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Equilibrium probability distribution of a conductive sphere’s floating charge
in a collisionless, drifting Maxwellian plasma
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A dust grain in a plasma has a fluctuating electric charge, and past work concludes that spherical grains in a
stationary, collisionless plasma have an essentially Gaussian charge probability distribution. This paper extends
that work to flowing plasmas and arbitrarily large spheres, deriving analytic charge probability distributions up
to normalizing constants. We find that these distributions also have good Gaussian approximations, with analytic
expressions for their mean and variance.
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I. INTRODUCTION

A dust grain in a plasma acquires an electric charge by
collecting electrons and ions that land on it. Because electrons
and ions arrive at the grain at random, the grain’s charge
fluctuates, and because this fluctuating charge affects the dust’s
physical behavior, the probability distribution of the charge is
of practical interest.

Deriving this probability distribution for an arbitrary grain
away from equilibrium in a plasma of arbitrary collisionality is
very difficult, so we consider here a simpler case: a spherical,
conductive grain at equilibrium in a collisionless plasma. This
problem has been solved before [1–4], but these solutions have
two major limitations. First, they assume a stationary plasma.
Second, most of these solutions apply the OML (orbital motion
limited) grain charging theory, but OML is limited by its
requirement that the grain be small relative to the Debye
length [5].

In this paper, we go beyond previous work by relaxing these
assumptions. Instead of OML, we use the more general shifted
OML (SOML) charging model, which allows for plasma flow
by assuming a shifted Maxwellian ion velocity distribution far
from the sphere [6–8]. We also circumvent the small sphere
requirement that orthodox SOML inherits from OML ([7],
pp. 94–95), by applying SOML differently for arbitarily large
spheres. Ultimately, we derive two sets of results that, between
them, cover spheres of all sizes (except those so small that
their average charge is of order e). One set of results applies to
“midsized” spheres, the other to “large” spheres. A “midsized”
sphere is one with a � λD and a “large” sphere is one with
a � λD , where a is the sphere’s radius and λD the Debye
length. We use these definitions of “midsized” and “large”
throughout the paper.

We start by building two stochastic models of sphere
charging, one based on ordinary SOML and the other on the
alternative large-sphere model. We then solve both stochastic
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models for their equilibrium probability distributions and
derive Gaussian approximations to both.

II. ELECTRON AND ION CURRENTS

Before building our stochastic charging models, we need
the electron and ion currents onto a sphere. In this paper, we
assume the electrons conform to the Boltzmann relation and,
hence, that a sphere of radius a and surface electric potential
φ has an electron current

Ie = −4πa2n0e

√
kBTe

2πme

exp

(
eφ

kBTe

)
, (1)

where n0 is the electron density far from the sphere and Te

the electron temperature. The Boltzmann relation works well
regardless of plasma flow because flow is invariably much
slower than the electron thermal speed.

To assume the Boltzmann relation, we require φ < 0. This
is sometimes false for spheres so tiny that random fluctuations
can render their charge positive, so we exclude those spheres
from our calculations. This leaves us with midsized (a � λD)
and large (a � λD) spheres.

SOML gives good estimates for ion currents onto the
former. According to SOML [8,9], the ion current is

Ii = 4πa2n0Ze

√
kBTi

2πmi

[
s1(v) − s2(v)

Zeφ

kBTi

]
, (2)

when φ � 0, where Z is the ions’ charge state, Ti is the
ion temperature, mi is the ion mass, v is the flow velocity
normalized by

√
2kBTi/mi , and

s1(v) ≡ √
π

(1 + 2v2) erf(v)

4v
+ exp(−v2)

2
(3)

s2(v) ≡ √
π

erf(v)

2v
(4)

are auxiliary functions of the normalized flow velocity. Both
functions tend to 1 in the no-flow limit (v → 0). SOML
also gives Ii for φ > 0, but the resulting stochastic model
is intractably complicated—see Appendix A.

For large spheres, the ion current is less than that obtained
from Eq. (2) because a larger a/λD brings into existence
absorption radii that undermine the SOML model [8]. To avoid
this problem, we follow Willis et al. in assuming that these
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absorption radii are “at or within the sheath,” and, therefore,
apply SOML at the sheath edge instead of the sphere’s surface
[8]. Ii is then given by Eq. (2), but with the sheath edge
potential φs substituting for φ. To find φs , we suppose that
ions cross the sheath edge perpendicularly at the Bohm speed
uB (irrespective of flow) and make the thin sheath (a � λD)
assumption that all ions crossing the sheath hit the sphere. This
implies a second expression for Ii ,

Ii = 4πa2n0ZeuB exp

(
eφs

kBTe

)
, (5)

where the ion density at the sheath edge follows from assuming
quasineutrality at the sheath edge. Equating this with Eq. (2)
and setting φ = φs gives

uB exp

(
eφs

kBTe

)
=
√

kBTi

2πmi

[
s1(v) − s2(v)

Zeφs

kBTi

]
. (6)

Estimating the Bohm speed as

uB =
√

kB(Te + γ Ti)

mi

, (7)

where γ is the heat capacity ratio [8], and substituting it into
Eq. (6) gives√

γ + 1

�
exp

(
eφs

kBTe

)
=

s1(v) − s2(v)Zeφs

kBTi√
2π

, (8)

where � ≡ Ti/Te is the ion-to-electron temperature ratio.
Solving this equation for φs gives

φs = kBTe

e

{
c − W

[√
2π c

s1(v)

√
γ + 1

�
exp(c)

]}
, (9)

where

c ≡ �s1(v)

Zs2(v)
(10)

and W (x) is the principal branch of the Lambert W special
function [10]. The expression for φs is unwieldy but has the
nice property of being independent of the sphere’s charge.

We assume that the plasma contains only one species of
singly charged positive ion, so we can simply take Z = +1
and c = �s1(v)/s2(v) from this point on.

III. BUILDING THE STOCHASTIC MODELS

Over a sufficiently short period of time δ, it is extremely
unlikely that the sphere has time to collect multiple particles.
Hence, during a small enough δ effectively only three events
may happen: the sphere absorbs nothing; the sphere absorbs
an electron; or the sphere absorbs an ion. The chances of
these events happening during a given δ depend (to a good
approximation) on only the sphere’s net charge Ne at the
start of that period. As such we can model the sphere’s
charge fluctuations as a Markovian “one-step process” ([11],
p. 134), where the sphere’s state is its net charge (in elementary
charges) N , and N changes only in sporadic increments of ±1.

A one-step process is characterized by its rate coefficients
rN , the probability per unit time of a shift from state N to state
N − 1, and gN , the probability per unit time of a shift from

state N to state N + 1 ([11], p. 134). In our model, these rates
correspond to the electron collection rate Ṅe and ion collection
rate Ṅi .

The electron collection rate is

Ṅe = Ie

−e
= χ exp

(
eφ

kBTe

)
, (11)

where

χ ≡ 4πa2n0

√
kBTe

2πme

(12)

is the collection rate for a neutral sphere of the same size.
The ion collection rate depends on which potential we use

in Eq. (2). For a � λD , we use the surface potential φ, but
for a � λD we use the sheath edge potential φs , as explained
above. To accommodate both options we write

Ṅi = Ii

e
= χ

√
�

μ

[
s1(v) − s2(v)

eφ′

kBTi

]
, (13)

where μ ≡ √
mi/me is a normalized ion mass, and φ′ is either

φ (if a � λD) or φs (if a � λD). This will lead to two different
models, one for midsized grains and one for large grains.

For both models, the rate coefficients rN and gN are

rN = Ṅeδ = χδ exp

(
eφ

kBTe

)
, (14)

and

gN = Ṅiδ = χδ

√
�

μ

[
s1(v) − s2(v)

eφ′

kBTi

]
. (15)

To complete the stochastic models, one must define φ in
terms of N . Assuming the sphere is conducting, and neglecting
polarization from nearby plasma particles, φ is

φ = e

4πε0a
N = kBTeα

e
N, (16)

where

α ≡ e2

4πε0kBTea
(17)

is a dimensionless characteristic parameter analogous to the
Coulomb coupling parameter �c for a simple plasma; in fact,
α = (d/a)�c, where d is the average interparticle distance.
The parameter α is key to the results that follow, with many
of our approximations relying on its being small (α � 1 or
α � � � 1).

Substituting Eq. (16) into Eq. (14),

rN = χδ exp (αN ) . (18)

For a � λD , we likewise substitute Eq. (16) for φ′ in Eq. (15):

gN = χδ

√
�

μ

[
s1(v) − αs2(v)

�
N

]
, (19)

which we rewrite as

gN = χδ
αs2(v)

μ
√

�

(
c

α
− N

)
(20)
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to streamline the next section’s algebra. For a � λD , φ = φs ,
and so Eq. (15) is independent of N , being

gN = g ≡ χδ
s2(v)

μ
√

�
W

[√
2π c

s1(v)

√
γ + 1

�
exp(c)

]
, (21)

where we drop the N subscript to emphasize the independence
from N for large spheres.

We now have one complete stochastic model for midsized
grains [comprising Eqs. (18) and (20)] and one for large grains
[comprising Eqs. (18) and (21)]. The next step is solving them
for the charge probability distribution fN . Normally, one would
solve each model’s master equation ([11], passim), but these
models’ master equations aren’t exactly solvable. For an exact
solution we use a more direct approach.

IV. SOLVING THE STOCHASTIC MODELS

At equilibrium, detailed balance holds ( [11], p. 142).
That is, in a huge ensemble of sphere-in-plasma systems at
equilibrium, just as many should be going from charge state
N to N − 1 as are going from charge state N − 1 to N (on
average). As such,

rNfN = gN−1fN−1, (22)

which is a recurrence relation that has fN as its solution.
We solve it for the a � λD case first. Substituting Eqs. (18)

and (20) into Eq. (22),

fN−1

fN

= μ
√

�

αs2(v)

exp(αN )
c
α

+ 1 − N
, (23)

for N � 0. To solve this equation, note that

fN = f0

0∏
M=N+1

μ
√

�

αs2(v)
exp(αM)

÷
0∏

M=N+1

c

α
+ 1 − M, (24)

for N < 0. By inspection, the first product is(
αs2(v)

μ
√

�

)N

exp
[
−α

2
N (N + 1)

]
, (25)

and the second is equivalent to(−N−1∏
M=0

1 + c

α
+ M

)
=
(

1 + c

α

)+

−N
, (26)

where (x)+n ≡ is the rising factorial (or “Pochhammer sym-
bol”), defined as

(x)+n ≡ x(x + 1)(x + 2) · · · (x + n − 1). (27)

Putting together Eqs. (24), (25), and (26),

fN = f0

(
αs2(v)

μ
√

�

)N

× exp
(
−α

2
N (N + 1)

)
÷
(

1 + c

α

)+

−N
, (28)

where f0 is determined by the normalization condition

0∑
N=−∞

fN = 1, (29)

which is, unfortunately, not analytically solvable. However,
Eq. (28) permits numerical calculation of N ’s probability
distribution in practice; one can simply compute

∑
fN/f0 for

those N where fN/f0 is nonnegligible, and set f0 of Eq. (28)
to that sum’s reciprocal.

As one may rewrite (x)+n as a ratio of � functions (except
when x or x + n is a negative integer), Eq. (28) constitutes an
analytic definition of fN in terms of elementary functions and
the � function, lacking only f0’s value:

fN = f0 exp

[
N ln

(
αs2(v)

μ
√

�

)
− α

2
N (N + 1)

]

× � (1 + c/α)

�(1 + c/α − N )
. (30)

We now turn to the a � λD case. Substituting Eqs. (18)
and (21) into Eq. (22),

fN−1

fN

= exp(αN )

g∗ , (31)

where g∗ ≡ g/(χδ) is a more convenient form of g. The im-
plied product of exponentials is readily solvable by inspection:

fN = f0g
∗N exp

[
−α

2
N (N + 1)

]
. (32)

The normalization condition does not appear to be analytically
solvable for this distribution, either.

V. THE MODAL CHARGE AND THE
STOCHASTIC MODEL’S VALIDITY

Deriving a closed-form expression for fN ’s mode is con-
ceptually straightforward. Given the mode at M , fN−1/fN � 1
for N < M , and fN−1/fN � 1 for N > M . Therefore, because
fN−1/fN is monotonic (see Appendix B), the mode M is
located where fM−1/fM ≈ 1. (It is safe to refer to “the” mode
because fN is unimodal, as we show in Appendix B.)

We obtain M for midsized grains first. Setting the left-hand
side of Eq. (23) to 1, substituting M for N , and solving,

M ≈ 1 +
c − W

[
μ

√
�

s2(v) exp(α + c)
]

α
, (33)

where W (x) is again the Lambert W special function’s
principal branch. For small α (i.e., large Tea), M’s dependence
on the Lambert W term is weak and M’s dependence on α goes
approximately as O(1/α).

Equation (33) leads to an obvious precondition for the
stochastic model’s validity. As the model assumes the sphere
never has a positive charge, a positive value of M indicates
that the model has broken down and become self-inconsistent.
Therefore, M � 0 is a necessary condition for model validity.

When is M � 0? Rearranging Eq. (33), M � 0 when

α � W

[
μ

√
�

s2(v)
exp(α + c)

]
− c. (34)
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By exploiting W (z)’s definition, monotonicity, and positivity
for positive arguments, one can rewrite the inequality to
remove the right-hand side’s dependence on α:

α � μ
√

�

s2(v)
− c. (35)

This sets an upper bound on α, above which the inequality is
unsatisfied and the model fails. This is not surprising, as the
model assumes the sphere is not very tiny, which implies a
small α ∝ 1/(Tea).

Substituting in c [Eq. (10)],

α � μ
√

� − �s1(v)

s2(v)
. (36)

Evidently, in the cold ion limit (� → 0), the inequality reduces
to α � 0 and is never satisfied, indicating model failure. This
is also unsurprising, as a vanishing � requires either an infinite
Te [and hence an infinite electron current, from Eq. (1)] or a
zero Ti (and hence an infinite ion current whenever φ < 0).

Inversely, for vanishing Te (� → +∞), the inequality’s
right-hand side tends to −∞, in which case the inequality is
again never fulfilled and the model fails.

The inequality also shows that flow affects the model’s
validity. Because � > 0 and s1(v) increases with v (Fig. 1),
the right-hand side of Eq. (36) becomes negative for large v,
and the model eventually fails. Fortunately, this only occurs
at truly huge flow velocities, as shown by solving the trivial
subinequality

μ
√

� − �s1(v) < 0 ⇒ s1(v) >
μ√
�

. (37)

Because ions are rarely hotter than electrons, and the lightest
ions are protons, μ/

√
� �

√
mp/me = 42.85, which s1(v) is

always less than for any reasonable flow speed (v < 48.34).

0 1 2 3 4

0
1

2
3

4
5

v

s1(v)
s2(v)

s1(v)

s2(v)

FIG. 1. The auxiliary functions s1(v) and s2(v), and their ratio, as
a function of v (the plasma drift velocity normalized by

√
2kBTi/mi).

More sedate flow velocities have the effect of increasing
the right-hand side of Eq. (36), as shown by calculating that

1

s2(v)
= 1 + 1

3
v2 + O(v4), (38)

s1(v)

s2(v)
= 1 + 2

3
v2 + O(v4), (39)

and substituting into Eq. (36):

α � (μ
√

� − �) + 1
3 (μ

√
� − 2�)v2. (40)

Inevitably, μ
√

� > 2�, so flow’s effect (to second order)
is to increase the right-hand side, raising the chance of
satisfying the inequality and loosening the validity constraint.
The second-order effect can also compensate for a low �; as �

shrinks, μ
√

� gets greater relative to the negative O(�) terms,
enhancing flow’s beneficial effect on the model’s validity.

Deriving M for large grains is trivial. Setting the left-hand
side of Eq. (31) to 1 immediately leads to

M ≈ ln g∗

α
. (41)

The direct 1/α dependence dovetails with the approximate
1/α dependence for small α in Eq. (33).

The same M � 0 validity condition applies here. From
Eq. (41), M � 0 if and only if g∗ � 1, i.e., if

s2(v)√
�

W

[√
2π �

s2(v)

√
γ + 1

�
exp(c)

]
� μ. (42)

We can get some insight from this knotty expression by
considering limiting cases. For example, we can expand about
� = 0 to obtain a validity inequality for a cold ion plasma:

√
2π − 2π

√
�

s2(v)
+ O(�) � μ. (43)

Neglecting higher-order terms, this inequality is always true,
since the left-hand side is always less than

√
2π , and

√
2π <

μ. With a large grain and cold ions, the stochastic model is
always self-consistent, regardless of flow.

Another limiting case is that of vanishing flow velocity.
With v = 0, s1(v) = s2(v) = 1, and Eq. (42) becomes

W

[√
2π

(
γ + 1

�

)
� exp(�)

]
� μ

√
�. (44)

By exploiting W (z)’s definition, monotonicity, and positivity
for positive arguments once again,√

2π (γ� + 1) exp(�) � μ exp(μ
√

�). (45)

For ease of solution, we replace this with a more stringent
validity condition. Specifically, when√

2π (γ� + 1) < μ, (46)

the inequality

exp(�) � exp(μ
√

�) (47)

is clearly an even tighter bound on � than Eq. (45). This tighter
condition quickly reduces to � � μ2. This bound, together

023110-4



EQUILIBRIUM PROBABILITY DISTRIBUTION OF A . . . PHYSICAL REVIEW E 88, 023110 (2013)

with Eq. (46), implies the condition

� � 1

γ

(
μ2

2π
− 1

)
, (48)

when γ � 1/(2π ), which is always true because γ is between
1 and 3 [5]. Even when μ2 is as small as realistically possible
(mp/me = 1836) and γ as large as realistically possible (3),
� must be extremely high (at least 97) to violate even this
conservative validity condition.

Thus, the large-grain model is always valid when at least
one of � or v is small. To find a regime where the model breaks
down, we now consider the large v limit. For large v,

s2(v) →
√

π

2v
, (49)

s1(v)

s2(v)
= v2 + 1

2
+ v exp(−v2)√

π erf(v)
→ v2 + 1

2
, (50)

and Eq. (42) becomes

W

[
2
√

2 �v

√
γ + 1

�
exp

(
�v2 + �

2

)]
� 2μ

√
�v√
π

. (51)

Taking the inverse Lambert W function of both sides and
canceling common terms,

√
2(�γ + 1) exp

(
�v2 + �

2

)
� μ√

π
exp

(
2μ

√
�v√
π

)
.

(52)

Taking logarithms and rearranging,

�v2 − 2μ
√

�v√
π

� ln
μ√

2π (�γ + 1)
− �

2
. (53)

The right-hand side is smallest when μ is smallest and γ and �

are largest. Realistically, μ � 42.85, γ � 3, and � � 1, so the
right-hand side is at least 1.6. As such, setting the right-hand
side to zero gives the tighter inequality

�v2 − 2μ
√

�v√
π

� 0, (54)

which gives the conservative velocity limit

v � 2μ√
π�

. (55)

Like the midsized-grain model, the large-grain model breaks
down only in the face of exceptional flow (v ∼ 50).

VI. THE MASTER EQUATION AND
GAUSSIAN APPROXIMATIONS

Although the stochastic models’ master equations have no
exact, analytic solution, we can follow Matsoukas, Russell,
and Smith [2,3,12] in finding approximate solutions by treating
the models as if continuous. A one-step process has the master
equation ([11], p. 134)

∂fN (t)

∂t
= rN+1fN+1(t) + gN−1fN−1(t)

− (rN + gN )fN (t). (56)

This one-step master equation is approximated well by the
following Fokker-Planck equation when rN and gN are smooth,

slowly varying functions of N ([11], pp. 197–198 and 207–
208):

∂fN (t)

∂t
= − ∂

∂N
(gN − rN )fN (t)

+ 1

2

∂2

∂N2
(rN + gN )fN (t). (57)

For our models, the F-P approximation’s conditions are
satisfied when the equilibrium N is large. Except for the tiniest
grains, the equilibrium N is approximately M , which is of
order 1/α for midsized grains satisfying α � 1 and of order
(ln g∗)/α for large grains. Thus, the F-P approximation is a
good one for midsized grains when α � 1, and for large grains
when α � − ln g∗.

At equilibrium, the left-hand side of Eq. (57) is nil. This
banishes fN (t)’s time-dependence, so we write the equilibrium
probability distribution as fN as before. Integrating both sides
with respect to N ,

s = −(gN − rN )fN + 1

2

d

dN
(rN + gN )fN, (58)

where s is a constant of integration corresponding to the
relative probability current between charge states ([13], p. 72).
At equilibrium this current is a constant, and for this system
must be zero because N is bounded ([13], p. 98). Applying the
boundary condition s = 0 and then the product rule,

0 = (rN − gN )fN + 1

2

[
(rN + gN )f ′

N + fN

d(rN + gN )

dN

]
,

(59)

where f ′
N ≡ df/dN . Rearranging,

f ′
N

fN

= d ln fN

dN
= y(N ), (60)

where

y(N ) ≡ 2gN − 2rN − d
dN

(gN + rN )

gN + rN

. (61)

Then

fN = exp

[∫
y(N ) dN

]
. (62)

The integral is insoluble for both models, but approximate
solutions are possible by linearizing y(N ) about an N where
most of fN ’s probability density is concentrated. We could
use the mode M but the algebra is tidier if we use the value
N0 satisfying y(N0) = 0. [N0 is the continuous analog of M ,
being where fN is maximized, from y(N )’s definition.] Then

y(N ) ≈ y(N0) + (N − N0)y ′(N0) = (N − N0)y ′(N0). (63)

Substituting into Eq. (62),

fN ≈ exp

(
−y ′

0N0N + y ′
0

2
N2

)
, (64)

∴ fN ∝ exp

(
− (N − N0)2

2/ − y ′
0

)
, (65)

where y ′
0 ≡ y ′(N0) for brevity. This is a Gaussian probability

distribution with mean N0 and variance −1/y ′
0, so the final
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approximate probability distribution is

fN =
√

−y ′
0

2π
exp

[
− (N − N0)2

2(−y ′
0)

]
. (66)

Because y(N0) = 0, the mean N0 is implicitly defined by

2(gN0 − rN0 ) = d

dN

∣∣∣∣
N=N0

(gN + rN ). (67)

Inserting rN and gN for midsized grains [Eqs. (18) and (20)],

αs2(v)

μ
√

�

[
1 + 2

(
c

α
− N0

)]
= (2 + α) exp(αN0). (68)

This has the solution

N0 = 1

2
+

c − W
[

μ
√

�

s2(v)

(
1 + α

2

)
exp

(
α
2 + c

)]
α

, (69)

which is of similar form to the expression for M [Eq. (33)], and
again of order 1/α for small α. For a Gaussian distribution,
the mean equals the mode, so it makes sense that N0 ≈ M

algebraically.
Substituting the large grain rN and gN [Eqs. (18) and (21)]

into Eq. (67) gives

2g∗ = (2 + α) exp(αN0), (70)

which has the solution

N0 = 1

α
ln

2g∗

2 + α
, (71)

similar to the large-grain formula for M [Eq. (41)].
Even simpler expressions for N0 arise when the derivatives

in Eq. (67) are small compared to gN0 and rN0 , which occurs
when α � � � 1. In that regime, Eq. (67) reduces to

2(gN0 − rN0 ) ≈ 0, (72)

giving the solutions

N0 ≈ 1

α

[
c − W

(
μ

√
�

s2(v)
exp(c)

)]
(73)

for midsized grains [becoming close to Eq. (33) for very small
α] and

N0 ≈ ln g∗

α
(74)

for large grains, which matches M [Eq. (41)] and makes the
asymptotic O(1/α) dependence very explicit. Equation (72)
amounts to equating Ii and Ie, so Eq. (73) implies the same
normalized electric potential as the SOML equation ([8],
Eq. (15)), which comes from explicitly taking Ii = Ie. The
more exact N0 given by Eq. (69) implies a more negative
electric potential.

The same simplification allows a concise approximation for
y ′

0 and so the distribution’s variance. Neglecting derivatives,

y(N ) ≈ 2(gN − rN )

gN + rN

, (75)

and so, applying the quotient rule and simplifying,

y ′(N ) ≈ 4

(gN + rN )2

(
rN

dgN

dN
− gN

drN

dN

)
. (76)

Solving for y ′
0 for midsized grains is tedious but feasible.

Substituting in rN and gN , and applying Eq. (73) eventually
gives

y ′
0 ≈ −α

⎧⎨
⎩1 + 1

W
[

μ
√

�

s2(v) exp(c)
]
⎫⎬
⎭ , (77)

∴ y ′
0 ≈ −α

(
1 + 1

c − αN0

)
. (78)

The variance is then

σ 2 ≈ 1

α

(
1 + 1

c − αN0

)−1

(79)

for α � �, so σ 2 ∝ 1/α ∝ Tea in this regime, consistent with
Matsoukas and Russell’s finding that σ 2 ∝ a [2, p. 4288] (α
being proportional to 1/a). Also consistent is the implication
that the normalized standard deviation σ/N0 ∝ √

α ∝ 1/
√

a.
While the dependence of σ 2 on α goes as O(Tea), the

dependence on v is more complicated. Figure 2 shows how
σ 2 nonlinearly increases with v. Gentle flows (v � 1) have
a negligible effect on σ 2, but as the flow speed exceeds
the ion thermal speed (v ∼ 1) σ 2 rises appreciably with v,
plateauing at a higher value for very rapid flow. Equation (79)
systematically underestimates σ 2, but not appreciably. For
still faster flows, the model breaks down because the sphere’s
chance of acquiring a positive charge becomes nonnegligible.

For large grains,

y ′
0 ≈ −4g

(g + rN0 )2

drN

dN

∣∣∣∣
N=N0

= −4g∗α exp(αN0)

[g∗ + exp(αN0)]2
. (80)

0 2 4 6 8 10

2
3

4
5

6
7

v

σ2

Θ = 0.001

Θ = 0.1

Θ = 1

FIG. 2. The variance σ 2 of fN for a 10-nm sphere in a hydrogenic
plasma with 1-eV electrons and a � λD , calculated numerically from
fN iself (solid lines) and from Eq. (79) (dashed lines).
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Applying Eq. (74), the variance is

σ 2 ≈ [g∗ + exp(αN0)]2

4g∗α exp(αN0)
≈ 1

α
≈ N0

ln g∗ , (81)

which aligns with the asymptotic 1/α dependence for midsized
grains. Notice that σ 2 depends only on α for large grains. This
remains the case even if we use the more exact value of N0

a (microns)

v

0
1

2
3

4

0.01 0.1 1 10 100

Θ = 1

a (microns)

v

0
1

2
3

4

0.01 0.1 1 10 100

Θ = 10−3

FIG. 3. Contour plots of fN ’s skewness for a midsized grain in a
hydrogenic plasma with 1-eV electrons. Top: � = 1. Bottom: � =
10−3.

given in Eq. (71):

σ 2 ≈ [g∗ + exp(αN0)]2

4g∗α exp(αN0)
= 1

α

(
1 + α2

16 + 8α

)
. (82)

Using the more exact N0 has the sole effect of making σ 2

slightly greater than 1/α; it reveals no dependence on μ, �,
or v. We therefore reach the interesting conclusion that for a
given large grain, the mean charge is sensitive to the values
of the plasma parameters μ, �, v, and γ , but the charge’s
variance is not. The variance depends only on Te (and a).

VII. SKEWNESS OF THE CHARGE DISTRIBUTION

The Gaussian approximation to fN roughly matches fN ’s
mean and variance, but ignores fN ’s higher-order moments.
This may be problematic if fN has appreciable skew, which
is likely if it deviates a lot from a Gaussian distribution.
The Gaussian approximation hinges on several assumptions,
namely that the charging process is virtually continuous, with
rN and gN being smooth and only weakly dependent on N

(so we may represent the master equation as a Fokker-Planck
equation), and that fN ’s probability mass is concentrated
around its mode [to justify the linearization embodied in
Eq. (63)]. These assumptions never hold perfectly, so we
expect a little non-Gaussianness and so a little skew. However,
the skewness may be negligible for realistic parameter values.

We explore this possibility for midsized grains first. To
assess fN ’s skewness, we compute it for a hydrogenic plasma
with 1-eV electrons, as a function of the normalized flow
velocity v and the sphere’s radius a (Fig. 3). Numerical
experiments reveal that the skewness is less with heavier ions
(Fig. 4), so the hydrogenic plasma results we discuss here are
a worst-case scenario.

Figure 3 shows decreasing skewness with increasing radius
and flow speed. With equal ion and electron temperatures

50 100 200 500 1000
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−
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1
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ss
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Θ = 0.1

Θ = 0.01

Θ = 0.001 Θ = 10−4

FIG. 4. fN ’s skewness as a function of μ for a 10-nm grain
(a � λD) in a stationary plasma with 1-eV electrons.
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FIG. 5. fN (solid line) and its Gaussian approximation (dashed
line) for a 10-nm sphere in a hydrogenic plasma with a � λD , v = 0,
� = 0.001, and 1-eV electrons.

(� = 1) skewness is consistently small, except in the limit of
vanishing sphere radius, but in that limit the model becomes
invalid anyway, as α � 1. With cooler ions, skewness is
greater and less affected by flow.

For a 10-nm sphere in a stationary hydrogenic plasma with
1-eV electrons and � = 0.001, fN ’s skewness is −0.206. (This
corresponds to the bottom left corner of the lower plot in
Fig. 3.) This is a nonnegligible but nonetheless modest degree
of skew, and the Gaussian approximation holds up well (Fig. 5).
That it does so even for these inconvenient parameter values
suggests that the Gaussian approximation is robust.

The large-grain model’s fN is even less skewed for realistic
parameter values. For large grains the skewness depends on
the four parameters α, �, v, and γ , but as it increases only
marginally with γ over the range 1 � γ � 3, we may ignore γ .

Like the midsized-grain model, the skewness decreases
with increasing μ. Unlike the midsized-grain model, the large-
grain model’s skewness decreases with � (except when α ∼ 1,
v is huge, and � is already very small). This fits our finding
above that for cold ions the midsized-grain model breaks down,
while the large-grain model improves its self-consistency.

The foregoing means that fN ’s skewness is highest for
large grains when γ , �, α, and v are high. Figure 6 presents
numerical calculations of fN ’s skewness where � and γ take
on their highest realistic values (1 and 3, respectively). Even
in this most pessimistic case, appreciable skewness is only a
risk when v is enormous or the grain’s size tends toward the
nanometer scale and is merely a symptom of the large-grain
model failing as its validity conditions are progressively
violated. When those conditions are instead satisfied, the
skewness of the predicted charge distribution is negligible,
and the large-grain model’s Gaussian approximation appears
to be even more robust than the midsized-grain model’s.

a (nm)
v

5
10

15
20

25
30

3 5
40

5 10 20 50 100 200 500

FIG. 6. Contour plot of fN ’s skewness for a large grain in a
hydrogenic plasma with 1-eV electrons and ions, v � 1, and γ = 3.

VIII. CONCLUSION

We have derived equilibrium probability distributions of
a spherical grain’s charge in a flowing, collisionless plasma,
using stochastic models based on the SOML charging theory.
It transpires that these distributions are expressible in closed
form in terms of exponential and � functions. The modal grain
charge is proportional to Tea for large grains and remains
approximately proportional to Tea for midsized grains with
small α.

When the grain is large enough (and the ions are no
hotter than the electrons, which is usually true), Gaussian
distributions approximate the exact distributions well, af-
firming Matsoukas et al.’s demonstration that particle charge
“fluctuations are Gaussian, regardless of the detailed form of
the charging currents” [3]. For midsized grains, the Gaussian
distribution’s variance increases with the normalized flow
velocity v, with the dependence on v strongest for v ≈ 1.
For large grains there is no v dependence.

One possible use of the Gaussian approximation is esti-
mating the likelihood of various deviations from the mean
charge. For example, in a low-pressure argon discharge with
ne = 1016 m−1 and Te = 100 Ti = 4 eV, a 10-μm sphere
(a � λD = 149 μm) has a 53% chance of being within 0.1%
of its equilibrium charge, while the same sphere in a tokamak
edge deuterium plasma (ne = 1020 m−1, Te = Ti = 100 eV,
and a > λD = 7 μm) has a >99% chance of being within
0.1% of its equilibrium charge.

There are many ways in which this paper’s results might be
extended. For example, we assume our spheres are conducting
yet remain unpolarized in the face of approaching electrons
and ions. Physically, this is a contradiction in terms, but
it simplifies our calculations and has a substantial effect
only on tiny spheres (a � 10 nm) in plasmas with cool
electrons (kBTe � 1 eV) [3]. It might, nonetheless, be useful to
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incorporate electrical polarization into our models. Our models
might also be generalizable to magnetized plasmas, collisional
plasmas, grains out of equilibrium, nonspherical grains,
plasmas with non-Maxwellian electron velocity distributions,
grains in a sheath, and grains that emit electrons (whether by
photoelectric, thermionic, or field emission). As our models
stand, however, they should remain applicable to a broad range
of close-to-spherical grains in typical flowing plasmas. To
make it easier to apply (and indeed check) our models, we
have made the computer code for our calculations publicly
available [14].

APPENDIX A: INTRACTABILITY OF THE
SMALL-SPHERE CASE WITH A FLOWING PLASMA

For a negatively charged sphere in a singly ionized plasma,
the SOML ion current is

Ii = 4πa2n0e

√
kBTi

2πmi

[
s1(v) − s2(v)

eφ

kBTi

]
, (A1)

which is Eq. (2) above with Z = 1. (There seems to be a typo,
incidentally, in Willis et al.’s presentation [8] of this result.
Their Eq. (13) lacks an exponent of 1/2 for the parenthetical
fraction.) However, a tiny sphere has a nonnegligible chance of
being positively charged. Under SOML, a positively charged
sphere has the ion current [8,9]

Ii = 4πa2n0e

√
kBTi

2πmi

[
s3(v) − s4(v)

eφ

kBTi

]
, (A2)

where the new velocity-dependent auxiliary functions are

s3(v) ≡ √
π

1 + 2v2

8v
[erf (v + v0) + erf(v − v0)]

+ 1 + v0/v

4
exp[−(v − v0)2]

+ 1 − v0/v

4
exp[−(v + v0)2], (A3)

and

s4(v) ≡ √
π

erf(v + v0) + erf(v − v0)

4v
, (A4)

with v0 ≡ √
eφ/(kBTi) as a normalized speed cutoff. These

auxiliary functions are complicated functions of φ via v0,
and this blocks an exact analytic solution for fN where
N > 0. We can and do ignore this for larger spheres as
they’re almost always negatively charged, but for spheres
small enough to attain a positive charge, it is an insuperable
obstacle.

Not all is lost: one can derive a complete solution for fN

with plain OML, i.e., when there is no flow. In this special
case, one can solve a recurrence relation for fN when N � 0,
solve another recurrence relation for fN when N � 0, and
graft the two solutions together with the detailed balance
condition r1f1 = g0f0. We have not done this here as the

mechanics of that calculation are little different to those
of Sec. IV, and Draine and Sutin have already given an
analogous solution (albeit assuming Ti = Te) for small grains
and low-temperature plasmas ([1], p. 808).

APPENDIX B: UNIMODALITY OF THE CHARGE
PROBABILITY DISTRIBUTION

Here is a demonstration that fN is unimodal in the sense of
Medgyessy [15], i.e., that the sequence

· · · ,f0 − f1,f−1 − f0,f−2 − f−1, · · · (B1)

has exactly one change of sign after discarding zero terms. In
intuitive terms, this asserts that fN has only one peak, though
that peak may spread across multiple adjacent abscissae with
the same maximal ordinate.

As this paper’s stochastic model assumes a nonpositive
charge a priori, fN = 0 ∀ N > 0. Hence, the term f0 − f1 =
f0 in sequence (B1), and the terms before it are zero and
dispensable. Therefore, we need only show that

f0,f−1 − f0,f−2 − f−1, · · · (B2)

has one change of sign after discarding zero terms. We now
prove this explicitly for midsized grains; the same basic logic
applies for large grains.

Consider fN−1/fN , given in Eq. (23). Because α > 0,
exp(αN ) strictly increases in N . Similarly, because s1(v),
s2(v), and α are always positive, the parenthetical divisor in
Eq. (23) strictly decreases in N . As the parenthetical divisor
must always be nonnegative, it follows that Eq. (23) is strictly
increasing in N for N � 0. Because fN−1/fN strictly increases
in N for N � 0, fN−1/fN − 1, and, hence, fN−1 − fN can
change sign at most once for N � 0. From the second term
onward, then, sequence (B2) has at most one sign change.

Suppose there were such a sign change. This requires that
fN−1/fN − 1 changes sign as N becomes more negative,
which means fN−1/fN must go from being more than 1 to
being less than 1, because fN−1/fN decreases as N becomes
more negative. This implies that f−1/f0 > 1, implying f−1 −
f0 > 0, which in turn implies no sign change in the first
two terms of sequence (B2) (because f0 > 0). As such, if
sequence (B2) has a sign change after the second term, it is
the only sign change.

Suppose there were instead no sign change after the second
term. Then, either fN−1/fN > 1 for N � 0, or fN−1/fN < 1
for N � 0. The former is impossible, because it asserts that
fN becomes ever larger as N → −∞, which would render
fN unnormalizable. The latter implies f−1 < f0, and so a sign
change between the first two terms of sequence (B2). Thus,
were there no sign change after the sequence’s second term,
there would have to be a sign change between the first two
terms.

The last two paragraphs mean that sequence (B2) has
exactly one sign change, completing the proof that fN is
unimodal.
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