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Dynamics of the sub-Ohmic spin-boson model is examined using three numerical approaches, namely the
Dirac-Frenkel time-dependent variation with the Davydov D1 ansatz, the adaptive time-dependent density matrix
renormalization group method within the representation of orthogonal polynomials, and a perturbative approach
based on a unitary transformation. In order to probe the validity regimes of the three approaches, we study
the dynamics of a qubit coupled to a bosonic bath with and without a local field. Comparison of the up-state
population evolution shows that the three approaches are in agreement in the weak-coupling regime but exhibit
marked differences when the coupling strength is large. The Davydov D1 ansatz and the time-dependent density
matrix renormalization group can both be reliably employed in the weak-coupling regime, while the former
is also valid in the strong-coupling regime as judged by how faithfully the trial state follows the Schrödinger
equation. We further explore the bipartite entanglement dynamics between two qubits coupled with individual
bosonic baths which reveals entanglement sudden death and revival.
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I. INTRODUCTION

Environment-induced dissipation, including phase and
population damping, plays a central role in ultrafast energy
transfer in optoelectronic processes [1–4], quantum simulation
with trapped ions and superconducting qubits [5,6], and
quantum information processing in noisy channels [7–10].
Recently, it has been speculated that the high efficiency of
excitation energy transfer in green sulfur bacteria is attributed
to the long-lived coherence uncovered in the Fenna-Matthew-
Olson complex [11,12]. A number of factors are to blame
for the loss of coherence in a quantum system, including
finite temperature, energetic disorder, and dynamic disorder.
Dynamic disorder [13], also known as electron-phonon or
exciton-phonon coupling, adds flavor to the decoherence
process and is recognized as a key factor in excitation
energy transfer. Models of system-environmental coupling [3],
such as the spin-boson model, are often employed to help
uncover environment-induced mechanisms of decoherence. A
related effect of interest is entanglement sudden death and
revival arising from finite-temperature decoherence [7,14],
for which a comprehensive understanding is still elusive due
to a lack of an accurate theory. A dimer structure, which
contains a two-qubit system coupled with individual bosonic
baths, such as two spin-boson models with correlated spin
initial states and interspin coupling, can be helpful in finding
answers to the problem of entanglement death and revival and
resolving issues such as competition between hopping and
recombination, the environment-induced superselection, and
the entanglement dynamics.

Despite sustained interest in the spin-boson model [15,16]
that spans several decades, this simple system of a spin
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coupled to a bath of bosons still occupies a central place in
a variety of fields, ranging from excitation energy transport
in molecular [2,3] and natural photosynthetic systems [4] to
quantum entanglement and computation [8,9]. One focus of
those studies is the coherent-incoherent transition in various
parameter regimes. Whether a localized state exists in the
sub-Ohmic regime has been, in particular, an issue of intense
contention in the community [17–26]. Using the polaron
ansatz, Chin et al. studied the continuous transition in the
deep sub-Ohmic regime. They found an obvious cusp in
both the spin coherence and the spin-boson entanglement at
the critical point. The cusps are explained by the differing
mechanisms via which the spin coherence is modified by
the fast adiabatic modes and the slow nonadiabatic modes
of the bath. In addition, a similar ansatz is also adopted by
the numerical renormalization group (NRG) method to study
the phase transition in the same regime. With regard to spin-
boson dynamics, decoherence and relaxation in the sub-Ohmic
regime, where medium to strong system-environment coupling
exists, are of great relevance to many practical problems, and,
therefore, much theoretical attention has been devoted to the
sub-Ohmic model, resulting in a large body of varying results
that beg for comparison. The list includes, but is not limited to
the following: the numerically exact real-time path integral
method with quasiadiabatic propagator revealing effective
dynamic asymmetry in the presence of a sub-Ohmic bath
[26,27]; the quantum Monte Carlo method, which determines
the critical exponents for an s value less than a half [28];
the NRG method developed by Wilson [29], which reveals
a continuous quantum phase transition in the sub-Ohmic
regime and weakly damped coherent oscillations on short
time scales in the localized phase [30]; the numerically exact
multilayer multiconfiguration time-dependent Hartree method
(ML-MCTDH) uncovering the transition of the dynamics from
weakly damped coherent motion to localization on increase of
the system-bath coupling strength [19]; the sparse polynomial
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representation method based on exact diagonalization [31];
and the real-time path integral Monte Carlo techniques,
which show that the coherent phase exists even under strong
dissipation for s < 1/2 [17,18].

The spin-bath interactions are formally identical to the
exciton-phonon coupling in the Holstein molecular crystal
model [32–34], for which a hierarchy of trial states based
on the Davydov ansätze has been widely used for describing
the exciton-phonon dynamics. As a semiclassical approach
for studying energy transport in deformable molecular chains,
those ansätze [35] were put forward by Davydov and cowork-
ers. It was pointed out later [36] that the Davydov ansatz
bears close resemblance to a multiconfigurational ansatz with
more than one Slater determinant. By exploiting the analogy
between the spin-boson model and the Holstein molecular
crystal model, a time-dependent trial wave function very
similar to the Davydov D1 ansatz is proposed to provide an
accurate, yet efficient, description for dynamical properties of
the sub-Ohmic spin-boson model.

Given difficulties in solving the sub-Ohmic spin-boson
model exactly, a few suitable approximation schemes are
invariably required for comparisons. The NRG method is
among the early approaches applied to the spin-boson model
via a mapping that relies on a logarithmic discretization in the
frequency domain [37], and it was found that there exists a
localized state in the strong-coupling regime where the coher-
ence is suppressed. The density matrix renormalization group
(DMRG) algorithm [38], which is robust in dealing with one-
dimensional lattice with only nearest-neighbor interactions,
was subsequently applied to study this model. Using the theory
of orthogonal polynomials, several discretization schemes
were proposed for incorporation in the DMRG method [39].
Subsequently, using the adaptive time-dependent DMRG (t-
DMRG) method [40], a molecular dimer coupled to two indi-
vidual baths was studied [41]. On the other hand, the exactly
solvable Landau-Zener Hamiltonian closely related to the spin-
boson model has been investigated comprehensively using the
t-DMRG approach [42]. The latter work mainly examined the
precision of the numerical calculation, especially for the linear
and logarithmic discretizations, and it was found that the t-
DMRG method works well for the spin-boson model when the
time scale is not too long but still within the practice purposes.

In this paper, an approach based on a unitary transformation,
one that is at variance with the usual unitary transforma-
tion methods in the literature [43], is applied to study the
nonadiabatic correlations between the spin and bosons in the
spin-boson model [44]. In the traditional theory of unitary
transformation which gives valid results in the scaling limit,
the expansion parameter is the tunneling integral, while in the
unitary transformation used in this work it is a momentum-
dependent variable, and many important results have been
obtained on the quantum phase transition and the coherence-
incoherence crossover for the sub-Ohmic and Ohmic baths.
Using our transformation, we have also carried out checks
on the Shiba relation and the sum rules in a broad parameter
space including the scaling limit. In this work, results from
this approach will be compared with those from the Davydov
ansatz and the t-DMRG method.

This paper is organized as follows. The Davydov D1 ansatz,
the t-DMRG algorithm, and a perturbative approach with

unitary transformation for the spin-boson model are introduced
in Sec. II. Calculation results for one qubit will be presented
in Sec. III, where the comparisons between different theories
for population evolution are shown. Discussions on the extent
of validity for different theories are also presented. The
dynamical behavior of the two qubits as well as the evolution
of entanglement is discussed in the fourth section. Conclusions
are drawn in the final section.

II. METHODOLOGIES

A. Davydov D1 ansatz

The Hamiltonian of the spin-boson model is typically
written as

H = ε

2
σ z − �

2
σx +

∑
l

ωlb
†
l bl + σ z

2

∑
l

λl(b
†
l + bl), (1)

where h̄ is set to unity, σ z and σx are the usual Pauli operators,
ε is the spin bias due to the influence of a local field, � is the
tunneling constant, ωl is the frequency of the l-th boson mode,
b
†
l (bl) are the creation (annihilation) operators of the l-th mode,

and λl labels the coupling strength of the spin to the boson of
l-th mode. There is a cutoff frequency for the bosons
at ωc so the spectral function is expressed as J (ω) =
2παω1−s

c ωse−ω/ωc . For the sake of simplicity in numerical
computations, ωc is set to be 1. The sub-Ohmic bosonic
regime, corresponding to s < 1, is of particular theoretical
interest, as the quantum phase transition between the localized
and delocalized phases has been studied by a number of
approaches. In this work, the sub-Ohmic bath (s = 1/4) is
considered.

As a trial wave function used in the variational algorithm,
the Davydov D1 ansatz is composed of a linear superposition
of coherent states [45]

|D1(t)〉=
∑

n

An(t)|n〉⊗ exp

[∑
l

Bn,l(t)b
†
l −B∗

n,l(t)bl

]
|0〉b,

(2)

where An(t) and Bn,l(t) are variational parameters for the spin
and boson parts of the binary system, respectively, n takes
two values, + and −, to denote the up and down spin states,
respectively, and |0〉b is the bosonic vacuum state. The main
step of our procedure is to project the state

|δD(t)〉 =
(

i
∂

∂t
− H

)
|D1(t)〉 (3)

onto the states |n〉 ⊗ U
†
n |0〉b and |n〉 ⊗ U

†
nb

†
l |0〉b, where U

†
n ≡

exp[
∑

l Bn,l(t)b
†
l − B∗

n,l(t)bl]. It should be noted that this
projection procedure is equivalent to the Lagrangian formalism
[45–47] of the Dirac-Frenkel time-dependent variation used in
Ref. [48]. The equation of motion for An(t) can be written as

−i
∂

∂t
A±(t) = A±(t)

∑
l

[
i

2

(
B∗

±,l(t)
∂

∂t
B±,l(t) − c.c.

)

−ωl |B±,l(t)|2 ∓ λl

2
(B±,l(t) + c.c.)

]

∓ ε/2A±(t) + �

2
A∓(t)S±,∓, (4)
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where ± denotes spin-up (+) and -down (−) and Sn,n′ ≡
b〈0|UnU

†
n′ |0〉b. Similarly, for Bn,l(t), the equation of motion

can be written as

−iA±(t)
∂

∂t
B±,l(t) = −ωlA±(t)B±,l(t) ∓ λl

2
A±(t)

+ �

2
A∓(t)S±,∓(B∓,l − B±,l). (5)

Using the Dirac-Frenkel variational principle, the sub-
Ohmic spin-boson model has been recently studied, confirm-
ing that a persistent population oscillation still exists in the
presence of a very large coupling strength for s < 1/2 when
the polarized initial condition is used [48]. It is intriguing
that the polarized bath initial condition is more likely to lead
to coherent dynamical behaviors than the factorized initial
condition, which indicates that the dynamics of the sub-Ohmic
spin-boson model is rather sensitive to the choice of initial
conditions. Evidence was also presented to show that the
variational approach based on the Davydov D1 ansatz is robust
in the strong-coupling regime, where the boson component
of the time-dependent wave function is better captured by
a superposition of coherent states. Similar trends were also
observed in the application of the Davydov D1 ansatz to the
Holstein molecular crystal model [49,50]. However, as the sub-
Ohmic bath implies relatively strong spin-boson interactions,
the validity range of the D1 ansatz can be extended to moderate
and weak coupling in the presence of the sub-Ohmic bath,
a fact that will be shown by the comparisons with other
numerical methods.

B. Adaptive time-dependent density matrix
renormalization group

In this subsection, we give a brief description of imple-
menting the t-DMRG method to the spin-boson model. The
DMRG method is a powerful numerical technique to treat
one-dimensional systems with short-ranged interactions. In
order to extend it to study the time evolution, one needs
to truncate the Hamiltonian into the summation of terms
with only nearest-neighbor interactions, such as H = ∑

j Hj

with Hj being the Hamiltonian of the j th bond. The Trotter
decomposition of the evolution operator, in the form of

eiHτ 	
∏
j

eiHj τ , (6)

can then be applied to the DMRG-computed states. Herein,
τ should be kept small to put a lip on the error of the
decomposition, and, depending on the required precision,
decompositions of various orders can be selected. Throughout
this work, we use the second-order Trotter decomposition.

As the purpose of the decomposition is to transform the
Hamiltonian to a DMRG-friendly form, it is necessary to map
the bosonic modes onto a one-dimensional chain with only
nearest-neighbor hopping. To this end, one can perform either
a linear discretization scheme or a logarithmic one for the
bosons prior to the transformation. These two discretization
schemes have been carefully compared for t-DMRG [42]. In
this work we will utilize logarithmic discretization and follow
the theory of orthogonal polynomials [41], which yields good
accuracy if the total number of discretized modes is not very

large. The final transformed Hamiltonian has the form

H̃ = Hs +
√

η

4π
σz(b†0 + b0)

+
∑

i

ωib
†
i bi +

∑
i

(tib
†
i+1bi + H.c.), (7)

where Hs labels the spin Hamiltonian to be discussed later,
ωi and ti are the transformed frequency and hopping integral
of bosons [41], respectively, η is the renormalized spin-boson
coupling, which could be estimated from η = ∫ ωc

0 J (ω)dω.
Results from the logarithmic discretization procedure with the
discretization parameter 
 can be written as

ωi = ξs(Pi + Qi), (8)

ti = −ξsPi

(
Ni+1

Ni

)
, (9)

with

ξs = (s + 1)[1 − 
−(s+2)]

(s + 2)[1 − 
−(s+1)]
ωc, (10)

Pi = 
−i(1 − 
−(j+s+1))2

[1 − 
−(2i+s+1)][1 − 
−(2i+s+2)]
, (11)

Qi = 
−(i+s)(1 − 
−j )2

[1 − 
−(2i+s)][1 − 
−(2i+s+1)]
, (12)

N2
i = 
−i(s+1)(
−1; 
−1)2

i

[
−(s+1); 
−1]2
i [1 − 
−(2i+s+1)]

, (13)

where

[a; q]i = (1 − a)(1 − aq) · · · (1 − aqi−1). (14)

We have checked the dependence of our results on the
number of bosons in each mode (ranging from 4 to 8). In
the weak-coupling regime, the results show good convergence
with 4 bosons, while in the strong-coupling regime, even a
boson number of 8 is sometimes insufficient, which is why we
conclude that the DMRG is more efficient for weak coupling.
On the other hand, a smaller boson number brings a higher
computational efficiency. Considering these two aspects, a
boson number from 4 to 8 is used in this work.

In order to improve the numerical accuracy, two issues need
to be addressed. First, the spin Hamiltonian Hs can be written
as

Hs =
∑

l

εl

2
σ z

l −
∑

l

�

2
σx

l + Jσ1 · σ2, (15)

which has a DRMG-friendly dimer structure with two coupled
spin-boson Hamiltonians that will be used throughout this
work. Here l is the spin index, εl the local magnetic field, and
J the exchange constant. The spins are located at the center
of the chain where the numerical precision is the highest.
For the purpose of discussing one spin case, we set J = 0,
and spin dynamics under the competition between J and �

will be investigated later. Instead of the usual polarized or
factorized bath initial states chosen for the spin-boson model,
the ground state of the Hamiltonian (7) with a large bias
is chosen as the initial state, that is, εl is given relatively
large positive (negative) values for spin-down (spin-up) state.
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During time evolution, εl will be gradually decreased until
a specific chosen value is reached. This treatment should be
much more accurate than one in which the bias is suddenly
switched on and off, since the optimized basis for t-DMRG
cannot undergo sudden changes during the initial period of
the evolution. In all our calculations, the DMRG truncation
number is 100, the discretization parameter 
 = 1.5, and the
number of sites in the chain is around 100 depending on the
model parameters.

C. Perturbation theory with unitary transformation

We also present an analytical treatment based on the unitary
transformation approach [44,51]. A canonical transformation
is applied to the Hamiltonian, i.e., H ′ = exp(S)H exp(−S),
with the generator S defined as

S =
∑

k

gk

2ωk

(b†k − bk)[ξkσ
z + (1 − ξk)σ0I]. (16)

Here σ0 is a constant, I is the identity matrix, and ξk are
k-dependent functions given in Ref. [44]. After performing the
transformation, one obtains the expression for the transformed
Hamiltonian H ′:

H ′ = H ′
0 + H ′

1 + H ′
2,

H ′
0 = −1

2
�rσ

x + 1

2
ε′σ z +

∑
k

ωkb
†
kbk

−
∑

k

g2
k

4ωk

ξk(2 − ξk) +
∑

k

g2
k

4ωk

σ 2
0 (1 − ξk)2, (17)

H ′
1 = 1

2

∑
k

gk(1 − ξk)(b†k + bk)(σ z − σ0) − 1

2
�riσ

yB,

H ′
2 = −1

2
�σx (cosh{B} − η) − 1

2
�iσy (sinh{B} − ηB) ,

where H ′
0 is the unperturbed part of H ′, H ′

1 denotes the first-
order terms where all the higher-order terms are included in H ′

2

[44], B = ∑
k

gk

ωk
ξk(b†k − bk), and the renormalized tunneling

integral �r = η� with η determined by 〈cosh{B}〉 = η (ther-
mally averaged with respect to the Bose-Einstein distribution)
as follows:

η = exp

[
−

∑
k

g2
k

2ω2
k

ξ 2
k

]
, 0 � η � 1. (18)

The shifted bias is renormalized as

ε′ = ε − τσ0, τ =
∑

k

g2
k

ωk

(1 − ξk)2. (19)

H ′
0, which can be solved exactly because the spin and bosons

in H ′
0 are decoupled, is diagonalized by a unitary matrix

U = uσ z + vσ x , where u =
√

(1 − ε′
W

)/2, v =
√

(1 + ε′
W

)/2,
and W = √

ε′2 + �2
r . Thus, H̃0 = U †H0U = − 1

2Wσz +∑
k ωkb

†
kbk − ∑

k

g2
k

4ωk
ξk(2 − ξk) + ∑

k

g2
k

4ωk
σ 2

0 (1 − ξk)2, and
we obtain the ground state |g0〉 with energy Eg . Further,
H̃1 + H̃2 = U †(H ′

1 + H ′
2)U are treated as perturbation

which should be kept as small as possible. For this
purpose ξk is properly determined. Note that H̃1|g0〉 = 0
and this is the key point in the unitary transformation

approach. Thus, the ground-state energy Eg agrees well
with those of the NRG in both the zero-bias and finite-bias
cases [44]. The original Hamiltonian can be solved exactly
in two limits: (1) the weak-coupling limit α → 0 with
Eg(α → 0) = − 1

2

√
�2 + ε2 and (2) the zero tunneling limit

� → 0 with Eg(� → 0) = − 1
2 |ε| − ∑

k λ2
k/4ωk . It is easily

checked that Eg goes to the correct ground-state energy in the
two limits.

In the dynamics calculation, the transformed Hamiltonian
is approximated as H̃ ≈ H̃0 + H̃1, since the terms in H̃2, such
as bkbk′ and b

†
kb

†
k′ , are related to the multiboson nondiagonal

transitions and 〈g0|H̃2|g0〉 = 0 due to the definition for η

in Ref. [44]. The contributions of these nondiagonal terms
to the physical quantities are O(g4

k ). For zero temperature,
contributions from these multiboson nondiagonal transitions
may be neglected safely. Since Shiba’s relation and the sum
rule for the equilibrium correlation function [52] constitute
two important checks, it has been shown that they are exactly
satisfied in both the Ohmic and sub-Ohmic cases and also
justified in the entire parameter regime from weak coupling to
strong coupling [44].

III. COMPARISON BETWEEN T-DMRG AND THE
VARIATIONAL THEORY

In the spin-boson model, � and α are the two most
important parameters with competing influences on the system
dynamics: the former permits coherent tunneling between
the two energy levels, while the latter acts as a damping
mechanism. It was found that the Davydov D1 ansatz works
well within the regime of strong spin-boson coupling (i.e.,
for large α) [33,34]. However, there exist few discussions
on the extent of applicability of this ansatz with small α.
Fortunately, t-DMRG is rather accurate in this regime, as
the phonon excitations are not abundant and the truncation
of the Hilbert space will not lead to a precision breakdown.
Hence, the t-DMRG results in this parameter regime are able
to serve as a comparison to check the accuracy of this ansatz.

Figure 1 compares results from the t-DMRG calculations
and the D1 ansatz in the absence of the magnetic field, i.e.,
with zero bias (ε = 0). It is interesting to examine the time
evolution of the up-state population ρ+, which is set to unity
at t = 0. In each panel, results are shown for three values
of �, i.e., � = 0.02,0.05, and 0.1. For small values of α in
the range between 0.01 and 0.02, good agreement is found
between results from the two approaches even if � varies by
a large extent. A transition of the population evolution from
incoherent to coherent regime can be clearly observed with
increasing tunneling constant �. With an increase in α, the
results from the two approaches start to deviate from each
other. In t-DMRG, the coherent oscillation survives for large
values of α, while in the result obtained with the Dirac-Frenkel
variation using the D1 ansatz, the oscillation is damped very
quickly. Such comparisons are useful to map out the validity
ranges of the two approaches. In particular, the good agreement
in the weak-coupling regime may point to a reliable application
of the Davydov D1 ansatz to a parameter regime not previously
known to be applicable to.
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α=0.05α=0.05

ω

α=0.04α=0.04

α=0.03α=0.03

ρ

α=0.02α=0.02

α=0.01

Δ
Δ
Δ

α=0.01

FIG. 1. (Color online) Time evolution of the up-state population
for ε = 0 and � = 0.02 (solid black), 0.05 (dashed red), and 0.1
(dash-dot blue). The left panels are from t-DMRG, and the right
panels are from the D1 ansatz.

Note that there is a small difference in both the amplitude
and frequency of the population oscillation between the results
of the two methods, due to the fact that, in the t-DMRG
approach, it is hard to establish a rigorous spin-up state as
the initial state. While in the D1 ansatz, under the factorized
initial condition, the bosonic bath is initially in the vacuum
state, and if the polarized initial state is referred to, the bath is
initially in a coherent state. To study the influence of the initial
state, the population evolution, calculated from the D1 ansatz,
is compared for the factorized and polarized initial states in
Fig. 2. It is shown that there is only a modest difference in both
the amplitude and the frequency of the up-state population.

In order to see more clearly the origin of the deviation
in strong coupling, we show the evolution of ξ ≡ 〈b̂† + b̂〉/2
for several boson sites that are close to the spin with fixed

ρ

ω

α=0.02, Δ=0.1

FIG. 2. (Color online) Time evolution of the up-state population
calculated by the variational theory using the D1 ansatz for both the
polarized (solid black) and factorized (dashed red) initial conditions
when α = 0.02 and � = 0.1.

� = 0.05 in Fig. 3. The value of ξ is proportional to the boson
displacement, and, therefore, to the variational parameters Bn,l

in the Davydov D1 ansatz, so it is a convenient indicator
for possible breakdowns of our numerical approaches. From
the time evolution in Fig. 3, it is found that, following time
evolution, bosons in an increasing number of sites are excited
gradually, and, more importantly, the displacements of the
first five sites at least are along the same orientation. This
means the boson sites are moving collectively with acoustic
wave modes. These modes exist mainly in the weak-coupling
(thus low frequency) regime and, thus, stand for the reason of
breakdown in strong-coupling regime for t-DMRG. This can
be further clarified by Fig. 3(d) which displays evolution of ξ

for the strong-coupling case with α = 0.1. It is obvious that
in this case there is almost no movement of bosons. We thus
conclude that, at the present stage, the t-DMRG method is
deficient to study the proper physics of the spin-boson model
in the strong-coupling regime.

α=0.03, Δ=0.05

α=0.1, Δ=0.05

ω

α=0.05, Δ=0.05

ξ

α=0.02, Δ=0.05

FIG. 3. (Color online) Time evolution of ξ on several boson sites
close to the spin for � = 0.05, and (a) α = 0.02, (b) α = 0.03,
(c) α = 0.05, and (d) α = 0.1. The arrow indicates the direction
of site index increasing.
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αα

ω

αα

ρ

α

Δ
Δ
Δ

α

FIG. 4. (Color online) Time evolution of the up-state population
for ε = −0.05 and � = 0.02 (solid black), 0.05 (dashed red), and
0.1 (dash-dot blue). The left panels are from t-DMRG, and the right
panels are from the ansatz.

Next, we study the population evolution in the presence of
a local field, as shown in Fig. 4. We set ε to be −0.05 and
focus on the up-state population. The local field introduces
an energetic bias for the spin, which is encouraging as the
t-DMRG method is known to be more accurate for a gapped
system. This is because in a gapped system the high-energy
states (above the gap) have vanishingly small contributions to
the reduced density matrices, and, as a result, the truncation
of states in the DMRG procedure becomes more efficient
than in a gapless system. We thus expect that the results of
t-DMRG and Davydov D1 ansatz can be more consistent
than the case without bias. Especially for α = 0.02 and
for ωct shorter than 100, both the approaches yield nearly
identical results. However, the t-DMRG method cannot handle
well the damping effect at large α over long-time evolution.
Based on these results, we conclude that the optimality
condition to get reliable results for the t-DMRG method is
α < 0.03.

In order to quantify the accuracy of the |D1〉 ansatz, and to
gauge how faithfully |D1〉 follows the Schrödinger equation,
we define a measure by the name of relative derivation [48],
which can be written as

σ (t) =
√〈δ(t)|δ(t)〉

Ēbath
, (20)

where |δ(t)〉 is the deviation vector defined in Eq. (3) and
Ēbath is the average energy of the bosonic bath which
usually corresponds to the largest energy scale in the system.
Computed relative deviation curves are displayed in Fig. 5,
in which it is demonstrated that the Davydov D1 ansatz has
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α

α

Δ
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FIG. 5. (Color online) Time evolution of the relative deviation
σ , as defined in Eq. (20), for both unbiased and biased (ε = 0.05)
cases: (a) � = 0.02, unbiased; (b) � = 0.02, biased; (c) α = 0.05,
unbiased; (d) α = 0.05, biased.

smaller relative deviations when α is large and � is small and
is, therefore, a good trial state in the strong-coupling regime
with or without the bias.

From the aforementioned dynamics computed by the
Davydov D1 ansatz and the t-DMRG method, their validity
regimes can be mapped out approximately. The t-DMRG
results are reliable in the weak-coupling regime, where the
phonon excitations are modest and fall within the accept-
able range of the truncated Hilbert space. In the strong-
coupling regime, however, the abundant phonon excitations
can be hardly described by the truncated Hilbert space, and
the bosonic displacement ξ also shows the deficiencies of
t-DMRG. Results calculated by use of the Davydov D1 ansatz
are consistent with those from t-DMRG in the weak-coupling
regime, inferring that the Davydov D1 ansatz is sufficiently
accurate for weak coupling as well. The validity of the
Davydov D1 ansatz in the strong-coupling regime has been
examined in Ref. [48] and also confirmed by the relative
derivation calculated in this paper.

Before we move on to the next section, two comments are
due. First, despite its high precision in the sub-Ohmic regime,
the D1 ansatz is quite efficient numerically, which allows wide-
ranged applications of the trial state to various systems of
interest. For the t-DMRG approach, however, computational
cost poses the greatest obstacle to extending its applications
beyond the spin-boson model as more than 100 hours of CPU
time on a single 2.13-GHz processor are needed for each run in
this work to achieve adequate accuracies. This hinders possible
extensions of the approach to models with many exciton sites,
such as the one-dimensional Holstein Hamiltonian. Second,
we have also examined the s dependence of the calculation
results from the two methods finding that the D1 ansatz loses
accuracy as s is increased, while for t-DMRG, the precision
remains on a moderate level. Actually, it is an advantage of
t-DMRG to deal with different bosonic baths, such as Ohmic
and super-Ohmic baths [41,42].
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FIG. 6. (Color online) Time evolution of up-state population for
both unbiased (left panels) and biased ε = 0.05 (right panels) from
the perturbative approach with unitary transformation.

IV. NONEQUILIBRIUM TIME EVOLUTION WITH A
PERTURBATIVE APPROACH

In this section, a perturbative approach based on a unitary
transformation will be used to study the sub-Ohmic spin-boson
model in order to provide additional evidence to the validity
of the two approaches employed so far. The time evolution
of population ρ+ from the perturbative approach is shown
in Fig. 6, in which the left panels show the unbiased non-
Markovian dynamics with a sub-Ohmic bath s = 0.25 from
weak coupling to strong coupling. For large � and small α,
the dynamics exhibits a coherent underdamped oscillation with
a frequency near �, which agrees with those of the Davydov
D1 ansatz and t-DMRG. When the coupling strength is large
enough, the system is much more localized, and the population
dynamics at strong coupling still shows coherent properties
with an increasing oscillating frequency. The behavior that
the oscillation frequency increases with increases coupling
agrees well with that of the PIMC calculations and the analysis
of the noninteracting blip approximation [17]. The coherent
oscillation survives even for large coupling α = 0.05 and
the oscillating frequency in ρ+(t) is much larger than that
of t-DMRG and D1 ansatz. It is worth noting that, in this
approach, two approximations have been made: One is the
omission of H̃2 and the other is the usual Born approximation
for deriving the master equation. Hence, the validity of our
perturbative approach could be lost in some parameter regimes
judging from the comparison with the two earlier methods.
This comparison, on the other hand, gives a good criterion for
evaluating the reliability of the perturbative approach. Besides,
the two important checks have been carried out, and the sum

rule ρ+(t = 0) = 1 and Shiba’s relation have been shown to
be satisfied for all the calculated cases.

In addition, we also show, in the right panels of Fig. 6, the
biased nonequilibrium population ρ+(t) for different values of
� and α. One can see that, apart from the effect of the bias
on the long-time population behavior (ρ+(t → ∞)), a nonzero
bias enhances the quantum coherence as the decay rate of the
Rabi oscillation for the case of ε/ωc = 0.05 is lower than that
of ε = 0. Comparing the biased nonequilibrium population
ρ+(t) for different coupling strengths (under a nonzero bias
ε/ωc = 0.05) with that of the unbiased case, we find that for
weak coupling α = 0.02, the quantum coherence in the biased
case may be kept for a longer time; for the moderate coupling
case of α = 0.05, the frequency of the biased Rabi oscillation
is larger than that of the zero bias case.

V. ENTANGLEMENT DYNAMICS OF TWO QUBITS

In this section, we study first the population transfer process
in a spin dimer using the t-DMRG method which has been
shown to yield accurate results in the weak-coupling regime.
Each of the two spins in the dimer is coupled to an independent
bath with a coupling strength of α = 0.02, a setup similar
to one that has been previously investigated with a focus
on persistent electronic coherence [22]. Surprisingly, despite
that environment-induced phenomena have been vigorously
studied in the field of quantum information processing,
scant attention has been paid to entanglement dynamics in
Hamiltonians that are composed of spin-boson models [53]. In
this work, we aim to study features of entanglement dynamics,
such as entanglement sudden death and revival, in a spin dimer
with each monomer a two-level system. The Hamiltonian for
the spin part has been given in (15).

The initial state to be employed will slightly differ from
those used earlier, and on site 1, a local field ε1 = −0.2 will
be added initially in the calculation of the ground state and
switched off gradually, while on site 2, no such local field is
added initially. Therefore, the spin on site 1 is initially in the
up state, while site 2 is prepared in a way that depends on the
parameters used.

� is assumed to be the same for both spins. In Fig. 7, the
population and correlation dynamics is displayed for four sets
of J and �. First, from Figs. 7(a)–7(d), the time-averaged spin-
up population on site 1 shows a gradual decrease following an
increase in both J and � from those in Figs. 7(a) to 7(d),
while the spin-up population on site 2 exhibits a tendency to
increase gradually. Important difference can be noted between
Figs. 7(b) and 7(c). In Fig. 7(b), as J is much smaller than �,
the spin flipping process dominates. The spin-up populations
on sites 1 and 2 are found to share a similar time dependency,
pointing to the fact that the increase of the spin-up population
on one site comes at the expense of the spin-down population
on the same site. On the other hand, in Fig. 7(c), J is much
larger than �, and the hopping process between the two sites
is dominant. We thus can find in this case that the increase
of the spin-up population on site 2 is at the expense of that
on site 1. In Fig. 7(d), a combined behavior of both flipping
and hopping is observed. The results obtained here are in
qualitative agreement with those calculated variationally [22].
It is worth noting that when the two parameters J and � are
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FIG. 7. (Color online) Time evolution of the populations of the
spin up state on site 1 (solid black) and site 2 (dashed red) for four
sets of control parameters: (a) J = 0.02, � = 0.02; (b) J = 0.02,
� = 0.05; (c) J = 0.05, � = 0.02; and (d) J = 0.05, � = 0.05.

comparable in magnitude, there is an obvious decay in the
coherent dynamics. This is nontrivial, since it means the local
coherence could be washed out during a nonlocal hopping
event, even if there is still a strong local spin flipping rate. We
attribute this incoherent transfer to the bath-induced quenching
of local spin interference.

To gain further insights, we study the dynamics of entan-
glement between the two qubits. Concurrence is a well-known
measure for the bipartite entanglement given by [54]

C(ρ) = max{0,λ1 − λ2 − λ3 − λ4}, (21)

with λi being the eigenvalues, in decreasing order, of the
matrix

√√
ρρ̃

√
ρ. Here, ρ is the reduced density matrix

for the two qubits, and ρ̃ ≡ (σy ⊗ σy)ρ(σy ⊗ σy). C(ρ) falls
in the range from 0 to 1. If the two qubits are separable,
C(ρ) = 0, while C(ρ) = 1 if they are completely entangled.
Calculated concurrences between two independent SBMs are
shown in Fig. 8. The initial state for the two qubits is
chosen to be an anti-Bell state, which can be written as
a|+−〉 + √

1 − a2|−+〉, while the bosonic bath is initially in
the vacuum state. We choose a = 1/

√
2 in our calculation

which corresponds to a maximally entangled initial state.
Neither the rotating wave approximation nor the Markovian
assumption is taken in arriving at the results displayed in Fig. 8,
which shows the occurrence of entanglement sudden death at
various times [7,14,53,55]. Overall the concurrence lifetime
decreases with an increase of the coupling strength.

In Fig. 9, we display the time evolution of the interspin
concurrence. The upper panel shows results for the same pa-
rameters as those used in Fig. 7 to facilitate easier comparisons.
It is not surprising that a large � leads to extremely weak
entanglement while a large J yields strong entanglement,
consistent with earlier discussion. There are two interesting
features: (1) the concurrence increases continuously after an
initial dip at approximately ωct = 25 if both J and � are 0.05
and (2) if J = 0.02 and � = 0.05, the interspin concurrence
reemerges after a time period of vanishing entanglement. The
latter reproduces the so-called entanglement sudden death and

α
α
α

ω

FIG. 8. (Color online) Time evolution of the interspin concur-
rence calculated by (a) D1 ansatz and (b) t-DMRG for � = 0.02 and
α = 0.02 (solid black), 0.03 (dashed red), and 0.05 (dash-dot blue).

Δ
Δ
Δ
Δ

ω

Δ
Δ
Δ
Δ

FIG. 9. (Color online) Time evolution of the interspin concur-
rence for various parameter sets. The parameter sets in the upper
panel are the same as those used in Fig. 7. Three additional parameter
sets are used in the lower panel with the curve for J = 0.02,� = 0.05
replotted for comparison. If � is larger than 0.07, entanglement that
undergoes a sudden death is not revived, and there is no ESD when
J is larger than 0.04.
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revival phenomenon [7], an important phenomenon in quan-
tum information processing that has been extensively studied
in various systems except in the context of the spin-boson
models [53]. In order to determine a parameter range where the
entanglement sudden death and revival exist, we display in the
lower panel of Fig. 9 the time evolution of the concurrence for
three additional sets of parameters. It is found that if J < 0.03
and � > 0.05, the entanglement sudden death and revival
occur after an initial concurrence oscillation. Meanwhile,
� = 0.05 is the optimal value for such a revival, and for
� = 0.07, the entanglement will be completely quenched.
Further efforts are needed to determine the parameter space
for entanglement death and revival. It is worth noting that,
while our result is encouraging, we refrain from ascribing
it undue importance as the approach taken has insufficient
accuracies in the strong-coupling regime. For a careful scrutiny
of this otherwise interesting issue, further efforts are needed
to improve the reliability of our numerical approaches. In
Ref. [55], Wang and Chen employed a hierarchical equation-
of-motion approach to study the exact dynamics of quantum
correlations of two qubits coupled to bosonic baths. The
counter-rotating-wave term has been emphasized, which could
suppress the entanglement, especially in the strong-coupling
regime. In this work the counter-rotating-wave term and the
interqubit interaction are both included.

VI. CONCLUSIONS

We have applied the t-DMRG method with orthogonal
polynomial representation and the Davydov D1 variational
ansatz to study the dynamics of the sub-Ohmic spin-boson
model. Evolution of the population of the spin-up state
as well as the coherence between the up and down states
is studied by both approaches with and without a local
field. Excellent agreement between the results from the two
approaches has been found when the coupling strength is not
too large. A third approach, the perturbative approach based
on a unitary transformation, is also utilized to help compare
the relative accuracy of the two methods. Specifically, the
t-DMRG method yields reliable results in the weak-coupling

regime; however, in the strong-coupling regime, more phonon
excitations emerge which can be poorly described by the
truncated Hilbert space. The Davydov D1 ansatz is supported
by the t-DMRG method in the weak-coupling regime, and
its validity in the strong-coupling regime has been confirmed
by monitoring and making sure the relative deviation remains
small. The third perturbative approach based on the unitary
transformation generates results at variance with those from
the former two methods in the strong-coupling regime, which
may result from the Born approximation used in the derivation
of the master equation and neglecting higher-order terms in
the transformed Hamiltonian. In conclusion, the Davydov
D1 ansatz can deal with both the strong- and weak-coupling
regimes with high efficiency and sufficient precision, while
the t-DMRG approach is shown to be accurate in the weak-
coupling regime and can be used as a method of corroboration
in the dynamics calculations.

Using the t-DMRG method and the Davydov D1 ansatz,
we also studied bipartite entanglement dynamics between two
qubits coupled with individual bosonic baths. The competition
between the hopping integral J and the flipping rate � is first
discussed, and a nontrivial decay of the local coherence is
uncovered when J and � are comparable. Following that,
the bipartite entanglement between the two spins is studied
by evaluating the concurrence, and the entanglement sudden
death and its revival are observed.
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