability
at each time step [28]. In addition, when an element divides,

the particles that originally resided in the parent element
are split symmetrically between the two daughter elements
using the binomial distribution with parameter p = 1/2 [23].
The elements that move in order to make room for the
daughter elements do so according to the cluster rearrangement
algorithm outlined in Sec. IV and take the particles at their
lattice site with them, causing an advective flow of particles
due to the domain growth. We restrict particles in the discrete
model to remain in the domain. This corresponds to a zero-flux
boundary condition.

Given the constant rate of element splitting, , in the
discrete model, we can write down a probability master
equation for the evolution of the number of domain elements
at time t . This master equation determines that the number
of domain elements grows exponentially. This, coupled with
the fact that each element is equally likely to split and that
the growth model is isotropic, leads us to assume uniformly
exponential domain growth in the continuum model. The
growth occurs at a rate, ρ, which we can easily relate to
the splitting rate, , in the discrete model: the increase in
area due to a division event must produce a corresponding
increase in area in the continuum model and (since growth
occurs isotropically) this corresponds to an increase in radius
in the continuum model.

Since the PDE, boundary, and initial conditions are circu-
larly symmetric the population-level solution will be circularly
symmetric for all time. This means we need only solve a
one-dimensional PDE for population density, u(r,t), in the
continuum model:

∂u

∂t
+ 1

r

∂

∂r
(rvu) = D

(
∂2u

∂r2
+ 1

r

∂u

∂r

)
(6)

for r ∈ [0, exp(ρt)/2], t ∈ [0,∞).

The flow due to domain growth is given by v = dr/dt = ρr ,
where ρ is the strain, which is determined from the element
splitting rate, , in the individual-level model. We chose the
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FIG. 10. (Color online) Comparison of the individual-level (with square domain tesselation) and population-level models of diffusion on
a growing circular domain. In the individual-level model 50 000 particles are initialized with a density profile which decays approximately
exponentially from the center to the edge of the domain. The continuum model is initialized similarly with a profile u = A exp(−10r), where A,
the normalizing factor, ensures that the area under the continuum initial condition corresponds to the correct number of particles in the individual-
level simulation. There are initially 1885 elements in the circular domain of the individual-level model. Over a simulation time of 1500 time units,
with an element splitting rate of  = 0.001, this number grows to ∼8448. (a) Histograms represent the density of particles in each square of the
domain tesselation. (b) The surface represents the radially symmetric solution of the PDE, (6), with D = h2, where h = 1/49 is the length of
an element in the individual-level model. (c) Evolution of the histogram distance error (HDE) (see Sec. VI in the SM for a definition of the
HDE metric).
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initial domain to have radius 1/2, which, therefore, determines
the size of each lattice element in the individual-based model.
We solve Eq. (6) using the NAG solver D03PE [29].

A snapshot comparison of the densities of the two models
is given in Fig. 10. The models appear to give qualitatively
similar results. We also plot the evolution of the histogram
distance error (HDE) in Fig. 10(c). The HDE, which gives an
indication of how closely the two models correspond (see
Sec. VI in the SM for a definition of the HDE metric),
is low, indicating a good quantitative comparison between
the individual-level and the population-level domain growth
models of diffusion on a radially growing domain.

VII. DISCUSSION

In summary, we demonstrated that that the model of Ferreira
and Alves [11] is capable of growing circular clusters free of
the inherent anisotropy of the underlying square lattice. Our
revised model description also includes an explicit algorithm
for rearrangement of the cluster upon division of an element.
Such an isotropic model will be essential when modeling
domain growth in biological contexts where no anisotropy
is present. As a representative example we have presented a

comparison between a discrete position-jump model of particle
diffusion on a radially growing domain and a continuum
counterpart.

Our investigation into the surface scaling properties of
clusters generated by the domain growth model suggests that
the traditional mechanisms for classifying growing aggregates
into UCs, based on the saturation behavior of their surface
widths (often in a strip geometry), may be inadequate for
partitioning models, such as that of Ferreira and Alves [11],
whose clusters do not grow through particle additions whose
probabilities are based purely on surface considerations. In
particular, the model for isotropic cluster growth analyzed
in this paper does not exhibit Family-Vicsek scaling be-
havior and, as such, cannot be placed in a traditional UC.
Further work is required to determine whether the inability
to be classified into UCs is common to other aggrega-
tion models whose particles are added using more global
considerations.
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