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Stability of three-dimensional dust acoustic waves in a dusty plasma with two opposite polarity dust
species including dust size distribution
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Propagation of dust acoustic waves (DAWs) with the effect of power law dust size distribution (DSD) in
a magnetized dusty plasma with opposite polarity dust is studied. Using a reductive perturbation method, a
Zakharov-Kuznetsov equation appropriate for describing three-dimensional DAWs is derived. The compressive
and rarefactive solitons are possible in the present model. Due to the DSD effect, a soliton with a smaller
amplitude and width and a larger velocity is observed. The stability criterion for obliquely propagating DAWs
in such plasma using small-k expansion method is investigated. The growth rate of instability is derived and
analyzed under the effect of power law DSD. It is found that the growth rate of instability is strongly affected by
the power law DSD. The relevance of these findings to space plasma phenomena is briefly discussed.
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I. INTRODUCTION

In the last decades, dusty plasma began to have a great inter-
est for researchers because of its important role in explaining
many space and astrophysical phenomena, as well as many
industrial and physical applications [1]. In dusty plasmas, the
presence of charged dust particles influences significantly the
plasma characteristic features. The dust grains play a signifi-
cant role in plasma wave dynamics [1]. It is normal to consider
the dusty plasma model with negatively charged dust only;
however, there are many cases in which dust particles have both
negative and positive charges [2–5]. Dusty plasmas with two
opposite polarity dusts have been found in different regions of
space, e.g., Jupiter’s magnetosphere [3,4], cometary tails [4],
Earth’s mesosphere [5], etc. The consideration of negatively
charged dust is due to the fact that in low-temperature plasmas,
the collection of plasma particles (electrons and ions) is the
only important charging process. However, there are some
other more important charging processes by which dust grains
become positively charged [2,6–8]. The principal mechanisms
of such processes are photoemission in the presence of a flux
of ultraviolet photons [6], thermionic emission induced by
radiative heating [7], secondary emission of electrons from the
surface of the dust grains [2,8], etc. Using Sagdeev potential
analysis (SPA) [9], Ivlev and Morfill [10] investigated the role
of the ion distribution (Boltzmann or highly energetic cold
ions) in the characteristics of dust acoustic waves (DAWs)
with negative dust species. They stated that the allowed
solitons are supersonic, and in dense clouds the width of the
Mach number range remains finite for the Boltzmann ions but
tends to zero for highly energetic ones. Also, they concluded
that the charge variation is not important in rarefied particle
clouds but becomes crucial if the particle number density is
sufficiently high. Later on, Popel et al. [11] presented a study of
arbitrary-amplitude DAWs in a three-component dusty plasma
including the possibility of changing the dust species polarity

*skellabany@hotmail.com
†eltaibany@hotmail.com
‡eebehery@gmail.com

(either positive or negative dust grains). Their model is applied
to interpret the features of two different layered structures
known as noctilucent clouds (NLC) and polar mesosphere
summer echoes (PMSE) in Earth’s mesosphere. However, they
[11] started their analysis with SPA to examine the possible
Mach number regime where DAWs would propagate; in the
end, they expand the Sagdeev potential for the small-amplitude
limit to get the analytical expression for the produced solitons.
The final equation has the form of a Korteweg–de Vries (KdV)
equation. Verheest and Hellberg [12] studied a fully general
description of nonlinear electrostatic modes in plasmas with an
arbitrary number of constituents. They showed that arbitrary-
amplitude modes can be described by a SPA, although explicit
expressions will be available for some simpler power law
dependency constituents. On the other hand, weakly nonlinear
modes can be treated by the reductive perturbation technique
(RPT) [13], which leads to nonlinear evolution equations. The
nonlinear evolution equation enables us to study the basic
characteristics of the nonlinear waves [11,12,14]. Also, from
the first step of the RPT, the linear dispersion relation is
obtained, from which the pressure and inertial effects needed
to sustain the wave modes can be defined [12]. When a
comparison between the SPA and the RPT is carried out
[12,14], full agreement is found between the two descriptions
when the difference between the linear phase velocity and the
velocity of the nonlinear structure is small [12].

On the other hand, Chow et al. [2] have shown that due
to the size effect on secondary emission, insulating dust
grains with different sizes can have opposite polarity, with
smaller ones being positive and larger ones being negative. The
opposite situation, i.e., massive positive and lighter negative
dust grains, is also possible by triboelectric charging [7,15].
This is predicted from the observations of dipolar electric
fields perpendicular to the ground, with the negative pole
at higher altitudes, generated by dust devils [16] and sand
storms [17]. The formation of these dipolar electric fields
means that negatively charged dust particles are blown upward
with convection, while positively charged dust particles remain
at the surface due to gravity. The coexistence of opposite
polarity charged dust particles is also observed in laboratories
[18–20]. It may be noted here that the case of same sized
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dust particles with opposite polarity may also occur by
photoemission if the photoemission yields of the dust material
are very different [21]. Sakanaka and Shukla [22] considered
a simple four-component dusty plasma with opposite polarity
dust fluids. They discussed the creation and the possible
regimes for observing large-amplitude solitons and double
layers. Mamun and Shukla [23] studied solitary potentials
in cometary dusty plasmas with positive and negative dust
particles. Later, Shukla [24] considered a dusty plasma with
opposite polarity cold dust fluids, and he studied the linear
dispersive dust Alfvén waves and the associated dipolar vortex.
El-Taibany et al. [25] investigated the modulational instability
of DAWs propagating in a four-component dusty plasma with
opposite polarity dust particles. Mamun [26] studied the basic
properties of arbitrary-amplitude solitary potential structures
in a dusty plasma with opposite polarity dust particles. Re-
cently, Mamun [27] has investigated the nonlinear propagation
of fast and slow dust-magnetoacoustic perturbation modes in
an opposite polarity dusty plasma medium consisting of both
positively and negatively charged dust fluids. He showed that
the fast (slow) dust-magnetoacoustic mode is propagating as
compressive (rarefactive) solitary waves.

Very recently, Shukla [28,29] examined linear DAWs in a
dusty plasma and discussed the possibility of a twisted dust
acoustic vortex beam carrying orbital angular momentum. So it
may be worth mentioning that one of the motives of the present
study is to investigate the instability of three-dimensional
DAWs in a four-component magnetized dusty plasma in-
cluding the opposite polarity dust grains. For this purpose,
we will employ the small-k expansion perturbation method
[30] in dusty plasmas. However, there are few instability
studies concerned with dusty plasma systems. For example,
Mamun [31] discussed the instability of three-dimensional
DAWs propagating obliquely to a magnetized dusty plasma.
He found that the oblique external magnetic field leads to
unstable DAW structures. Later, Mamun et al. [32] studied
the properties of finite-amplitude DAWs and their instabilities
in a three-component magnetized dusty plasma system. They
illustrated that the inclusion of nonthermal ions and dust
temperature effects modifies the nature of the produced
DAWs in a dusty plasma, although they demonstrated that
the variation of the nonthermal parameter has no effect on
the DAW stability criterion. Moreover, El-Taibany et al. [33]
used the small-k expansion perturbation method to study the
three-dimensional stability of dust ion acoustic waves in a
magnetized multicomponent dusty plasma containing negative
heavy ions and stationary variable-charge dust particles. They
proved that a higher growth rate corresponds to a higher
wave amplitude and the unstable solitary waves were produced
where negative ions are present. Recently, Akhter et al. [34]
studied three-dimensional DAWs and their instabilities by
employing the same perturbation technique in a magnetized
dusty plasma. They found that the basic features of the DAW
and its instability criterion or its growth rate are significantly
modified by the presence of opposite polarity dust particles
and external magnetic field.

However, actual observations show that the dust grain
size ranges from nanometers to millimeters unless they are
man-made [1]. Thus the radii r of the dust grains are not
the same, but they vary within the range [r1,r2], where r1

(r2) is the lower (upper) limit. The most widely applicable
dust size distribution (DSD) is the power law distribution
because of its various applications in space plasmas [35–38].
It is remarked that the DSD may be discrete or continuous;
however, the continuous model is the most reasonable [36,38].
The differential form of the power law DSD can be written as
ndj (r)dr = Kr−βdr , where ndj (r)dr is the number density of
the dust grains per unit volume with radii in the range from r to
r + dr, β is the power law index, and K is the normalization
constant. The total number density of all grains is given by
Ntot = ∫ r2

r1
ndj (r)dr . The mass and the charge of the j th dust

grain can be approximated as [35] mdj = Kmr3
j ,Zdj = Kzrj ,

where Km (� 4
3πρd ) is the mass constant with the assumption

that the mass density of the dust grains ρd is the same for all
grains, Kz (�4πεo

Vo

e
) is the charge constant when we take the

electric surface potential of the dust grains Vo to be constant at
equilibrium, and εo is the permittivity of free space [36–38].
To the best of our knowledge, no study has focused on the
instability of rotating nonlinear DAWs including DSD in a
four-component dusty plasma with opposite polarity dusts.
Accordingly, the second purpose of this paper is to study
the effect of power law DSDs on the instability criterion of
three-dimensional DAWs in the proposed model.

This paper is organized as follows: In Sec. II, we apply a
RPT [13] in order to derive a Zakharov-Kuznetsov (ZK) equa-
tion appropriate for describing nonlinear DAW propagation.
In Sec. III, which includes the effect of the power law DSD,
the basic characteristics of DAW propagation are investigated.
In Sec. IV, we apply the small-k expansion method to derive
the growth rate DAW instability. Section V is devoted to the
conclusion.

II. GOVERNING EQUATIONS

We consider the DAW propagation in a fully ionized
magnetized dusty plasma system composed of positively and
negatively charged dust particles and Boltzmann ions and elec-
trons in the presence of an external static magnetic field Boẑ,
where Bo is the strength of the applied magnetic field. Thus,
at equilibrium, we have

nio +
Np∑
j=1

Zpjnpjo = neo +
Nn∑
j=1

Znjnnjo , (1)

where nio,npjo ,neo, and nnjo are, respectively, ion, positive
dust, electron, and negative dust number densities at equi-
librium. Zpj (Znj ) represents the charge state of positive
(negative) dust particles. Assume that the positive (negative)
dust grain has Np (Nn) different radii within the range [rs1,rs2],
where rs1 is the lower limit and rs2 is the upper limit,
with s = p(n) for positive (negative) dust. The dynamics of
DAWs [1,34,39] in such a magnetized dusty plasma system
are governed by

∂nsj

∂t
+ ∇ · (nsj usj ) = 0, (2)

∂unj

∂t
+ (unj · ∇)unj = μnj∇φ − μnjωcn(unj × ẑ), (3)

023108-2



STABILITY OF THREE-DIMENSIONAL DUST ACOUSTIC . . . PHYSICAL REVIEW E 88, 023108 (2013)

∂upj

∂t
+ (upj · ∇)upj = −μpjν∇φ + μpjωcp(upj × ẑ),

(4)

∇2φ = μee
σφ − μie

−φ +
Nn∑
j=1

Znjnnj − α

Np∑
j=1

Zpjnpj . (5)

It is noted that since ions and electrons are lighter than
dust grains and have larger velocities than dust species, it
is reasonable to consider them in thermal equilibrium obeying
a Boltzmann distribution.

The following normalizations are used:

ne → ne/neo, ni → ni/nio, nnj → nnj/nno,

npj → npj/npo, Znj → Znj/Zno, Zpj → Zpj/Zpo,

φ → eφ/Ti, unj → unj/cd, upj → upj/cd,

t → tωp, ∇ → λD∇,

where

cd =
√

ZnoTi

mno

, ωp =
√

4πe2Z2
nonno

mno

,

λD =
√

Ti

4πe2Znonno

, Zno = 1

nno

Nn∑
j=1

Znjnnj ,

Zpo = 1

npo

Np∑
j=1

Zpjnpj , nno =
Nn∑
j=1

nnj ,

npo =
Np∑
j=1

npj , ωcn = ZnoeBo

mnoωp

, ωcp = ZpoeBo

mpoωp

,

with

σ = Ti

Te

, α = Zponpo

Znonno

, μnj = Znj

mnj

, μpj = Zpj

mpj

μe = neo

Znonno

, μi = nio

Znonno

, ν = Zpomno

Znompo

.

The dust dynamic time τd is experimentally estimated to be
about 10−2 s [1,10], and the dust charging time τch for positive
dust grains including four charging currents, photoemission,
secondary electrons, and the electron and ion currents, is
2 × 10−5 s [14]. In addition, τch for negative dust grains
is about 10−8–10−6 s, depending on the included charging
currents [40]. Therefore, it is clear that τch � τd in both cases,
which means the dust grain reaches an equilibrium dust charge
number very quickly, and this enable us to consider constant
dust charge in the present model. In other words, the dust
charge is always close to the equilibrium value. So we consider
a constant dust charge [10].

It is remarked that the applied external magnetic field is
static, so ∇ × B = ∇ × (Boẑ) = 0. In addition, Allen [41]
concluded that in the presence of the charge carries of both
signs, the Hall effect is reduced. Therefore, the conduction
and the induced currents could be ignored here.

Now, using a RPT [13], we introduce the following
stretched coordinates:

X = ε1/2x, Y = ε1/2y, Z = ε1/2(z − λt), T = ε3/2t,

(6)

where ε is a small parameter measuring the amplitude of the
wave perturbation. λ is the normalized velocity of the moving
frame to be determined later self-consistently. The plasma
parameters nsj , usj , and φ can be expanded as a power series
in ε as [36]

nsj = nsjo + εnsj1 + ε2nsj2 + · · · ,

usxj = ε3/2usxj1 + ε2usxj2 + · · · ,

usyj = ε3/2usyj1 + ε2usyj2 + · · · , (7)

uszj = εuszj1 + ε2uszj2 + · · · ,

φ = εφ1 + ε2φ2 + · · · .

Substituting Eqs. (6) and (7) into the set of Eqs. (2)–(5) and
collecting terms of the same powers of ε, for the lowest orders,
we get

nnj1 = −μnjnnjo

λ2
φ1, npj1 = νμpjnpjo

λ2
φ1,

unxj1 = −1

ωcn

∂φ1

∂Y
, unyj1 = 1

ωcn

∂φ1

∂X
, unzj1 = −μnj

λ
φ1,

upxj1 = −ν

ωcp

∂φ1

∂Y
, upyj1 = ν

ωcn

∂φ1

∂X
, upzj1 = νμpj

λ
φ1.

(8)

The linear dispersion relation is calculated as

λ2 =
∑Nn

j=1
nnjoZ

2
nj

mnj
+ αν

∑Np

j=1
npjoZ

2
pj

mpj

μi + σμe

. (9a)

Now, applying the power law DSD, we obtain

λ =
[(

KnK
2
znr

−β

n1 − ανKpK2
zpr

−β

p1

)
(1 − R−β)

βKm(μi + σμe)

]1/2

, (9b)

where Kzn (Kzp), Kn (Kp), and rn1 (rp1) are the charge
constant, the normalization constant, and the minimum radius
of negative (positive) dust, respectively. R represents the ratio
of the maximum to the minimum dust radius. The monosized
dust particles case is obtained by considering that all dust
particles have the same radius rn,p = [(1 − β)rn1,p1(R2−β −
1)]/[(2 − β)(R1−β − 1)] for negative (n) and positive (p) dust
particles. Figure 1 shows the dependence of the velocity ratio �

(the ratio of the velocity corresponding to the case of including
DSD to that corresponding to the monosized case with the
average radius rn,p ) on the dust radius ratio R and the power
law index β. It is clear that the velocity is larger than that of
the monosized dust case. This behavior coincides with what
has been observed for a three-component dusty plasma with
only negative dust species and including DSD [36]. Also, the
velocity ratio � increases as R increases but decreases as β

increases.
Collecting terms of powers ε3/2 from Eqs. (2)–(5), the x

and y components of the second-order perturbed perpendicular
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FIG. 1. (Color online) The dependence of the velocity ratio �

on the dust radius ratio R and the power law index β for lζ = 0.3,

lη = 0.7, uo = 1.1,δ = 11, ωcn = 0.05, rn1 = 10−5, rp1 = 5 × 10−4,
and σ = 0.1.

velocities are given by

unxj2 = −λ

μnjω2
cn

∂2φ1

∂Z∂X
, unyj2 = −λ

μnjω2
cn

∂2φ1

∂Z∂Y
,

(10)

upxj2 = λν

μpjω2
cp

∂2φ1

∂Z∂X
, upyj2 = λν

μpjω2
cp

∂2φ1

∂Z∂Y
.

For the O(ε2) perturbed quantities, Eqs. (2)–(5) lead to the
following system of equations:

−λ
∂nnj2

∂Z
+ nnjo

(
∂unxj2

∂X
+ ∂unyj2

∂Y
+ ∂unzj2

∂Z

)
+ ∂nnj1

∂T

+ nnj1
∂nnj1

∂Z
= 0,

−λ
∂npj2

∂Z
+ npjo

(
∂upxj2

∂X
+ ∂upyj2

∂Y
+ ∂upzj2

∂Z

)
+ ∂npj1

∂T

+ npj1
∂npj1

∂Z
= 0,

(11)

−λ
∂unzj2

∂Z
− μnj

∂φ2

∂Z
+ ∂unzj1

∂T
+ unzj1

∂unzj1

∂Z
= 0,

−λ
∂upzj2

∂Z
+ νμpj

∂φ2

∂Z
+ ∂upzj1

∂T
+ upzj1

∂upzj1

∂Z
= 0,

(μi + σμe)φ2 +
Nn∑
j=1

Znjnnj2 − α

Np∑
j=1

Zpjnpj2 − ∇2φ1

− 1

2
(μi − σ 2μe)φ2

1 = 0.

Solving Eqs. (11) with the aid of Eqs. (8) and (10) and elim-
inating the second-order perturbed quantities, the evolution
equation appropriate for describing the nonlinear DAWs in a
magnetized dusty plasma with two opposite polarity dusts is
the following ZK equation:

∂φ1

∂T
+ Aφ1

∂φ1

∂Z
+ B

∂3φ1

∂Z3
+ C

(
∂3φ1

∂Z∂X2
+ ∂3φ1

∂Z∂Y 2

)
= 0,

(12)

where

A = −μ2
nj − μ2

pj (ν − 1)

2λ(μnj − μpj )
+ λ(μi − σ 2μe)

2(μi + σμe)
, (13)

B = λ

2(μi + σμe)
, (14)

C = B + λ3

2(μnj − μpj )

(
1

μnjω2
cn

− 1

μpjω2
cp

)
. (15)

III. SOLITARY WAVE ANALYSIS

To study the properties of DAWs propagating in a direction
making an angle δ with the Z axis, i.e., with the external static
magnetic field lying in the (Z − X) plane, we first rotate the
coordinate axes (X,Z) by an angle δ and make use of the
following transformation of the independent variables [30]:

ζ = X cos δ − Z sin δ, ξ = X sin δ + Z cos δ,
(16)

η = Y, τ = T .

Applying these transformations to the ZK, Eq. (12), yields

∂φ1

∂τ
+ δ1φ1

∂φ1

∂ξ
+ δ2

∂3φ1

∂ξ 3
+ δ3φ1

∂φ1

∂ζ
+ δ4

∂3φ1

∂ζ 3

+ δ5
∂3φ1

∂ξ 2∂ζ
+ δ6

∂3φ1

∂ξ∂ζ 2
+ δ7

∂3φ1

∂ξ∂η2
+ δ8

∂3φ1

∂ζ∂η2
= 0, (17)

where

δ1 = A cos δ, δ2 = B cos3 δ + C sin2 δ cos δ,

δ3 = −A sin δ, δ4 = −B sin3 δ − C cos2 δ sin δ,

δ5 = 2C
(

sin δ cos2 δ − 1
2 sin3 δ

) − 3B cos2 δ sin δ, (18)

δ6 = −2C
(

sin2 δ cos δ − 1
2 cos3 δ

) + 3B sin2 δ cos δ,

δ7 = C cos δ, δ8 = −C sin δ.

Now, we look for a steady state solution of the ZK equation in
the form

φ1 = φ0(ρ), (19)

where ρ = ξ − Mτ and M is the Mach number normalized by
the dust acoustic speed cd . So the ZK equation in the steady
state form leads to

−M
∂φ0

∂ρ
+ δ1φ0

∂φ0

∂ρ
+ δ2

∂3φ0

∂ρ3
= 0. (20)

Now, using the appropriate boundary conditions, namely, φ0

and its derivatives vanish as ρ goes to infinity, Eq. (20) has the
following solution:

φ0(ρ) = φm sech 2

(
ρ

W

)
, (21)

where φm and W are the amplitude and the width of the solitary
wave, respectively, which are given by

φm = 3M/δ1, (22)

W = 2
√

δ2/M. (23)

The solitary wave solution exists only if it has a real width
W , i.e., when δ2 > 0. Also, the solitary wave is compressive
(rarefactive) if δ1 > 0 (δ1 < 0). It is clear from Eqs. (9),
(13)–(15), (22), and (23) that the amplitude and the width of
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FIG. 2. (Color online) The dependence of the amplitude φm of the
compressive solitary wave on the dust radius ratio R and the power
law index β for lζ = 0.3,lη = 0.7, uo = 1.1, δ = 11, and ωcn = 0.05.

the solitary wave depend strongly on the power law DSD.
Figures 2 and 3 show the effect of both R and β on the
amplitude φm of the compressive and the rarefactive solitary
waves, respectively. The dependence of the amplitude ratio
� (the ratio of the amplitude including the DSD effect to
that corresponding to the monosized case with the average
radius rn,p) on the dust radius ratio R and the power law
index β is shown in Fig. 4. It can be easily seen that the
amplitude is smaller than that of the monosized dust case.
Also, the amplitude ratio � decreases as R increases but
slightly increases as β increases. On the other hand, Figs. 5
and 6 show the effect of both R and β on the width W of the
compressive and rarefactive solitary waves, respectively. They
indicate that W increases as both R and β increase. Moreover,
Fig. 7 indicates that the width ratio � (the ratio of the width
including the DSD to that corresponding to the monosized
case) increases as both R and β increase. Moreover, the width
is smaller than that of the monosized dust case. It is noted
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FIG. 3. (Color online) The dependence of the amplitude φm of the
rarefactive solitary wave on the dust radius ratio R and the power law
index β for lζ = 0.3,lη = 0.7, uo = 1.1, δ = 11, and ωcn = 0.05.
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FIG. 4. (Color online) The dependence of the amplitude ratio �

on the dust radius ratio R and the power law index β for lζ = 0.3,

lη = 0.7, uo = 1.1,δ = 11, and ωcn = 0.05.

here that the two types of soliton solutions, compressive and
rarefactive, are possible in the present model. However, only
one soliton type is possible for the three-component model:
the rarefactive (compressive) soliton corresponding to negative
(positive) dust grains. In addition, the decrement of the soliton
amplitude due to including the DSD agrees with that observed
in a three-component dusty plasma [36]. Contrary to what
has been observed in a three-component dusty plasma with
DSD [36], the soliton width here decreases by incorporating
the DSD effect.

IV. INSTABILITY ANALYSIS

Now, let us apply the small-k expansion perturbation
method [30] to study the stability of obliquely propagating
DAWs. We assume that

φ1 = φ0(ρ) + ψ(ρ,ζ,η,τ ), (24)

where φ0 is defined by Eq. (21) and ψ , for a long wavelength
plane wave perturbation in a direction with cosines (lζ ,lη,lξ ),
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FIG. 5. (Color online) The dependence of the width W of the
compressive solitary wave on the dust radius ratio R and the power
law index β for lζ = 0.3, lη = 0.7,uo = 1.1, δ = 11, and ωcn = 0.05.
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FIG. 6. (Color online) The dependence of the width W of the
rarefactive solitary wave on the dust radius ratio R and the power law
index β for lζ = 0.3, lη = 0.7,uo = 1.1, δ = 11, and ωcn = 0.05.

is given by

ψ(ρ,ζ,η,τ ) = ϕ(ρ)ei[k(lζ ζ+lηη+lξ ρ)−ωτ ], (25)

with l2
ζ + l2

η + l2
ξ = 1. For small k, ϕ(ρ) and ω can be expanded

as

ϕ(ρ) = ϕ0 + kϕ1 + k2ϕ2 + · · · , (26)

ω = kω1 + k2ω2 + · · · . (27)

Substituting Eq. (24) into Eq. (17) and linearizing with respect
to ψ , the linearized ZK equation becomes

∂ψ

∂τ
− M

∂ψ

∂ρ
+ δ1φ0

∂ψ

∂ρ
+ δ1ψ

∂φ0

∂ρ
+ δ2

∂3ψ

∂ρ3
+ δ3φ0

∂ψ

∂ζ

+ δ4
∂3ψ

∂ζ 3
+ δ5

∂3ψ

∂ρ2∂ζ
+ δ6

∂3ψ

∂ρ∂ζ 2
+ δ7

∂3ψ

∂ρ∂η2

+ δ8
∂3ψ

∂ζ∂η2
= 0. (28)
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FIG. 7. (Color online) The dependence of the width ratio � on the
dust radius ratio R and the power law index β for lζ = 0.3, lη = 0.7,

δ = 11, and ωcn = 0.05.

Substituting Eqs. (25)–(27) into Eq. (28) and equating the
coefficients of the same powers of k, at zeroth order, we get

(−M + δ1φ0)ϕ0 + δ2
d2ϕ0

dρ2
= C̃, (29)

where C̃ is the integration constant. It is clear from Eq. (20)
that the homogeneous part of this equation has two linearly
independent solutions, namely [31],

f = dφ0

dρ
, g = f

∫ ρ dρ

f 2
. (30)

Therefore, the general solution of this zeroth order, Eq. (29),
can be written as

ϕ0 = C1f + C2g − C̃f

∫ ρ g

δ2
dρ + C̃g

∫ ρ f

δ2
dρ, (31)

where C1 and C2 are the integration constants. Now, evaluating
all integrals, the general solution of the zeroth-order equation,
for ϕ0 not tending to ±∞ as ρ → ±∞, can be finally
simplified to

ϕ0 = C1f. (32)

The first-order equation, obtained from Eqs. (26), (27), and
(32), can be expressed, after integration, by

(−M + δ1φ0)ϕ1 + δ2
d2ϕ1

dρ2

= iC1

[
α1 + β1 tanh2

(
ρ

W

)]
φ0 + C3, (33)

where C3 is another integration constant and α1 and β1 are
given by

α1 = ω1 + Mlξ − 1

2
φmμ1 + 2

W 2
μ2, (34)

β1 = 1

2
φmμ1 − 6

W 2
μ2, (35)

where

μ1 = (δ1lξ + δ3lζ ), μ2 = (3δ2lξ + δ5lζ ). (36)

Similarly, the general solution of the first-order equation, for
ϕ1 not tending to ±∞ as ρ → ±∞, is given by

ϕ1 = K1f + iC1W
2

8δ2

[
(α1 + β1)ρf + 2

(
α1 + 1

3
β1

)
φ0

]
,

(37)

where K1 is an arbitrary constant. The second-order equation,
obtained from Eq. (28), is given as(

− M
d

dρ
+ δ1

d

dρ
φ0 + δ2

d3

dρ3

)
ϕ2 = Q, (38)

where

Q = iω2ϕ0 + i(ω1 + Mlξ − μ1φ0)ϕ1 + μ3
dϕ0

dρ

− iμ2
d2ϕ1

dρ2
, (39)

μ3 = 3δ2l
2
ξ + 2δ5lζ lξ + δ6l

2
ζ + δ7l

2
η. (40)
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The existence of the solution of Eq. (38) requires that Q must
be orthogonal to the kernel of the adjoint operator to operator
L, which is given by

L = −M
d

dρ
+ δ1

d

dρ
φ0 + δ2

d3

dρ3
. (41)

Thus, we obtain the following consistency condition:∫ ∞

−∞
φ0Qdρ = 0. (42)

Substituting ϕ0 and ϕ1 from Eqs. (32) and (37), respectively,
into Eq. (42), we obtain the following dispersion relation:

ω1 = � − Mlξ +
√

�2 − �, (43)

where

� = 2
3 (μ1φm − 2μ2/W 2), (44)

� = 16

45

(
μ2

1φ
2
m − 3μ1μ2φm

W 2
− 3μ2

2

W 4
+ 12δ2μ3

W 4

)
.

(45)

Hence, from Eq. (43), we obtain an instability condition in the
form

� − �2 > 0. (46)

Thus, using Eqs. (18), (22), (23), (36), (40), (44), and (45), we
obtain the following instability criterion:

Si > 0, (47)

where

Si = l2
ζ

(
�j − 5

3
sec2 δ

)
+ l2

η(�j cot2 δ + 1), (48)

�j = ω2
cn∑Nn

j=1 nnjomnj + ω2
cn

+ ω2
cp

αν
∑Np

j=1 npjompj + ω2
cp

.

(49)
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FIG. 8. (Color online) The variation of Si with the dust radius
ratio R and the power law index β for lζ = 0.3, lη = 0.7, δ = 11, and
ωcn = 0.05.
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FIG. 9. (Color online) The Si = 0 surface plot via the variation
of R,β, and δ for lζ = 0.3, lη = 0.7, and ωcn = 0.05.

It is clear from the expression for Si that the instability
criterion, (47), depends strongly on DSD. For continuous
power law DSD, we can express �j as

�j = (4 − β)ω2
cn

KnKmr
4−β

n1 (R4−β − 1) + (4 − β)ω2
cn

+ (4 − β)ω2
cp

ανKpKmr
4−β

p1 (R4−β − 1) + (4 − β)ω2
cp

. (50)

A graphical representation of Si as a function of both the dust
radius ratio R and the power law index β is shown in Fig. 8. It
can easily be seen that Si increases as both R and β increase.
The fact that Si has positive (negative) values refers to unstable
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Ωcn
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FIG. 10. (Color online) The Si = 0 surface plot via the variation
of R,β, and ωcn for lζ = 0.3, lη = 0.7, and δ = 11.
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FIG. 11. (Color online) The dependence of the growth rate of the
instability of DAWs � on the dust radius ratio R and the power law
index β for lζ = 0.3,lη = 0.7, δ = 11, and ωcn = 0.05.

(stable) perturbation of DAWs. However, it is important to
study the effect of the system parameters on the surface of
Si = 0. Figures 9 and 10 indicate the parametric regimes of
R,β,δ, and ωcn above (below) the surface Si = 0 correspond
to unstable (stable) perturbation of DAWs.

As the instability criterion Si > 0 is satisfied, the corre-
sponding growth rate � = √

� − �2 of the instability is given
by

� = 2uo√
15

csc δ S
1/2
i

(�j cot2 δ + 1)
. (51)

The dependence of the growth rate � on R,β,lζ ,lη, and ωcn

is illustrated in Figs. 11 and 12. Figure 11 indicates that �

increases as both R and β increase. Moreover, � changes
drastically against R variation; that is, � increases rapidly for
small values of R, then it becomes nearly constant for larger
values of R. Also, it is clear that � is very sensitive to small
changes in β. Figure 12 shows that � increases as both lζ and lη
increase. Moreover, � has a linear dependence on changes of
both lζ and lη. Figure 13 indicates that the larger the cyclotron
frequency ωcn is, the higher the growth rate � is. In other
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0.02

0.04

0.06

FIG. 12. (Color online) The dependence of the growth rate � on
lζ and lη for R = 3, β = 3.48, δ = 11, and ωcn = 0.05.
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FIG. 13. (Color online) The dependence of the growth rate � on
R and ωc for lζ = 0.3, lη = 0.7, δ = 11, and β = 3.48.

words, � increases as the strength of the external magnetic
field Bo increases.

V. CONCLUSION

The stability of obliquely propagating three-dimensional
DAWs is studied with the effect of power law DSD [35–38]
in a magnetized dusty plasma including two opposite polarity
dusts. The RPT [13] is applied, and a ZK equation describing
DAWs is obtained. The solution of the ZK equation proves the
existence of both compressive and rarefactive solitons in the
present model. Then, the stability of DAW is studied using a
small-k expansion perturbation method [30]. The expression
for the growth rate of the wave instability is deduced.

It is found that by including the DSD effect in the present
model, we get a smaller amplitude and width but with larger
velocity soliton solution in comparison with the monosized
case. Similar behaviors for the soliton amplitude and velocity
are observed in a three-component dusty plasma with the
DSD effect. However, the response of the soliton width
is reversed here versus the DSD effect. Moreover, using
numerical investigations, the soliton (velocity ratio �), the
amplitude ratio �, and the width ratio � (decreases) increase
as the power law index β increases.

Moreover, we conclude that the growth rate of the DAW
instability � is strongly affected by the power law DSD. �

increases as β or the dust radii ratio R increases. However, it
is shown that � increases linearly as both lζ and lη (cosines
of obliqueness angle) increase. In addition, � increases as the
strength of the external magnetic field Bo increases.

Finally, this work is very useful for the explanation of
collective phenomena and the stability criterion of DAWs in
magnetized dusty plasmas which are observed in some as-
trophysics environments, e.g., Jupiter’s magnetosphere [3,4],
cometary tails [4], and Earth’s mesosphere (NLC, PMSE)
[5,11,25], where the DSD effect is important. On the other
hand, it is reported [10] that if the traveling potential barrier is
too high, the particles cannot get across it, and they are reflected
by the wave front. The reflected precursor flux upstream of the
soliton leads to the formation of a shock wave which we expect
may be a possible extension for the present work.
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