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In this work, we introduce some basic principles of P7 -symmetric Klein-Gordon nonlinear field theories. By
formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model
do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed
solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no
effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect
of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards
the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of
finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous

spectrum of the problem.
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I. INTRODUCTION

Parity-time (P7) symmetric settings have recently cap-
tured the fascination of both physicists and mathematicians
working in linear and nonlinear systems alike. While the
original proposal of Bender and co-workers involved a new
framework for P7 -symmetric quantum mechanics [1-3], the
prototypical implementation that arose about a decade later
was in optics through the work of Christodoulides and co-
workers [4-8]; see also the earlier linear work of [9]. The first
realization of P7 symmetry emerged in the so-called passive-
‘PT setting, in which two wave guides, one with loss and the
other without loss, were used [6]. A similar proposal, namely
a leaky dimer, was formulated in the context of cold atom
physics, and studied in the framework of the Bose-Hubbard
model [10]. Subsequently, an optical wave-guide system with
both gain and loss was experimentally studied [7]. Theoretical
investigations have rapidly followed for such dimer-type
settings [11-23] and generalizations thereof, including ones
where the gain-loss contributions appear in a balanced form in
front of the nonlinear term [24-27].

On the other hand, much less attention has been paid to
another, yet quite intriguing, set of questions that emerge in the
case of P7 -symmetric Klein-Gordon field theories [28,29];
the latter are of particular relevance to both mechanical systems
(e.g., arrays of coupled pendula [29]) and electrical ones
(e.g., electrical circuits with capacitive, inductive, and resistive
elements [30]). At this point, it should be noted that there is
an ongoing activity [31,32] towards utilizing, for example,
controllable settings of electric circuits in order to showcase
the principles of linear P7 -symmetric settings, such as the
linear P7 phase transition. Moreover, experimental efforts to
produce a mechanical system featuring P7 symmetry have
recently been reported [33], as have theoretical proposals for
nonlinear P7 -symmetric metamaterials and the formation of
gain-driven discrete breathers therein [34]. Nevertheless, the
literature on partial differential equations (PDEs) modeling
PT -symmetric Klein-Gordon systems is rather sparse; one of
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the very few field-theoretic examples of this sort can be found
in Ref. [35] (which is in itself a model of mathematical interest
rather than directly motivated from physics).

It is the purpose of this work to contribute to this very
direction, by proposing and studying a Klein-Gordon model
that, while not being Hamiltonian, respects the P7 symmetry.
The proposed model possesses gain and loss balancing through
an odd function, and this feature is studied for the sine-Gordon
(sG) and the ¢>4 models [28,29], arguably two of the most
famous field theoretic examples of nonlinear Klein-Gordon
models. The gain and loss are introduced in a way that does
not affect the steady states of the problem. Among such
states, we select to study one of the prototypical kinds of
relevance to the field theory, namely, the kinklike instanton
structure, i.e., the heteroclinic orbit that connects two of the
stable uniform states of the system. As a vehicle for our
studies, we use the discrete analog of the PDE, namely, the
nonlinear dynamical lattice which constitutes its discretization.
This is of interest in its own right, not only due to the
fundamental mathematical and physical features that arise
therein (radiation, internal modes, Peierls-Nabarro barriers,
etc. [36,37]), but also because the discrete model arises in
experimentally relevant mechanical and electrical systems
[31,32,38,39], including P7 -symmetric ones.

We argue that in the PDE the stability of the steady states
should not be affected for suitably, symmetrically placed kinks
between the gain and loss region. In the discrete problem,
similar symmetric placement of the kink leads to a vanishing
effect both for the even site case of intersite-centered kinks
and for the odd site case of site-centered kinks. However,
asymmetric placement of the kink with respect to the gain
and loss interface may generate a destabilization effect. A
perturbative analytical expression is provided that allows
us to evaluate whether such a destabilization may occur.
Furthermore, we provide a rigorous estimate that bounds
the growth rate of any potential instability by an explicit
numerical factor multiplying the order € of the P7 -symmetric
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perturbation. In our numerical computations, it is typically
found that the kink is stabilized when moving towards the
lossy side, while it is destabilized when moving towards the
gain side. In addition, interesting finite size effects arise that
disappear in the infinite lattice size limit.

Our presentation is organized as follows. In Sec. II, we
present the overarching mathematical formalism, providing
the model and the notion of P7 symmetry in such Klein-
Gordon settings. We also discuss the spectral stability analysis
and its formulation, as well as a principal result based on
the Fredholm alternative that enables us to compute P7 -
symmetry induced bifurcations of eigenvalues and a rigorous
estimate on the potential growth rate of the perturbations. In
Sec. III, we analyze the results of numerical computations
in the discrete problem; in particular, we systematically
study intersite-centered and site-centered kinks in the discrete
setting, for finite (and going towards infinite) lattices, and
for discrete chains (and going towards continuum intervals or
lines). Representative spectral results are also given for the ¢*
case to illustrate the generality of the conclusions; additionally,
the spectral conclusions are corroborated by selected dynam-
ical evolution computations. Finally, in Sec. IV, we briefly
summarize our findings and present a number of possibilities
for future studies.

II. MATHEMATICAL MODEL AND ANALYTICAL
CONSIDERATIONS

In what follows, we will focus on partial differential
equations of the form

U — Uyy = f(u) + y(X)u,. (1)

Here, subscripts denote partial derivatives, f(«) is the nonlin-
ear function that depends on the field # which, in turn, depends
on the variables x and ¢, and y (x) is a function accounting for
the presence of gain and loss in the system. For y = 0, and
for specific choices of f(u), the system possesses topological
solutions, in the form of kinks, that we will consider below.
In particular, for the sine-Gordon field theory f (1) = — sin(u)
and the prototypical kink solution that we will consider will be
of the form u(x) = 4 arctan(e*). On the other hand, for the ¢*
model, f(u) = 2(u — u?), and the relevant kink assumes the
form u(x) = tanh(x).

While the D’Alembertian (linear) operator 3> — 32 pre-
serves the P7 symmetry, this is not generically true in the
case of the gain and loss term y(x)u,. Taking t — —t and
x — —x, and requiring that the system be identical under
this transformation, leads to the immediate constraint that
y(—x) = —y(x), i.e., that the gain and loss profile should
be odd. In what follows, we will use a localized gain and loss
profile, namely, y(x) = exe /2, where € characterizes the
strength of the relevant perturbation.

At this point, it is important to note that while the existence
of other solutions such as traveling-wave solutions or breather
solutions may be drastically affected by the presence of the
PT-symmetric gain and loss term, the static kink solutions
are not affected and are, in fact, shared by the Hamiltonian
and the P7 -symmetric variant of the model. We will defer
considerations of other important solutions, such as the
traveling waves and the breathers, to a future study. Here,
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we seek to understand the implications of the P7 -symmetric
perturbation for the spectral stability of the kink solutions
and their associated nonlinear dynamics. In that light, we will
examine the fate of perturbations of steady solutions uy(x) in
the form

u(x,t) = up(x) + dw(x)e™. )

It is then straightforward to infer that the eigenvalue-
eigenvector pair [A,w(x)] will satisfy the linearization equa-
tion [to O(§)] of the form:

Nw = wye + f'luo(0)]w + ¥ ()Aw. 3

Interestingly, this gives rise to a quadratic operator pencil of
the form

[A2A 4+ 1B + Clw(x) =0, 4

where A represents the identity operator, B = —y(x) is a
multiplicative operator incorporating the gain and loss profile,
and C = —32 — f'(uo), which for the purposes of the models
that we consider here (and if we expect the Hamiltonian
analog of the solution to be stable) will be a positive definite
one. It should be noted that such quadratic pencils have been
studied in the mathematical literature (see the example of [40]);
however, this study has been limited to the simpler case where
C is a negative definite operator, in which case the spectrum
is significantly simpler.

Solving Eq. (4) as a linear eigenvalue problem is addressed
in the following way. The problem is split into a first order
one u, = p, and writing Eq. (1) as p; = uy + f(u) + y(x)p.
Then, using the decomposition u(x,t) = ug(x) + Sw(x)e*
and p(x,t) = w,(x)e*, we obtain the first order “augmented”
eigenvalue problem of the form

wr\ 0 I w1
()= ) () o

which can be solved directly as a matrix eigenvalue problem
(upon suitable discretization).

Although Eq. (5) is more straightforward to use for
numerical computations, let us use Eqgs. (3) and (4) to develop
some insight on the P7-symmetry induced corrections to
the stability problem. In particular, considering the case of
a weak gain and loss term, with B = € By, we can employ a
perturbation expansion of the form

A=Ag+ €A+, (6)
w=wy+ew+---. (7)

Then, to O(¢), this leads to the condition
(35 + C)wi = ro(By — 211)wy. (8)

Upon applying the Fredholm alternative condition, i.e., by
projecting to the kernel of the left-hand side, consisting of the
eigenvectors wy, Eq. (8) leads to the solvability condition that
provides a correction to the eigenvalues, namely,

1 (wo, Bowo)
A= o000 )
2 (wo,wo)
(.,.) in Eq. (9) denotes the standard dot product. In the
following, we will use this formula to evaluate the corrections
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to the eigenvalues of the Hamiltonian problem, as induced by
the P7 -symmetric terms.

In particular, it is interesting to examine the results for the
continuum limit, where for both the sine-Gordon and the ¢4
models, the eigenvectors of the linearization are well known
[41]. In the case of the sine-Gordon w(()o) = (1/2)sech(x — xo),
while the continuous spectrum consists of the nondecaying
eigenfunctions w(()k) = =¥ [k 4 tanh(x — x¢)]/(k +i). A
direct inspection of Eq. (9), given the (even) parity of the
square modulus of these eigenvectors and the odd nature of
the gain and loss profile, naturally leads to A; =0 (when
the kink is placed exactly at the interface between gain
and loss regions). Thus, we do not expect a leading-order
correction to the relevant eigenvalues. Similar conclusions
can be straightforwardly inferred in the ¢* model, due to the
definite parity of the eigenvectors therein [42], as well. In
fact, as we argue below, this is a general conclusion that our
numerics support as being true to all orders for the continuum,
infinite domain PDE problem, for a kink centered exactly
between the gain and the loss regions (for further comments on
kinks centered on the gain side or on the lossy side, see below).

We now provide a rigorous estimate on the potential size of
any unstable eigenvalues in this system. In particular, we show
that while the eigenvalues may be unstable, their real part is at
most O(e) (i.e., the size of the P7 -symmetric perturbation).
Indeed, consider the linearized problem in the form

wy —y(@)w, + Cw = 0. (10)

Recall that C > 0 by Sturm-Liouville theory since the ground
state is the positive function u;, (see also the discussion above,
with u( denoting the kink and the prime indicating derivative
with respect to x). Then, taking a dot product with w, in (10),
we obtain

d(lwlI* + (Cw,w)) = 2/ Y (Olw, (£,x)*dx.

Since (Cw,w) > 0, integrating the last identity in ¢ yields
(note that |y (x)] < Ke, where K = max,-oxe /2

lw, ) < 2 /0 / ly GOl lws (s, x)|*dx ds

t
< 2Ke / 1y (s)]ds.
0

By Gronwall’s inequality [43], we can straightforwardly infer
that

w1 < lw, (0)]7e* <.

Thus, for the potentially unstable eigenvalue A, which gener-
ates an unstable solution in the form w = e f(x), we have
the bound e** | £]1?> < e2X%¢| £]1?, for all ¢ > 0, hence the
real part A, of the relevant eigenvalues (corresponding to
the instability growth rate) satisfies A, < Ke. We now turn
to numerical computations to explore the nature of the
linearization spectrum.

III. NUMERICAL RESULTS

For practical (numerical) reasons, but also given that they
are models of interest in their own right (see. e.g., [36,37]
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and references therein), we will present our conclusions in the
context of the discrete variant of the Klein-Gordon equations
of the form

. 1 .
Uy = _2(MH+1 + Up—1 _zun)+f(un)+7/nun (11)
Ax

More specifically, we will consider the case of finite Ax,
typically of O(1) (Ax =1 unless stated otherwise; in fact,
it will be set to unity for all the figures except for Fig. 4) and in
the process, we will also explain how the limit of Ax — 0, as
well as the distinct from it infinite lattice (but with finite Ax)
limit are approached.

A feature which is of interest in nonlinear dynamical lattices
of the form of Eq. (11) is the existence of two distinct kink
solutions, one centered on a site (having a site with u,, = 7 in
the sG model and a site with u, = 0 in the ¢* case) which
is unstable, and one centered between two adjacent sites,
which is dynamically stable in the Hamiltonian limit [37].
The difference between these two solutions is the celebrated
Peierls-Nabarro barrier [36]. We start by considering the
site-centered (SC) solutions in Fig. 1. We will typically fix
in what follows the strength of our perturbation to € = 0.1,
although we have tested the validity of the conclusions for
other values of € as well. In Fig. 1, the results of the spectral
analysis of Eq. (5) are given by presenting the spectral plane
(A,A;) of the eigenvalues A = A, + iA;. In the Hamiltonian
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FIG. 1. (Color online) The top panel shows the spectral plane
(A, A;) of the eigenvalues A = A, + iA; for the linearization around
the site-centered kink at n = 0, for the discrete case with Ax = 1, and
with perturbation strength € = 0.1 (blue circles: for comparison the
€ = 0 case is shown by red stars) in the sine-Gordon model. The top
panel has an inset which is a blowup of the top part of the continuous
spectrum. Here, the lattice consists of N = 399 sites, while in the
bottom panel the case of N = 399 (blue circles) is compared to that of
N = 799 (green diamonds). In the regions where the green diamonds
of the bottom panel and the red stars of the top panel coincide with
the blue circles, the latter are not shown.
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limit of € = 0, this spectrum possesses a real eigenvalue
pair (denoting the instability of the SC configuration) and a
continuous spectrum following the dispersion relation A =
+i,/1 4 (4/ Ax?) sin?(k Ax /2) and extending over the interval
+[1,4/1 + (4/Ax?)] on the imaginary axis. The top panel of
the figure shows the spectrum for a lattice of N = 399 sites.
The real eigenvalue is preserved (in fact, unchanged from the
Hamiltonian limit) and so is the continuous spectrum, except
for the case of wave numbers close to k = 7/ Ax near the top of
the spectrum. Even this feature, however, is only an artifact of
the finite size of the lattice, as is shown in the bottom panel. The
latter shows the case of N = 399 versus that of N = 799 sites
(at fixed Ax = 1). In the latter, the relevant effect weakens,
indicating that it will disappear in the limit of the infinite
lattice (of fixed spacing). Hence, this suggests that the solution
centered at the interface between gain and loss experiences
no effect in its stability in the infinite lattice discrete limit.
This, in turn, is suggestive that a similar insensitivity to P7
symmetry should be present in the continuum limit (see also
the discussion below and the arguments above).

In the case of Fig. 2, we examine what happens if we
displace the kink. Here, instead of centering it at n = 0, we
select to center it on a gain site, and more specifically at n =
3. It is straightforward to see that if centered on the lossy
side, the spectrum would be a mirror image with respect to
the imaginary axis. The top panel of the figure for N = 799
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FIG. 2. (Color online) The top panel shows the comparison for
€ = 0.1, N = 799 of the spectral plane of a site-centered kink atn = 3
between numerics (blue circles) and theory of Egs. (6)—(9) (green
diamonds). The case of € = 0 is shown by red stars as a benchmark.
The insets show details of the continuous spectrum (left) and the
positive real part of the point spectrum (right). The bottom panel
shows a blowup of the upper band of the continuous spectrum for
N = 399 (red stars), N = 799 (blue circles), and N = 1599 (green
diamonds).
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FIG. 3. (Color online) For N =799, the spectrum of a kink
centered atn = —3is given for e = 0.1 (blue circles). The continuous
spectrum is the mirror image of the case centered at n = 3. The
analytical prediction based on Egs. (6)—(9) is given by the green
diamonds, while the case of ¢ = 0 is given for reference by the red
stars. The insets show details of the continuous (left) and point (right)
spectrum.

compares the numerically observed shifts in the eigenvalues
(blue circles) with the semianalytical prediction obtained on
the basis of Egs. (6)—(9) (green diamonds). It can be seen
that the agreement is excellent. For comparison, the case with
€ = 01is also shown by red stars. The bottom panel illustrates,
for this case as well, the effect of tending towards the infinite
lattice at fixed spacing. The red stars are for N = 399, the blue
circles for N = 799, and the green diamonds for N = 1599,
clearly attesting to the finite nature of this effect. Thus, for the
infinite lattice, such bifurcations appear to be suppressed. We
should note on the other hand that the position of the point
spectrum (real, in this case) eigenvalue does not shift as N

changes.
In the case of Fig. 3, we showcase what happens when
considering a kink centered at n = —3 instead of n = +3. The

reference of € = 0 (red stars) indicates that the real eigenvalues
move in this case to the left (as opposed to the right in Fig. 2).
This point spectrum as well as the continuous spectrum (of
blue circles for e = 0.1) is once again captured very accurately
by the analytical expressions of Egs. (6)—(9), evaluated at the
unperturbed limit wy.

We now turn to the examination of the stable (in the
Hamiltonian limit) kinks which are intersite centered (IC).
Figure 4 shows the IC kink centered at 0.5, with N = 799
sites. It is interesting to note that, in this case, the eigenvalue
which in the continuum limit is associated with translation
(and in that limit is at A = 0) is imaginary and hence the
real contribution of Eq. (9) renders it complex. In fact, we
find that a simple (approximate) evaluation based on the
continuum eigenvector wy ~ sech(x — 0.5) yields from Eq. (9)
acorrection of ~0.105¢, which is in very reasonable agreement
with the observation of Fig. 4. Another interesting feature of
the figure is the fact that for Ax = 1, the mode of the band edge
[with an eigenvector which is ~ tanh(x — xy)] has bifurcated
into an internal mode of the discrete sine-Gordon system [37].
This internal mode [given that tanhz(y) =1- sechz(y)] is
found to bifurcate in the opposite direction, moving into the
left half of the complex spectral plane, as shown in the figure.

The bottom panel of Fig. 4 shows another interesting
feature, examining essentially how the continuum limit of
the problem is approached for the case of a kink centered
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FIG. 4. (Color online) The top panel shows the case of the
intersite-centered kink at n = 0.5 for € = 0.1 (blue circles) versus
the corresponding prediction of Eq. (9) (green diamonds). The inset
shows a zoom of the upper branch of the continuous spectrum. The
red stars denote the case of € = 0. The bottom panel, in turn, shows
three cases for n = —0.5, namely, those of N =799 and Ax =1
(blue circles), N = 1067 with Ax = 0.75 (green diamonds), and
N = 1599 with Ax = 0.5 (red stars).

at n = —0.5. For N =799 and Ax = 1, the spectrum (as
expected) is the mirror image of that shown for n = 0.5 in
the top panel. However, there are two more cases shown in the
panel, namely, N = 1067 with Ax = 0.75 (green diamonds)
and N = 1599 with Ax = 0.5 (red stars). The choices are
made so that the total size of the domain remains essentially
the same. What can be clearly seen is that the point spectrum
eigenvalues approach the imaginary axis. In particular, the
translational eigenvalue tends to zero (notice that the relevant
eigenvalue moves also from complex to real, as the continuum
limit is approached). The mode bifurcating from the bottom
of the band edge can no longer be discerned for the smaller
values of Ax. Finally, the continuous spectrum aligns along the
imaginary axis with the only source of instability arising due
to the large wave numbers (smaller wavelengths) which are
being “advected” as the limit is approached, towards infinity.
This is another strong indication that in the limit of Ax — 0
and N — 00, no instability is anticipated in the model and the
kinks should be dynamically robust.

One feature which is also worth noting is that the bifurcation
of the internal modes may nontrivially depend on the specific
position of the kink. In particular, in Fig. 5, the case of an IC
kink centered at n = 0.5 (blue circles) is compared to that of
one centered at n = 3.5 (red stars). The top panel shows the
full diagram, indicating that the predominant instability due to
the translational mode weakens [as expected due to the rapid
decay of y(x)] as we go deeper into the gain side. Yet, it is
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FIG. 5. (Color online) The top panel shows the full spectrum for
IC kinks centered at n = 0.5 (blue circles) and n = 3.5 (red stars).
A detail of the top panel showing the internal mode bifurcating from
the band edge and the continuous spectrum is shown in the bottom
panel.

more interesting to notice the far more complex details of the
bottom panel showcasing significant differences between the
continuous spectrum of the two, which perhaps merit further
investigation. However, importantly, we should mention that
the internal mode that we saw as bifurcating from the band
edge [37] and moving to the left half plane in Fig. 4, is now
moving to the right for the IC kink centered at n = 3.5.

We should highlight one more possibility here. Up until
now, we have been focusing on a gain and loss profile that
is symmetric around an origin, which happens to be a site of
the underlying lattice. In this case, to create a P7 -symmetric
domain, we have selected an odd number of sites. However, an
additional possibility exists, whereby we choose the domain
to have an even number of sites, such as N = 800 in the case
of Fig. 6, and have the domain centered between two adjacent
sites of our grid, namely, at 0.5. In such a setting, instead of
the SC mode being “symmetric” when centered at the origin,
and the IC mode being “asymmetric”” when centered at 0.5, the
roles are reversed. In particular, SC modes are always asym-
metric (and hence will always feature P7 -symmetry induced
bifurcations of their corresponding eigenvalues, except for the
infinite domain, continuum limit case where such bifurcations
should vanish for a kink centered at the origin). To showcase a
feature of this sort, we selected the IC mode centered atn = 0.5
for N = 799 (blue circles) and N = 800 (green diamonds) for
€ = 0.1. While the circles represent the asymmetric case of
Fig. 4, it is clear that the diamonds are analogous to the case of
Fig. 1, indicating that the symmetry yields the absence of any
bifurcations, aside from the finite size effect arising at the top of
the band.
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FIG. 6. (Color online) The difference between an intersite-
centered kink for the asymmetric case for N = 799 (blue circles) and
the symmetric case of N = 800 (green diamonds) for € = 0.1 (see
also the text). The bottom panel shows a blowup of the continuous
spectrum in the two cases.

We would also like to point out that these results are
not restricted to the case of the sine-Gordon model. As

|
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FIG. 7. (Color online) The top panel shows the results of a
linearization around the ¢* kink fore = 0.1, N = 799, and two kinks
centered at n = 0.5 (blue circles) and n = —0.5 (green diamonds).
The bottom panel shows a blowup of the top panel clearly showcasing
the continuous spectrum of the model.
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FIG. 8. (Color online) The top panel shows the space (n) -time
(#) evolution of the field |u, — 7| for a site-centered kink at n = 0,
for a N = 799 site lattice with € = 0.1. Notice the motion towards
an intersite-centered kink centered at n = —0.5, clearly illustrated
also in the initial (blue circles) and final (red stars) snapshots of the
configuration (in the bottom panel).

an example of the generality of the relevant results, in
Fig. 7, we have considered both the kink centered at n =
0.5 and that centered at n = —0.5 (blue circles and green
diamonds, respectively, clearly showing the mirror nature of
the relevant spectra) for a ¢4 model with N =799, ¢ =0.1,
and Ax = 1. A distinctive feature of this case concerns the
presence of an additional internal mode even in the continuum
limit [where its eigenvalue is A = 4i~/3 and its eigenvector
~sech(x) tanh(x)]. Interestingly, and as can be verified also
by Eq. (9), the bifurcation of both the translational mode and
this continuum internal mode occur in the same direction,
i.e., to the right-half plane for n = 0.5 and to the left-half
plane for the case of n = —0.5. Nevertheless, even in that
case, as shown in the blowup of the bottom panel of the
figure illustrating the continuous spectrum, the kink in the
¢* model is still unstable, although as discussed earlier this
instability will disappear in the infinite domain limit (either
for Ax finite or in the continuum infinite domain limit where
also Ax — 0).

Finally, in order to corroborate the spectral conclusions
given above, we have examined some select dynamical
evolution simulations. In Fig. 8, we describe the evolution
of a site-centered kink at n = 0 for the sine-Gordon model,
with N =799 and € = 0.1. The field |u,, — | is shown which
places on equal footing the asymptotic steady states of O
and 27 and shows the kink as a dip (from a background of
m towards 0). It can be clearly seen that the site-centered
kink, spontaneously perturbed by a small-amplitude random
(uniformly distributed) noise rearranges itself towards a stable
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FIG. 9. (Color online) The top panel shows the space-time
evolution of an intersite-centered kink initially at n = —0.5, which
appears to be dynamically unchanged with the numerical reporting
horizon of this run. The bottom panel shows an oscillatory instability
(i.e., instability arising in parallel to oscillations; see the increasing
amplitude “spots” emerging around ¢ = 1000) developing for a kink
initially centered at n = 0.5 and consequently “expelled” (i.e., forced
to move) towards the gain side.

intersite-centered kink. However, notice (we have observed
this to be systematic and it is also in line with similar
observations in nonlinear Schrodinger-type (NLS) models
[44]) that the stable intersite-centered kink towards which
the dynamics evolves is the one centered at the “lossy” side
and, in particular, at n = —0.5. The snapshot of the bottom
panel confirms this evolution. On the other hand, we have
observed (data not shown) that if the random perturbation (or
a deterministic one along the direction of translation) moves
the kink towards the gain side, then the kink starts traveling
(in the ultimately decelerated way described in Ref. [36]),
rather than settling to an IC waveform. This feature is also
reminiscent of the behavior observed in the case of the dark
solitary waves of the NLS.

On the other hand, in Fig. 9, we present the evolution of
two IC kinks. The first is centered at n = —0.5 (the outcome
of the evolution of Fig. 8), which according to Fig. 4 is
unstable but apparently the development of the instability
takes longer to evolve than the already very long times of
the simulation due to the weakness of the corresponding
growth rate. The second is centered at n = 0.5 bearing a
stronger oscillatory instability (due to a complex eigenvalue
pair) according to Fig. 5. Indeed, we observe precisely the
manifestation of a corresponding oscillatory growth, leading
eventually to the kink being expelled towards the gain
side and towards a traveling (and eventually decelerating)
wave.
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IV. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we have introduced a class of P7 -symmetric
models in the context of nonlinear Klein-Gordon field theories.
We have focused more specifically on the kinklike steady
states. Our analysis provided not only a class of models,
but also a way to assess the spectral features induced by the
presence of such P7 -symmetric perturbations. It was argued
that for solutions symmetrically placed at the interface of the
gain and the loss regions, no stability modifications are present.
However, such modifications may arise when there is an
asymmetry. This asymmetry can, in principle, exist even in the
continuous limit, although we have mostly focused on the one
induced by nonlinear dynamical lattices (i.e., the discretized
form of the PDE) and their onsite or intersite solutions. The
asymmetry towards the lossy side has been observed to be
beneficial for stability purposes, while that towards the gain
side to be typically unstable. In addition, a wide range of
continuous spectrum finite size induced effects have been
presented, but no detailed explanation thereof has been offered.

Naturally, since this is a field at a nascent stage, a wide range
of questions remain open. On the one hand, understanding
the differences between a finite and an infinite lattice, as
highlighted above, has been singled out as an important
problem. Notice that recent studies illustrate the relevance of
such an understanding even in NLS-type dynamical lattices.
On the other hand, perhaps even more pressing questions
might concern the fate of solutions which are genuinely
time dependent. Examples of the latter kind consist of,
e.g., the traveling waves or the breather states. Traveling
waves are unlikely to retain their character given the spatial
inhomogeneity incurred within the domain, yet may have
interesting scattering properties. What one may expect, at
least in the perhaps simpler, as regards traveling properties
continuum problem, also in line with the observations of Fig. 9,
is the following. For a kink on the gain side, the P7 -symmetric
term causes it to accelerate before the P7 effect decays away
and we are left with a higher speed kink traveling to the right.
For a kink on the lossy side, if the speed is weak, then the
PT -symmetric effect may ground the kink to a complete halt.
If, however, the speed is sufficiently high so as to overcome the
‘PT -induced potential, then we will have a kink asymptotically
propagating on the left side. As regards the breathers, on the
other hand, they may be especially interesting to examine
since, in analogy with NLS-type cases, they may be likely
to exist if suitably produced; for instance, one might expect
that again it may be relevant to balance the gain and loss pattern
and center such breathers at the origin. These are among the
canonical themes for future investigations and will be explored
in future publications.
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