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Kinetic theory of fully degenerate electrons in the long scale limit
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The kinetic theory of fully degenerate electrons in a weakly coupled plasma is considered. We derive an
evolution equation for a generalized Fermi surface that also depends on the electron spin state. The equation
allows for the study of weakly nonlinear modifications of the Fermi surface within perturbation theory. We apply
the theory to Landau damping of ion-acoustic waves. The transition to the nonlinear stage and the nonlinear
modification of the Fermi surface are investigated.
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I. INTRODUCTION

Recently there has been much interest in the properties of
quantum plasmas [1–7]. The applications include quantum
wells [8], spintronics [9], and plasmonics [10]. Quantum
plasma effects can also be of interest in experiments with solid
density targets [11]. Important classifications of dense plasmas
depend on whether they are strongly or weakly coupled, and
whether they are degenerate or nondegenerate [12]. Much
attention has been given to the weakly coupled fully degenerate
plasma [13–17], which has been studied both within fluid
theory and kinetic theory. For a weakly coupled plasma, the
effects of the many-body physics (e.g., exchange effects) as
well as collisions are corrections that may be omitted as a first
approximation. See, e.g., Ref. [18] for the accuracy of this
approximation. Furthermore, when the dynamics associated
with the spin is neglected, such a plasma can be described
by the Wigner equation [1–4]. For long scale lengths the
Wigner equation reduces to the Vlasov equation. Although
this equation is perfectly classical, it may still incorporate the
effect of degeneracy. If the initial conditions correspond to
a degenerate state, the property that the phase space density
is conserved along particle orbits ensures that the particles
are not packed more densely in phase space than allowed by
quantum mechanics. Thus the evolution equation assures that
f � m3

e/4π3h̄3 if it is fulfilled initially. Here the distribution
function is denoted by f , the electron mass by me, and Planck’s
constant by h = 2πh̄.

In the present paper we start from kinetic theory valid
for weakly coupled plasmas, that is, Eq. (83) of Ref. [19].
In addition to particle dispersion, this equation includes the
spin dynamics. For long spatial scales compared to the de
Broglie length particle, dispersive effects can be dropped
and the equation is simplified. Although this equation in
principle captures the long scale physics of fully degenerate
particles, for certain types of problems weakly nonlinear
perturbation schemes run into problems. The reason is that the
weakly nonlinear modifications of the Fermi surface cannot
be captured by perturbation theory, as will be discussed in
detail in Sec. III. The solution to this problem is to transform
the evolution equation in a way that allows for amplitude
expansions. Besides allowing perturbation theory to be ap-
plied, this has the advantage of transforming one of the
independent velocity variables to a dependent variable, thereby
reducing the computational difficulties. The transformation
applies when the spin dynamics is included, but is equally

relevant when it is omitted. In this case the transformation mod-
ifies the standard Vlasov equation to an equation describing the
nonlinear evolution of the space- and time-dependent Fermi
surface of the particles. In the absence of spin effects this de-
scription is related to the water-bag model used to study classi-
cal nonlinear systems (see, for example, Refs. [20–22]), where
the contours of the constant distribution function are studied. In
order to demonstrate the usefulness of the formalism, we apply
the theory to nonlinear Landau damping of ion-acoustic waves
in the case of fully degenerate electrons. It is shown that the
transition from the linear to the nonlinear regime occurs when
the bounce frequency is comparable to the linear damping rate.

II. BASIC EQUATIONS

The foundation for our treatment is given in Ref. [19]. In
particular, we refer to Eq. (63) of Ref. [19], which describes
a quantum spin 1/2 plasma in the long scale length limit.
Making a semiclassical approximation for the magnetic dipole
force term, this equation simplifies somewhat [23] and agrees
with Eq. (3) of Ref. [5], which was derived heuristically. This
equation constitutes the starting point for our investigation and
reads{(

∂

∂t
+ v · ∇

)
+ qe

me

(E + v × B) · ∇v + 3μ

me

∇ [s · B] ·∇v

+ 2μ

h̄
(s × B) · ∇s

}
f (x,v,s,t) = 0. (1)

Here f (x,v,s,t) is similar to a classical distribution function
(certain quantum peculiarities, i.e., that f can be negative,
vanish over scale lengths longer than the characteristic de
Broglie wavelength—see Ref. [19] for further details) but
lives in a phase space augmented by the two spin variables
encoded in s = (sin θs cos ϕs, sin θs sin ϕs, − cos θs), where
we use spherical variables. The electron magnetic moment
is denoted by μ = gh̄e/4me, the electron charge by qe = −e ,
and g � 2.002 331 is the electron spin g factor.

For fully degenerate electrons in thermodynamic equi-
librium the phase space density is constant and equal to
its maximum value fmax = 3n/(16π2v3

F ) inside the Fermi
sphere and f = 0 outside its boundary. Here n is the number
density and vF = (h̄/me)(3π2)1/3n1/3 is the Fermi velocity,
which means fmax = m3

e/16π4h̄3 independently of the density.
Classically we know that when the equilibrium is perturbed,
f is constant along particle orbits, and we will find that a
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similar property holds for Eq. (1). To show this we make the
ansatz

f (x,v,s,t) = fmaxH (v − ṽ(x,φv,θv,s,t)), (2)

where H is a step function that is unity when the argument is
smaller than zero and vanishes otherwise, v is the magnitude
of the velocity, ṽ describes the shape of the (dynamically
deformed) Fermi surface, and φv and θv are spherical angles in
velocity space. This ansatz turns out to solve Eq. (1) provided
ṽ fulfills

qEr

me

=
{(

∂

∂t
+ v · ∇

)
+

(
qe

me

(E + v × B)

+ 3μ

me

∇ [s · B]

)
· ∇v⊥ + 2μ

h̄
(s × B) · ∇s

}
ṽ, (3)

where v = ṽr̂v with r̂v a unit vector in the direction of
the velocity, the index r means the component along r̂v ,
and ∇v⊥ represents a velocity gradient perpendicular to
r̂v . Using the ansatz (2) we find that the electron charge
density is

ρ = fmaxqe

∫
d�

ṽ3

3
, (4)

and the electron current density is

J = fmax

(
qe

∫
d�

ṽ4

4
r̂v + μ∇ ×

∫
d�s

ṽ3

3

)
, (5)

where d� = d2sd2v, and the integration runs over the
Bloch sphere in spin space and over the Fermi surface
in velocity space. We thus have a description where the
particle distribution is represented in terms of ṽ, which can
be viewed as a generalized Fermi surface (cf. Ref. [24])
depending also on the spin state. Equation (3) is a coordinate-
free representation for the Fermi surface dynamics (with
a spin-dependent Fermi surface), but it is practical to
use spherical variables for the velocity coordinates. In
this case we write r̂v = (sin θv cos ϕv, sin θv sin ϕv, cos θv),
∇v⊥ = (1/ṽ)θ̂v∂/∂θv + (1/ṽ sin θv)ϕ̂v∂/∂ϕv , where the spher-
ical unit vectors are θ̂v = (cos θv cos ϕv, cos θv sin ϕv, −sin θv)
and ϕ̂v = (− sin ϕv, cos ϕv,0) in Cartesian unit vectors.
Similarly the spin gradient is written ∇s = θ̂s∂/∂θs +
(1/ sin θs)ϕ̂s∂/∂ϕs and the integration element reads d� =
sin θv sin θsdθvdϕvdθsdϕs . We note that the number of inde-
pendent variables is reduced by one compared to Eq. (1).
More importantly, since we do not need to take velocity
derivatives in the radial direction, we can avoid the appearance
of delta functions in the calculations, which for certain classes
of problems leads to insurmountable difficulties. There is a
number of dimensionless parameters (for example, h̄k2/meω,
μB/mev

2
F , where k and ω are characteristic wave number

and frequencies, respectively; see Ref. [6] for a more detailed
discussion) that determine the relative importance of spin
effects. Generally when there there are no magnetic fields
involved, the spin dynamics can be omitted. In this case
we can drop all terms proportional to μ , and drop the
spin dependence in ṽ. We then get a system that only
accounts for electron degeneracy, but otherwise is classical.
As will be demonstrated in the next section, this equation

has important advantages as compared to the standard Vlasov
equation.

III. NONLINEAR LANDAU DAMPING:
A SPECIFIC EXAMPLE

Next we will illustrate the usefulness of the present
approach by considering nonlinear Landau damping of ion-
acoustic waves in a plasma where the electrons are fully
degenerate and the ions fulfill ω/k � vti � vFi , i.e., they can
be assumed to be cold, nonresonant, and nondegenerate. Since
the magnetic field can be omitted for ion-acoustic waves, we
use Eq. (3) with the spin terms dropped. For one-dimensional
(1D) spatial variations along z and electrostatic fields E = Eẑ
we then obtain(

∂

∂t
− cos θvṽ

∂

∂z

)
ṽ − qe

me

E

ṽ
sin θv

∂ṽ

∂θv

= − qe

me

E cos θv,

(6)

which is combined with (4), where the spin integration simply
gives 4π and we only need to do the velocity integration,
i.e., d� = sin θvdθvdϕv . As a consequence, fmax in Eq. (4)
is renormalized to fmax = m3

e/4π3h̄3. Contrary to works
considering 1D Fermi distributions [22] where the theory
becomes hydrodynamic in nature, the dependence on θv

implies that the problem stays kinetic and that a resonant
wave-particle interaction will take place. In the nonlinear
regime of Landau damping, the particle distribution may differ
strongly from that of linear theory close to the resonance,
but still the electromagnetic field may be described by a
plane wave ansatz provided the amplitude is not too high.
The condition for this is discussed for the classical case in,
e.g., Ref. [25], and similar arguments apply to our case.
Thus we introduce E = Ẽ(t) exp [i(kz − ωt)] + c.c., where
c.c. stands for complex conjugate, and the amplitude is slowly
varying. For the deformation of the electron velocity surface
we make an expansion in harmonics, i.e., we look for solutions
of the form ṽ = vF + ∑∞

n=0 ṽn(t,θv) exp [in(kz − ωt)] + c.c.
Inserting this in (1) gives a hierarchy of coupled equations,
one for each harmonic. This hierarchy contains a number of
nonlinearities. For |ṽn(t)| � vF the ratio E/ṽ can be equated
with E/vF . Furthermore, it can be verified a posteriori that the
nonlinearities ∝cos θvṽ∂ṽ/∂z are small compared to the ones
∝E sin θv∂ṽ/∂θv close to the resonance. This follows because
the phase velocity ω/k � vF , and hence the resonance, occurs
at angles cos θv � 1. As a result, close to the resonance the
equations for the particle dynamics are

∂

∂t
ṽ0 = qe

me

E∗
1

vF

∂ṽ1

∂θv

+ qe

me

E1

vF

∂ṽ∗
1

∂θv

, (7)

[
∂

∂t
− iδω

]
ṽ1 = qe

me

[
E cos θv + E

vF

∂ṽ0

∂θv

+ E∗

vF

∂ṽ2

∂θv

]
, (8)

[
∂

∂t
− inδω

]
ṽn = qe

mevF

(
E

∂ṽn−1

∂θv

+ E∗ ∂ṽn+1

∂θv

)
, (9)

where δω ≡ ω − kvF cos θ and sin θv � 1 have been used.
Equations (7)–(9) are complemented by Poisson’s equation

ikE = 2πqe

ε0

∫
dθv sin θvfmaxv

2
Feṽ1 −

∫
d3v fi1, (10)
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where the ion contribution in the last term is found from the
classical linearized Vlasov equation evaluated at zero tem-
perature. Following Ref. [26] we note that the damping time
scale will be much longer than the time scale of oscillations
induced by the electric field. Hence, only a minor fraction
of all particles, those closest to the resonance, participate in
the wave-particle interaction. Guided by this, we divide the
integration interval in a resonant and a nonresonant region.
In the nonresonant region we can linearize the governing
equations. Furthermore, we let the standard linear dispersion
relation hold by definition, but excluding the resonant region.
A crucial issue is the width of the resonant region. However, it
can be verified a posteriori that the evolution is not critically
dependent on this choice. We thus divide the electron integral
in (10) as

∫ = ∫
nr

+ ∫
r

, where the index r indicates that the
integral only runs over the resonant part [θvr − �θ,θvr + �θv],
and the resonant angle θvr fulfills ω − kvFe cos θvr = 0, with
�θv defining the width of the resonant region. The index nr

refers to the remaining nonresonant part. In the nonresonant
region linear theory is sufficient, where the (weak) time
dependence of the amplitudes is treated perturbatively. As a
result, Eq. (10) is rewritten as

∂

∂t
E = Qfmaxv

2
Fe

∫
r

dθv ṽ1, (11)

where

Q ≡
[
qe

∫
nr

dθv sin θv cos θv

fmaxv
2
Fe

meδω2
+ 2

qen0k

miω3

]−1

.

Equation (11), together with (7)–(9), constitutes a closed
system. Assuming that ṽn can be neglected at the boundary
of the resonant interval, it is straightforward to show that this
system is energy conserving, obeying

∂

∂t

[
−fmaxv

2
FeQ

∫
r

dθv

1

cos θv

∞∑
n=0

|ṽn|2 + qe

me

|E|2
]

= 0,

(12)

where the first term is proportional to the energy density of
resonant particles (note that Q < 0), and the second term is
proportional to the wave energy density.

The above system can be solved numerically. A key issue is
to first establish a proper value of �θv . If the resonant interval
is made too small, all resonant particles will not be included,
and if it is made too large, the assumption of the model breaks
down. The numerical results show that the model is robust for
changes of the resonant interval, as long as the limits of the
resonance region fulfill 0.1(ω/kvF ) < �θv < ω/kvF . The
number of harmonics of ṽn needed in the simulations depends
on the initial amplitude as well as on the length of time of
the simulation. In order to validate the simulations we check
that the energy content of the highest harmonics included is
small compared to that of the lower numbers, and also that the
evolution of the electric field amplitude is not affected by the
addition of further harmonics.

Next we introduce the normalized initial electric
field amplitude En = qekE(t = 0)/meγ

2
L , where γL =

πqeωQ/mek
2v2

F is the linear (Landau) damping rate. In Fig. 1
the evolution of the electric field amplitude is shown for various
values of En. For En = 0.5, the evolution cannot be separated

E(γLt)
E(0)

γLt

En = 0, 5

En = 2

En = 10

En = 20

FIG. 1. (Color online) The evolution of the normalized electric
field for different initial amplitudes, En = 0.5, 2, 10, and 20,
respectively.

from linear damping, as seen by the lowest lying curve.
Increasing the amplitude soon leads to nonlinear behavior,
where the initial damping is replaced by amplitude oscillations
with a frequency of the order of the bounce frequency ωB =
(qekE/me)1/2. This is illustrated by the curves for En = 2, 10,
and 20. While our problem of study is weakly nonlinear, in
the sense that ṽn � vF for all n, it is strongly nonlinear for
the resonant particles, since the coupling to the low-frequency
perturbation v0 and the second harmonic v2 in Eq. (8) can be
as large as the linear term in that equation. Similarly in the
nonlinear regime En � 1 the coupling strength to the higher
harmonics in Eq. (9) decreases rather slowly with the harmonic
number. For En = 10 and γLt = 4 harmonics up to n = 6 are
needed. More harmonics are needed for a longer simulation.

We stress that the amplitude evolution is similar to the
classical case. In particular, the transition from linear damping
when γL � ωB to amplitude oscillations with a frequency
ωB when γL ∼ ωB is almost identical. This can be traced
back to the dynamics of the trapped particles, which is the
same independently if the background distribution is a Fermi-
Dirac or a Maxwellian distribution. The difference between
the nondegenerate and the degenerate case lies in the role of
the perturbation theory, as will be discussed in some detail
below for a general scenario.

Let us take a broader perspective and compare Eq. (3),
which is our main result, with the kinetic equation for the
distribution function f (i.e., the standard Vlasov equation
in case spin effects are neglected). Formally it would seem
impossible to apply perturbation theory to the standard Vlasov
equation for fully degenerate particles. The problem is that any
small perturbation of the Fermi surface violates the condition
f1 � f0. However, in reality the situation is not as harsh,
and many problems with degenerate electrons can be solved
perturbatively starting from the Vlasov equation (see, e.g.,
Ref. [13]). On the other hand, typically these are the problems
that can be solved for an arbitrary equilibrium distribution,
including the fully degenerate case. A more difficult class
of problems is the one where the (slow) evolution of the
background distribution plays an integral part of the dynamics,
which for a fully degenerate system means that the nonlinear
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v⊥/vF

vz/vF

En = 20

En = 2

FIG. 2. (Color online) The unperturbed Fermi surface and the
Fermi surface for En = 2 and En = 20 at γlt = 4.

modifications of the Fermi surface are crucial. A perturbative
expansion then runs into trouble. Since the velocity derivatives
of f0 are nonzero only at the unperturbed Fermi surface,
the perturbed distribution function will be nonzero only at
the unperturbed Fermi surface. Furthermore, the inclusion of
successive perturbations suffers from the same problem. Using
Eq. (3) the situation is dramatically improved. The condition
ṽ1 � vF will hold except for very large amplitudes. For the
specific case of nonlinear Landau damping, the direction
of the energy flow is crucially dependent on the profile
of the background distribution close to the resonance. The
low-frequency part of the Fermi surface ṽ0(θv,t) modifies
the spherical background surface with radius vF . Furthermore,
a very small modification is sufficient to alter the dynamics
from linear damping to nonlinear oscillations. In Fig. 2
the low-frequency part of the Fermi surface is compared
to the unperturbed Fermi surface at γLt = 4 for different
initial amplitudes. The unperturbed Fermi level is the smooth
curve representing the spherical surface, and the modified
curve corresponding to En = 0.5 cannot be separated from

this line, which is consistent with the linear evolution for
this initial amplitude as shown in Fig. 1. For En = 2, the
Fermi level is clearly distinct. While ṽ0 � vF it is clear that
∂ṽ0/∂θ ∼ cos θvvF close to the resonance, which is sufficient
to make the nonlinear terms in Eq. (8) comparable to the linear
one. As a result the dynamics is significantly changed from
linear damping, in agreement with the second lowest lying
curve in Fig. 1. Finally for En = 20 the strong modifications
of the Fermi level apply in a wider region around the resonance.
Consequently the transition from linear to nonlinear evolution
occurs faster, in agreement with the highest lying curve in
Fig. 1.

IV. SUMMARY AND DISCUSSION

In this article we have derived an evolution equation for
fully degenerate electrons, applicable on scales much longer
than the de Broglie length, including the spin dynamics. When
spin effects are omitted, it is a reformulation of the classical
Vlasov equation. Such a reformulation has several advantages.
First, perturbative expansions are possible under much more
general conditions. In particular, nonlinear low-frequency
modifications of the Fermi surface can be calculated, as shown
in Fig. 2 for the specific case of nonlinear Landau damping.
Second, the number of independent variables is reduced since
the radial velocity is changed from an independent to a
dependent variable, which is very helpful when numerical
treatments are made. Furthermore, a numerical treatment of
the standard Vlasov equation for fully degenerate systems has
the problem that the velocity gradients become infinite. In
principle this can be handled by using the initial distribution
for small but nonzero temperature T with T � TF , which
makes the velocity gradients finite. Such an approach has
the advantage to include the physical effects of a nonzero
temperature, which is always present in a real system. On
the other hand, it is numerically costly, as it requires one
more dependent variable as compared to Eq. (3), and such
a treatment also makes it less straightforward to isolate the
physics of the fully degenerate case.
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