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Twisted rogue-wave pairs in the Sasa-Satsuma equation
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Exact explicit rogue wave solutions of the Sasa-Satsuma equation are obtained by use of a Darboux
transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the rogue
wave can exhibit an intriguing twisted rogue-wave pair that involves four well-defined zero-amplitude points.
This exotic structure may enrich our understanding on the nature of rogue waves.
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Sasa-Satsuma equation (SSE), which is so called due to
the pioneering work of Sasa and Satsuma [1], is one of a
limited number of integrable models and has been a field of
active research for the past two decades [1–6]. Thanks to the
integrability, the sophisticated soliton construct underlying this
wave equation can, therefore, be achieved using an array of
mathematical tools such as inverse scattering transform [1,2],
Riemann problem method [3], Darboux transformation [4],
Hirota bilinear method [5], and others. As an extension of
the nonlinear Schrödinger (NLS) equation, the SSE contains
additional terms explaining the third-order dispersion, the
self-steepening, and the self-frequency shift as often found
in many important physical applications (e.g., ultrashort
pulse propagation in optical fibers [6,7] and dynamics of
deep water waves [8]). In dimensionless form, this equation
reads [2,3]

iψt + ψxx

2
+ |ψ |2ψ + iε[ψxxx + 3(|ψ |2)xψ + 6|ψ |2ψx] = 0,

(1)

where ψ(t,x) represents the complex envelope of the wave
field, and t and x are the two independent variables. The
subscripts stand for the partial derivatives and the real
parameter ε (> 0) scales the integrable perturbations of the
NLS equation. As ε = 0, Eq. (1) reduces to the NLS equation,
which involves only the terms describing the group-velocity
dispersion and the self-phase modulation.

With the higher-order terms included (although in fixed
proportions), Eq. (1) naturally allows for complex intriguing
wave dynamics beyond the reach of the NLS equation.
Compared to solitons that have been explored over years [1–6],
the rational solutions, which are thought of as prototypes of
rogue waves [9], are reported only recently. In Ref. [10],
Bandelow and Akhmediev pointed out that the lowest-order
rogue wave in the SSE can feature a double-peak structure as
well as an analog of the Peregrine soliton [11–13], depending
on the parameters chosen for the modulationally unstable plane
wave. This is distinctly different from that occurred in the
Hirota equation where only a tilted Peregrine soliton structure
is allowed [14]. However, the rational solution presented in
Ref. [10] is overcompacted in form which hinders the broader
physics community from understanding the rich dynamics. In
this paper, we revisit the fundamental rogue wave in the SSE
using a Darboux dressing technique [4] and wish to present
an easy-to-catch solution form. More importantly, with the
aid of this explicit form, we reveal an intriguing rogue wave

structure—a twisted rogue-wave (TRW) pair—which, to our
best knowledge, was never reported before.

As a starting point, we first cast Eq. (1) into a 3 × 3 linear
eigenvalue problem,

Rx = UR, Rt = VR, (2)

where R = (r,s,w)T (T means a matrix transpose) and

U = λU0 + U1, (3)

V = λ3V0 + λ2V1 + λV2 + V3, (4)

with

U0 = 1

6ε

⎛
⎝−2i 0 0

0 i 0
0 0 i

⎞
⎠ , (5)

U1 =
⎛
⎝ 0 −e−iϑψ −eiϑψ∗

eiϑψ∗ 0 0
e−iϑψ 0 0

⎞
⎠ , (6)

V0 = 1

4ε
U0, V1 = 1

4ε
U1, (7)

V2 = − 1

12ε
U0 + ε [U1x,U0] + εU1 [U1,U0] , (8)

V3 = − 1

12ε
U1 + ε [U1x,U1] − εU1xx + 2εU3

1. (9)

Here, ϑ = x
6ε

− t
108ε2 , λ is the complex spectral parameter, and

[,] denotes the usual matrix commutator. It is easy to show that
by virtue of Eqs. (3) and (4), Eq. (1) can be exactly reproduced
from the compatibility condition Ut − Vx + UV − VU = 0.
Then, following the standard dressing procedure as in Ref. [4],
we can write the resultant Darboux transformation as

ψ = ψ0 + ieiϑ (λ − λ∗)

2ε

(αr + βr∗)s∗ + (αr∗ + β∗r)w

α2 − |β|2 ,

(10)

with

α = |r|2 + |s|2 + |w|2, (11)

β = λ∗ − λ

2λ
(r2 + 2sw), (12)

where ψ0 and ψ denote the seeding and the new solutions of
Eq. (1), respectively, and r , s, and w are λ-dependent functions
determined by the seeding solution ψ0.
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As is well known, the rogue wave solutions represent the
limiting case of either Ma solitons [15] or Akhmediev breathers
[16] and are tightly related to the modulationally unstable
plane waves [4,9,10,12]. Hence, we start directly with the
plane-wave solution

ψ0(t,x) = c

2ε
exp

[
− i

2ε

(
kx − ω

4ε
t
)]

, (13)

where c > 0 and the dispersion relation reads

ω = 2c2(1 + 3k) − k2 − k3. (14)

Substitution of Eq. (13) into Eq. (2) followed by some algebraic
simplification yields

r(λ) = eiθ1 + 
1e
iθ2 + 
2e

iθ3 , (15)

s(λ) = 2ε

c
eiϑf1ψ

∗
0 r(λ), (16)

w(λ) = 2ε

c
e−iϑf2ψ0r(λ), (17)

where 
1 and 
2 are arbitrary constants, and

θj = μj

6ε
x − νj

216ε2
t, (18)

νj = 3λμ2
j + (3 + 36c2 − K2 − 6λ2)μj

− 6λ3 − 2λ(18c2 + K2), (19)

f1 = r11e
iθ1 + 
1r12e

iθ2 + 
2r13e
iθ3

eiθ1 + 
1eiθ2 + 
2eiθ3
, (20)

f2 = r21e
iθ1 + 
1r22e

iθ2 + 
2r23e
iθ3

eiθ1 + 
1eiθ2 + 
2eiθ3
, (21)

with

r1j = − 3ic

μj − λ + K
, r2j = − 3ic

μj − λ − K
. (22)

Here, K ≡ 1 + 3k, the index j runs over 1, 2, and 3, and μj

are three roots of the cubic equation

μ3 − (3λ2 + 18c2 + K2)μ + 2λ(λ2 + 9c2 − K2) = 0. (23)

At this stage, by substituting Eqs. (15)–(17) into Eq. (10),
one can readily obtain the general breather solutions of Eq. (1)
termed Ma solitons or Akhmediev breathers, depending on the
choice of the arbitrary complex parameter λ. Interestingly, a
special choice of the value of λ such that Eq. (23) has two
equal roots can reduce these two kinds of breather solutions,
which always take an otherwise exponential form, into the
same rational solutions termed rogue waves. For that purpose,
we inspect Eq. (23) and find that as

λ = κ

6

(
3 − κ2 + η2

K2

)
± iη

6

(
3 + κ2 + η2

K2

)
≡ λ′, (24)

where

κ =
√

2

2
[
√

K2(18c2 + K2) − 9c2 + K2]1/2, (25)

η =
√

2

2
[
√

K2(18c2 + K2) + 9c2 − K2]1/2, (26)

it will allow a special set of roots

μ1 = μ2 = −μ3/2 = μ′, (27)

with

μ′ = − κη2

27c2

(
1 + κ2 + η2

K2

)
± iκ2η

27c2

(
1 − κ2 + η2

K2

)
. (28)

It is noteworthy that we have exactly separated the complex
parameter λ′, and hence μ′, into the real and imaginary parts.
Obviously, in order for κ and η to be real, the parametric
condition 4K2 � 9c2 should hold, which defines the allowed
regime of k. Under the circumstances, by setting 
1 = −1 and

2 = 0 in Eqs. (20) and (21), f1 and f2 will take the simple
rational forms

f1(λ′) = − 3ic

μ′ − λ′ + K
− 36ε2(2μ′ + λ′ − K)

cKχ
, (29)

f2(λ′) = − 3ic

μ′ − λ′ − K
+ 36ε2(2μ′ + λ′ + K)

cKχ
, (30)

where χ is a linear function of t and x, given by

χ = (6λ′μ′ − 6λ′2 + 3 + 36c2 − K2)t − 36εx. (31)

Consequently, we insert Eqs. (15)–(17) into Eq. (10) for this
specific value λ′ and, with tedious manipulations, we obtain
the exact fundamental rogue wave solution

ψ(t,x) = ψ0(t,x)

(
1 − G + iH

D

)
, (32)

where

G = ε2(9c2 + 2K2)

2c2K2

(
ξ + 4κ2η2

9c2 + 2K2
t

)2

+ 8ε2κ2η2(κ2 − η2)

c2(9c2 + 2K2)
t2 + 162ε6(9c2 + 2K2)3

c2κ2η2(κ2 + η2)2
, (33)

H = 1

2K

[
ξ 2

4
+ κ2η2t2 − 243ε4(9c2 + 2K2)2

κ2η2(18c2 + K2)

]

×
(

ξ + 4κ2η2

9c2
t

)
+ 16ε4κ2η2(27c2 + 2K2)

c4K(18c2 + K2)
t, (34)

D = 1

36ε2

[
ξ 2

4
+ κ2η2t2 + 182ε4(κ4 − κ2η2 − η4)

κ2η2(κ2 + η2)

]2

+ 9ε2η2

(κ2 + η2)2
(ξ + 2κ2t)2 + 1082ε6

η2(κ2 + η2)
, (35)

with

ξ = (K2 − 1 − 27c2)t + 12εx. (36)

Noting here that we have translated the solution along both t

and x in order to make its central value close to the origin [17],
and we simplified it to the most explicit form by expressing G,
H , and D as real polynomials of t and x. We highlight that this
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general rational solution is one of the central results we wish to
present here, and as will be shown, it can give a clear picture of
the full dynamics of the fundamental rogue waves governed by
the SSE. Furthermore, owing to the fourth-order polynomial
being involved in D, we expect there to be a significantly
more complicated structure than does the Peregrine soliton,
which only involves polynomials of second order [9,11–14].
For distinctness, we will term this solution the SSE rogue
wave.

Indeed, as ε = 0 and for a general plane-wave seed
ψ0(t,x) = ae−i[bx+(b2/2−a2)t] (a and b are real constants),
which corresponds to Eq. (13) with c = 2aε and k = 2bε, our
rogue wave solution given by Eq. (32) can be readily reduced
to

ψ(t,x) = ψ0(t,x)

[
1 − 4(2ia2t + 1)

1 + 4a2(x + bt)2 + 4a4t2

]
, (37)

which is exactly the Peregrine soliton solution of the standard
NLS equation [11–13]. This fact suggests that the Peregrine
soliton, while keeping its peak amplitude always three times
the background height, is only the simple limiting case of the
SSE rogue wave.

Further inspection of Eq. (32) shows that the SSE rogue
wave has a central amplitude,

|ψ(0,0)| = 3|ψ0|
∣∣∣∣9c2 − 2K2

9c2 + 2K2

∣∣∣∣ , (38)

which evolves from |ψ0| at |K| = 3c/2 to zero at |K| =
3c/

√
2, and then to 3|ψ0| as |K| = ∞; see the blue lines

in Fig. 1. It is clear from the foregoing discussions that
as |K| < 3c/2, corresponding to the pink region in Fig. 1,
no rogue waves are allowed. This is exactly consistent with
the parametric condition obtained from the linear stability
analysis; see Refs. [4,10]. Moreover, for such a rogue wave,
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FIG. 1. (Color online) Central amplitude of the SSE rogue wave
(normalized to |ψ0|) versus K (normalized to c) in the allowed regime
|K| � 3c/2. Points A, B, C, and D indicate the central amplitudes
for k = 0.25, 0.3738, 1, and 2.5, respectively.

there always exist two characteristic points (t0,x0):

t0 = ±
[

81ε4(9c2 + 2K2)2(272c4 − 99c2K2 − 4K4)

2κ4η4(κ2 + η2)2(27c2 + 4K2)

+ 18ε4
√

81c2 + 2K2(9c2 + 2K2)3/2

c2κ2η2(κ2 + η2)(27c2 + 4K2)

]1/2

, (39)

x0 = 1701c4 + 27c2 − 225c2K2 − 8K4

182εc2
t0

− 2κ4η4(κ2 + η2)2(27c2 + 4K2)

1622ε5c2(9c2 + 2K2)2
t3
0 , (40)

that fulfill H = 0 and D − G = 0, or equivalently,
|ψ(t0,x0)| = 0. For this reason, we term such two characteristic
points the zero-amplitude points; namely, the wave amplitude
falls to zero at these points [17]. Evidently, as ε = 0, Eqs. (39)
and (40) can boil down to the two zero-amplitude points
(0, ± √

3/2a) of the Peregrine soliton solution (37), which
locate symmetrically on the x axis.

More interestingly, as 3c/2 < |K| < 3c/
√

2, correspond-
ing to the gray regions in Fig. 1, there will appear additional
two zero-amplitude points that can also be represented by
Eqs. (39) and (40), if only replacing the “+” sign between
two terms in Eq. (39) (inside square brackets) by the “−” one.
These two newly emerging points, along with the two given by
Eqs. (39) and (40), can define a TRW pair. We demonstrate this
intriguing structure in Fig. 2 by using a typical value k = 0.25
and letting c = 2ε = 1, for which the central amplitude is
denoted by the point A in Fig. 1. Meanwhile, we have indicated
the four zero-amplitude points by m, n, p, and q, whose
coordinates read as (−1.3888, − 4.3976), (1.3888,4.3976),
(−1.1802, − 4.6499), and (1.1802,4.6499), respectively. It is
shown that this TRW pair consists of two extended rogue-wave
components that curve toward each other and have an identical
but antisymmetric shape (see inset). Further, we find that
as |K| → 3c/2, this rogue wave pair will become infinitely
extended and will evolve toward a two-soliton state on a
nonzero background. However, as |K| = 3c/

√
2, the TRW

pair reduces to the rogue wave that has three zero-amplitude
points, as seen in Figs. 3(a) and 3(b). For this special case, the

FIG. 2. (Color online) TRW pair defined with four zero-
amplitude points m, n, p, and q for k = 0.25 and c = 2ε = 1. The
inset shows the corresponding contour distribution.
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FIG. 3. (Color online) Characteristic structures of the SSE rogue
wave as |K| � 3c/

√
2. (a), (c), and (e) display the rogue wave

structure with three zero-amplitude points, the double-peak structure,
and the usual Peregrine-soliton-like structure, respectively, each
obtained with k = 0.3738, 1, and 2.5 accordingly. (b), (d), and (f)
in the right column show the corresponding contour distributions.
Other parameters are the same as in Fig. 2.

zero-amplitude points p and q in Fig. 2 merge completely and
become one at the center, while the two outer points m and n

remain.
Once |K| > 3c/

√
2, the TRW pair is unable to survive

as the zero-amplitude points p and q disappear entirely. In
this case, the SSE rogue wave generally exhibits a much less
complicated structure. This can be seen in Fig. 3, where the
SSE rogue wave will evolve into a double-peak structure for
k = 1 [see Figs. 3(c) and 3(d)] and an analog of the Peregrine

soliton for k = 2.5 [see Figs. 3(e) and 3(f)], as have been
demonstrated in Ref. [10]. Both types of structures involve
only two zero-amplitude points as specified by Eqs. (39) and
(40), and have central amplitudes always smaller than three
times the background height, as indicated by the points C and
D in Fig. 1. A direct comparison between Figs. 3(b), 3(d),
and 3(f) shows that as |K| grows, the SSE rogue wave, apart
from having a simpler structure, will be significantly reduced
in t dimension. Particularly, as |K| → ∞, the zero-amplitude
points approach invariably toward (0, ± √

3ε/c) and the SSE
rogue wave will take the simple form of the line rogue
wave [18].

Finally, let us give some remarks on the stability of the
SSE rogue wave. Unsurprisingly, as a unique wave event,
though it would appear unexpectedly [9], each of the rogue
wave structures should be stable. We notice that the Peregrine
soliton, which is the limiting case of our SSE rogue wave,
can exhibit robustness against perturbations [19] and has been
observed in a water wave tank [12] and in optical fibers [13].
Significantly, in recent work Ankiewicz et al. have partially
lifted the restriction on the parameters of the SSE and found
similar rogue wave structures as in the unperturbed case [20].
This is no doubt an evidence of the stability of the SSE rogue
wave and thus offers the possibility to realize its rich structure
experimentally [7].

In summary, we presented the most explicit rogue wave
solutions of the SSE by use of a Darboux transformation.
We demonstrated that, in addition to the double-peak structure
and a Peregrine-soliton-like structure as exhibited in Ref. [10],
the SSE rogue wave can feature an intriguing TRW pair that
only survives for 3c/2 < |K| < 3c/

√
2. We also provided

exact explicit formulas for defining the four zero-amplitude
points peculiar to the TRW structure as well as the central
amplitude involved, of course, including those for other rogue
wave structures. We anticipate that this well-defined TRW
structure may also contribute to the existing signatures of rogue
waves [9].
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