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Re-examining the Cairns-Tsallis model for ion acoustic solitons
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Recently, a hybrid distribution function [Tribeche et al., Phys. Rev. E 85, 037401 (2012)] was proposed to
describe a plasma species with an enhanced superthermal component. This combines a Cairns-type “nonthermal”
form with the Tsallis theory for nonextensive thermodynamics. Using this alternative model, the propagation
of arbitrary amplitude ion acoustic solitary waves in a two-component plasma is investigated. From a careful
study of the distribution function it is found that the model itself is valid only for a very restricted range in the
q-nonextensive parameter and the nonthermality parameter, α. Solitary waves, the amplitude and nature of which
depend sensitively on both q and α, can exist within a narrow range of allowable Mach numbers. Both positive
and negative potential structures are found, and coexistence may occur.
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I. INTRODUCTION

Nonlinear plasma dynamics is currently a very active
topic of research, in which nonlinear plasma equations are
analytically treated by a variety of methods [1] to gain deeper
insight into the formation and behavior of structures such as
solitary waves and shocks. The dynamics of ion acoustic waves
have been studied for several decades, both theoretically [2–4]
and experimentally [5–7].

It is by now established that the presence of energetic
particles in plasmas, resulting in long-tailed distributions, is an
intrinsic element in many space and laboratory observations.
Different models have been proposed to describe this effect.
We stress that these models do not address the actual
mechanisms responsible for particle acceleration but rather
model its effect on wave dynamics via phenomenological
modification to the electron distribution function.

Cairns et al. [8] introduced a distribution designed to model
enhanced high-energy tails that are frequently observed in
space plasmas. It was expressed in terms of a parameter α,
which measures deviation from the Maxwellian distribution
function, and showed that the nature of ion sound solitary
structures can change in the presence of nonthermal electrons,
producing nonlinear solitary waves that may have either en-
hanced or depleted density. Many analyses have subsequently
used the Cairns model, for example, Refs. [3,9–15]. Verheest
and Pillay [13] investigated large amplitude dust-acoustic
solitary waves in plasmas with negatively charged cold dust
and either nonthermally distributed ions or electrons. Verheest
and Hellberg [14] examined large ion acoustic solitary waves
and double layers in plasmas with positive ions and nonthermal
electrons. Both investigations detailed the existence conditions
necessary for such structures to be generated.
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A generalization of the Boltzmann-Gibbs-Shannon (BGS)
entropic measure was proposed by Tsallis [16], in which
a parameter q characterizes the degree of nonextensivity
of the system considered (q → 1 recovers the Maxwellian
case). There are two separate physical regions, −1 < q � 1,
covering all velocities (and potentially representing high-
energy tails) and q � 1, where the distribution function
exhibits a thermal cut-off on the maximum value allowed
for the velocity of the particles [17,18]. In recent years, this
Tsallis model has frequently been used for investigations
into ion acoustic dynamics in plasmas [19–26]. Using a
pseudopotential approach, Dubinova and Dubinov [19] studied
the dependence of the Mach number of ion acoustic solitons
on the parameter q. Tribeche et al. [22] considered ion
acoustic solitary wave generation in a two-component plasma
with Tsallis-distributed electrons and found that their model
allowed for both compressive and rarefactive solitons to arise.

It may be added for completeness that an alternative
approach to non-Maxwellian plasma modeling is provided
by the κ distribution [27–29], which was introduced by
Vasyliunas [27] to fit phenomenologically the power law-like
dependence of electron distribution functions observed in
space. It is, in fact, commonly fitted to observational data
[28,30]. Interestingly, it has been argued that the κ scenario
derives from the Tsallis distribution [31,32], although this
speculative analogy is rather phenomenological and remains
the subject of debate [28,32]. We shall not pursue this analogy
here as this is beyond our scope.

A recent study by Tribeche et al. [33] has proposed a
hybrid Cairns-Tsallis distribution function, which purports to
offer enhanced parametric flexibility in modeling nonthermal
plasmas, as, in principle, such a two-parameter representation
of the distribution function could be useful in fitting to a wider
range of observed plasmas. Subsequently, Amour et al. [34]
applied this distribution to the study of electron acoustic
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solitary waves in plasmas with an enhanced superthermal
component. In this paper, we revisit the analysis of Ref. [33] by
employing the Sagdeev pseudopotential method to investigate
large-amplitude ion acoustic wave dynamics. We carefully
analyze the range of validity of the model and present
existence ranges for solitons supported by this distribution,
arriving at very different conclusions from those reflected in
Ref. [33].

The paper is structured as follows. In Sec. II, we critically
examine the Cairns-Tsallis distribution function and place
limits on its range of validity in general and specifically for
application to soliton studies. This is followed in Sec. III by an
outline of the fluid model adopted. Section IV deals with linear
ion acoustic wave analysis, and arbitrary amplitude waves are
discussed in Sec. V. In Secs. VI and VII, we obtain the lower
and upper limits of the Mach speeds that can support solitons
and double layers, and finally, we discuss our conclusions in
Sec. VIII.

II. THE CAIRNS-TSALLIS DISTRIBUTION AND ITS
RANGE OF VALIDITY

This paper revisits the analysis of Ref. [33] of ion acoustic
solitary waves in a plasma with electrons having a Cairns-
Tsallis distribution, but the physically realistic ranges of the
parameters q and α must be taken into account in order to do
this effectively.

The one-dimensional hybrid Cairns-Tsallis distribution
[33,34] for the electrons is given by

fCT = Cq,α

(
1 + α

v4
x

v4
te

) [
1 − (q − 1)

v2
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2v2
te

]1/(q−1)

, (1)

where vte = (Te/me)1/2 is the electron thermal velocity and
q and α are real parameters, associated with the so-called
nonextensivity [16] and the number of nonthermal electrons
[8] in the distribution, respectively. Furthermore, Cq,α is a
constant of normalization, which is dependent on q and α, and
is given explicitly by Refs. [33,34] as
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For q → 1, both expressions recover the Cairns distribution.
These coefficients are, of course, found by evaluating the
lowest moment of fCT in each of the two ranges of q. However,
it turns out that, unlike the situation for the pure Tsallis
distribution, the integral to obtain the upper expression is not
valid over the whole range −1 < q � 1, and we shall discuss
the implications in more detail below.

For a start, we reiterate that the reason for considering
the Cairns-Tsallis distribution is to study the effects of the
superthermal particles in the non-Maxwellian tail of the

distribution. We note also that the distribution in Eq. (1) is
specifically a product of the Cairns and the Tsallis distribution
functions.

It is well-known that the pure Tsallis distribution function
behaves very differently in the two ranges, −1 < q < 1 and
q > 1 [17,18]. In the former range, the distribution is nonzero
over the full range of velocities from −∞ to +∞, and it reflects
an excess of superthermal particles in the non-Maxwellian tail.
It is, thus, in principle, similar to a power-law or a κ distribution
in that sense. On the other hand, for q > 1, it exhibits a thermal
cutoff, is zero in the region |v| > (Te/me)1/2, and is, thus,
bounded by the thermal velocity. Hence, it follows that the
product Cairns-Tsallis distribution, too, is zero beyond the
thermal speed, and in that q range is not of any interest for
the representation of the commonly observed non-Maxwellian
tail distributions.

Unlike Refs. [33,34], we shall in this work not consider
values of q > 1, as this physical region is not consistent with
our focus on a long-tailed distribution function associated with
an excess of energetic particles and is physically irrelevant for
our purposes.

However, we do point out that if one were to consider the
range q > 1, a separate expression for the electron number
density would be required from that given for −1 < q � 1
[33,34] in a way similar to that found, for instance, in
Eqs. (9) and (10) of Ref. [26]. This applies also for α = 0
(pure Tsallis distribution), and hence, it is surprising that
several previous analyses involving pure Tsallis-type distri-
butions (i.e., for α = 0) [22,24,25] use the same electron
number density expressions for values of q both above and
below 1.

We now return to the expression for fCT and consider its
behavior for large |v|, where v = vx/vte. In that range, fCT ∝
(1/2)α(1 − q) v4+(2/[q−1]), that is, fCT ∝ v(4q−2)/(q−1). Clearly,
for any physically realistic distribution function, a minimum
requirement is that the function itself should not diverge as
|v| → ∞. That leads to a minimum value of q = 1/2.

However, to obtain physically realistic integrals, one ob-
viously needs to satisfy the more stringent requirement that
fCT → 0 faster than |v|−1. It follows that the expression for
fCT is valid only for q > 3/5. We note that, in fact, the integral
diverges for q = 3/5 [37].

Indeed, if one indiscriminately uses the coefficients, Cq,α

of Refs. [33,34] in the invalid range, one finds, for instance,
that at q = 3/5, Cq,α , and hence, also fCT and the electron
density, vanishes, while for the range 1/3 < q < 3/5, they
are negative. It is, thus, imperative that one carefully analyzes
the behavior of the distribution function rather than blindly
applying it.

We note that this behavior, for α �= 0, is different from
that of the standard Tsallis distribution function for which
fT ∝ v2/(q−1) for |v| → ∞, and which is well-behaved and
normalizable for −1 < q � 1.

In view of the above arguments, this study is restricted
to values of q within the very limited range, 0.6 < q � 1.
This is in contrast to Ref. [33], who apply the model to both
−1 < q � 1 and q � 1.

Furthermore, following Ref. [33], we shall discuss ion
acoustic solitary waves in a plasma with electrons having a
Cairns-Tsallis distribution.
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FIG. 1. (Color online) 3D Plot of the Cairns-Tsallis distribution
function with q → 1 (pure Cairns distribution) above, and with q =
0.8 below. For simplicity, here, we take v = vx/vte.

Now, it has been noted by Refs. [13] and [14] that at values
of α larger than α � 0.25, the pure Cairns distribution func-
tion (q = 1) presents nonmonotonic behavior as it develops
sidewings, possibly leading to a kinetic instability. One would
not expect stable nonlinear structures such as solitons to be
supported by such a linearly unstable situation. That implies a
need to introduce a cutoff in α governed by this consideration.

This nonmonotonic shape can be seen in Fig. 1, where
the pure Cairns distribution (q = 1) in the upper figure
shows subsidiary maxima for α > 0.25. In the lower figure,
the Cairns-Tsallis distribution for q = 0.8 is presented, and
this shows that monotonicity breaks down already at about
α = 0.15.

It follows that there is a q-dependent limit on α for the
monotonicity of the distribution function to be preserved. This
is investigated in Figs. 2 and 3.
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FIG. 2. (Color online) Contour plot of the derivative of the Cairns-
Tsallis distribution function set equal to zero, for q = 0.6,0.7,0.8,0.9,
and 0.95 as labeled. For simplicity, here, we take v = vx/vte.

Clearly, the limiting values of (q,α) occur at values given
by the roots of the equation

∂fCT(vx ; q,α)/∂vx = 0.

The derivative of the Cairns-Tsallis distribution function is
given by

∂fCT

∂vx

= Cq,α
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)
. (4)

Figure 2 is a contour plot of the limit of the monotonic
distribution function range, given by f ′

CT = 0, for some typical
values of q within the narrow allowed range discussed above.
It can be seen that for q = 0.95, the monotonicity is preserved
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FIG. 3. (Color online) A plot showing the maximum value of
α allowed for corresponding values of q for monotonicity to be
preserved. The linear relation is α = (2q − 1)/4, which satisfies
f ′

CT(v) = 0; see Eq. (4).
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up to α � 0.22, while for the lower limit of q, namely, q = 0.6,
the distribution function shows subsidiary maxima already at
about α � 0.05.

Solving f ′
CT(v) = 0 for v2

x/v
2
te to determine the existence

conditions for real roots involves the discriminant 4α − 2q +
1, which in turn yields the crossover value of α = (2q − 1)/
4, always, of course, within the range 0.6 < q � 1. This
information is summarized in Fig. 3.

With the above considerations in mind, we restrict our
analysis below to the ranges 0 � α < 0.25, and 0.6 < q � 1,
subject to the physical cutoff imposed by the monotonicity
condition, α = (2q − 1)/4.

III. THE FLUID MODEL

We shall now consider ion acoustic waves propagating in
one-dimensional plane geometry in an unmagnetized plasma
consisting of cold ions (Ti = 0) and electrons with a Cairns-
Tsallis distribution function. As is usual for ion-acoustic
structures, we require that the wave phase speed lies between
the ion and electron thermal speeds, that is, vti � vph � vte,
to avoid Landau damping [35]. From the second inequality
it follows that, on the ion timescale, the electrons can reach
an equilibrium at every stage of the wave development. Thus,
in this approach, the electron inertia is effectively neglected
[35,36], and the electrons are often described as being
massless [4].

We employ the following normalized (dimensionless)
system of equations for the ion fluid:

∂n

∂t
+ ∂(nu)

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
, (5)

∂2φ

∂x2
= ne − n,

where n, φ, and u represent the ion density (normalized to
the equilibrium ion density ni0), the electrostatic potential
(normalized by Te/e), and the ion velocity (normalized to the
speed of ion sound waves in a simple Maxwellian electron-
ion plasma, cs = (Te/mi)1/2, that is, neglecting the non-
Maxwellian effects inherent in the Cairns-Tsallis distribution).
The ion subscript “i” is omitted in the system above, where
obvious. Time has been normalized to the inverse of the ion
plasma frequency (ω−1

pi = [miε0/e
2ni0]1/2), and length to the

Debye length (λD = [ε0Te/e
2ne0]1/2). As is customary, mi

represents the ion mass, e the electron charge, and Te the
electron kinetic temperature (in energy units). The ionic charge
state is assumed to be Zi = 1 for simplicity, and ion thermal
effects have been neglected in this model. We have assumed
that at equilibrium the electron and ion densities are equal, i.e.,
ne0 = ni0.

To derive the number density expression for the electron
fluid in this case, one turns to the distribution function, fCT.
To account for the effect of an unnormalized electrostatic
potential, ϕ, one replaces v2

x by (v2
x − [2eϕ/me]) in Eq. (1),

using the expression for Cq,α as given by Eq. (2), but for
the range 0.6 < q � 1 only. Integrating over all velocities in
the usual way and normalizing, one obtains the normalized

electron density, ne(φ), in the presence of a normalized
electrostatic potential, φ.

This leads to the same form as found earlier [33,34],

ne = [1 + (q − 1)φ][1/(q−1)]+1/2 (1 + Aφ + Bφ2), (6)

where

A = − 16qα

3 − 14q + 15q2 + 12α
(7)

B = 16(2q − 1)qα

3 − 14q + 15q2 + 12α
. (8)

However, we recall that we are using this expression only
for the range 0.6 < q � 1. It is straightforward to show that
the Maxwell-Boltzmann distribution is recovered in the limit
α = 0, as q → 1.

IV. LINEAR WAVE ANALYSIS

Following Ref. [33], we can linearize the system of fluid
equations in the usual way to obtain the linear dispersion
equation:

ω2 = k2

k2 + c1
, (9)

where

c1 = 1
2 (1 + q + 2A) , (10)

and A is as defined in Eq. (8). Comparing this result with that
of Tribeche et al. [33], it is found that there is agreement with
Eq. (9) therein, that is, c1 ≡ k2

D,q,α .
On the other hand, we note that there appears to be an error

in the denominator of their Eq. (8), where they have written

ω2 = k2

k2 + kD,q,α

.

As a matter of fact, a similar error reappears in Ref. [34] by
the same authors.

From Eq. (9), we note that c1 is essentially the effective
inverse (square) screening length, that is, λD = c

−1/2
1 . Impor-

tantly, this now depends on q and α. This reflects the fact that
energetic particles affect the Debye screening mechanism by
modifying the electron cloud distribution surrounding the ions,
as is well-known for waves in a κ-distributed plasma [28]. For
the sake of rigor, we emphasize that c

−1/2
1 is also related to the

true sound speed in the given plasma configuration, as will be
discussed below.

V. ARBITRARY AMPLITUDE SOLITARY WAVE THEORY

We anticipate the existence of arbitrary amplitude traveling
solitary waves (that is, waves which have a constant profile and
shape when viewed in a frame moving with the excitation), by
assuming that all the fluid variables in the evolution equations
depend on a single variable, X = x − Mt , where M , known
as the “Mach number,” is the speed of the soliton normalized
by cs . We emphasize for rigor that, as we shall show below,
the “true” sound speed is given by Eq. (22) and is, thus, not
cs . In this sense, the true Mach number is actually M/Mmin

[Mmin to be defined by Eq. (22) below]. Following Ref. [33],
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and using the Sagdeev pseudopotential method [2], the
transformed variable is incorporated into our system of fluid
equations above to give

−M
∂n

∂X
+ ∂(nu)

∂X
= 0, (11)

−M
∂u

∂X
+ u

∂u

∂X
= − ∂φ

∂X
, (12)

∂2φ

∂X2
= (1 + (q − 1)φ)( 1

q−1 )+ 1
2 (1 + Aφ + Bφ2) − n. (13)

Integrating Eqs. (11) and (12) and applying boundary con-
ditions for localized perturbations (n → 1,u → 0,φ → 0, as
X → ±∞), we find

n = 1(
1 − 2φ

M2

) 1
2

. (14)

Note here that for n to be real, one requires that M2 � 2φ. This
reality condition is always satisfied for negative values of φ,
and hence, negative potential pulses are never to be excluded
a priori (provided that the Mach number exceeds a minimum
allowed value, which we discuss below).

We now substitute Eq. (14) into Poisson’s Eq. (13), multiply
the resulting equation by ∂φ

∂X
, integrate and apply the boundary

condition ∂φ

∂X
→ 0, as X → ±∞. So, finally, we see that

1

2

(
∂φ
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)2

+ �(φ,M) = 0, (15)

where �(φ,M) is the Sagdeev pseudopotential, expressed as

�(φ,M) = M2[1 − (1 − 2φ/M2)
1
2 ]
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(7q − 5)(3 + 12α − 14q + 15q2)
,

(16)

where D = 32αq2 − 16αq, E = −48αq, and F = 60α +
35q2 − 46q + 15.

It should be noted that this result is not in agreement with
Eq. (11) of Ref. [33], which is shown below for completeness:
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1 −

(
1 − 2�
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.

(17)

We have examined the limiting cases of the pseudopoten-
tials above to investigate this discrepancy and have found that
in the limit α → 0, both Eqs. (16) and (17) recover the Tsallis

pseudopotential, in agreement with Ref. [22], Eq. (14) therein:

�(φ,M)|α=0 = M2[1 − (1 − 2φ/M2)
1
2 ]

+ 2
[
1 − (1 + (q − 1)φ)

3q−1
2q−2

]
3q − 1

. (18)

The limiting case whereby q → 1 and α → 0 yields the well-
known Maxwellian pseudopotential [2,4] for both Eqs. (16)
and (17).

�(φ,M)|α=0,q→1 = 1 − eφ + M2[1 − (1 − 2φ/M2)
1
2
]
. (19)

In the extensive limiting case (q → 1), Eq. (16) recovers
the Cairns pseudopotential [in agreement with Eq. (5) from
Verheest and Hellberg’s study [14] if we substitute β =
4α/(1 + 3α) therein]:

�(φ,M)|(q→1) = M2
[
1 − (1 − 2φ/M2)

1
2
]

+ 1 + 15α − eφ(4αφ2 − 12αφ + 15α + 1)

1 + 3α
.

However, we have not been able to recover the Cairns
pseudopotential [14] from the Tribeche et al. [33] expression
shown in Eq. (17), and so we must conclude that their
calculation appears to be flawed.

We have depicted the Sagdeev pseudopotential function for
some small variations of α, with q = 0.8 and a Mach number
M = 1.4. The result is shown in Fig. 4. As can be seen therein,
at α = 0.0617, there is a small positive pseudopotential well,
but no negative counterpart. As the value of α is increased
incrementally to 0.0619, we can see a negative double layer
coexisting with a positive potential well. At larger values of
α, we see more evidence of this coexistence, in this case of
negative and positive solitons, with potential wells shrinking
in both width and depth. Note that by coexistence we mean
that either a negative or positive solitary wave is possible for
these parameter values.

Figure 5 shows the resulting solitary wave pulses, on
integration of the pseudopotential wells above. It is seen that
the negative pulses are of higher amplitude than the positive
pulses but gradually diminish as the value of α is increased.

VI. LOWER LIMIT OF MACH NUMBER M
(TRUE ACOUSTIC SPEED)

In order for the anticipated type of motion to be possible
(i.e., positive potential solitons moving at normalized velocity
M), the standard Sagdeev requirement has been that the
potential �(φ,M) must possess a maximum at the origin φ = 0
and must also have a root at φm �= 0. More recent work has
shown that a finite soliton can also exist if the function has a
point of inflexion at the origin [14,15], yielding a more general
requirement that � should not have a strict minimum at the
origin.

At the lower limit of the Mach number M , we thus require
that � ′′(φ,M)|φ=0 � 0.

At φ = 0,

� ′′(0,M) = −1

2
− 1

2
q + 16qα

3 + 12α − 14q + 15q2
+ 1

M2
.

(20)
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FIG. 4. (Color online) Upper plot: the Sagdeev pseudopotential
function, with q = 0.8, M = 1.4, α = 0 (orange dot-dashed line),
0.0617 (red continuous line), 0.0619 (blue dotted line), 0.0621
(magenta dashed line), and 0.0657 (green dot-dashed line). Lower plot
shows the same function, zoomed in so that we see the pseudopotential
wells more clearly.

Note that this can be cast in the form

� ′′(0,M) = −c1 + 1

M2
� 0, (21)

where c1 is given by Eq. (10) above. This places a lower limit
on M (Mmin), so that Mmin = 1/

√
c1, in our dimensionless
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FIG. 5. (Color online) Plot of the soliton pulses arising from the
values q = 0.8, M = 1.4, α = 0.0617 (red continuous line), 0.0619
(blue dotted lines), 0.0621 (magenta dashed lines), and 0.0657 (green
dot-dashed lines).
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2.2

2.4

Mmin

FIG. 6. (Color online) Plot of the minimum Mach number against
the nonextensivity parameter q for α = 0 (red continuous line), α =
0.1 (purple dashed line), α = 0.15 (blue dotted line), α = 0.2 (green
dot-dashed line), and α = 0.24 (brown continuous line, just visible)
in the range 0.6 < q � 1.

equation format, that is

M � Mmin = 1√
c1

, (22)

which is exactly the acoustic speed limk→0(ω/k), as prescribed
from Eq. (9).

Using the expressions from Eqs. (10) and (8), one finds that
the true normalized ion acoustic phase velocity in a plasma
whose electrons have a Cairns-Tsallis distribution, satisfies a
function of q and α, given by

v2
ph = 1

1
2 (1 + q + 2A)

= 6 − 28q + 30q2 + 24α

3 − 11q + q2 + 15q3 − 20qα + 12α
. (23)

The above expression for Mmin does not agree with the value
for Mmin found in Ref. [33], Eq. (12).

However, we have checked the limits of the expression
for the Mach number Mmin above to compare with external
findings. The limit of Eq. (22), as α → 0 (the Tsallis limit), is
found to be Mmin = √

2/(q + 1), which agrees with Ref. [22],

0.00 0.05 0.10 0.15 0.20 α
1.0

1.5

2.0

2.5
Mmin

FIG. 7. (Color online) Plot of the minimum Mach number against
the parameter α for q = 0.7 (red dotted line), q = 0.8 (blue dashed
line), q = 0.9 (green dot-dashed line), and q = 0.95 (magenta
continuous line).
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FIG. 8. (Color online) Plot of the maximum (solid lines) and
minimum Mach number (dotted lines) against the nonthermality
parameter α, for q = 0.8 in the range 0 � α � 0.15 (top plot),
q = 0.9 in the range 0 � α � 0.2 (middle plot), and q = 0.95 in
the range 0 � α � 0.225 (bottom plot). The lightly shaded regions
indicate where positive and negative polarity solitary waves can be
found.

Eq. (15). The limit as q → 1 (the Cairns limit) is Mmin =
1/

√
1 − 4α

1+3α
, which is in agreement with the value found in

Ref. [14], Eq. (6), if we substitute β = 4α/(1 + 3α) therein.
The Maxwellian limit as q → 1,α → 0 is Mmin = 1,

because we have normalized with respect to the Maxwellian-
based ion acoustic speed cs .

Figure 6 shows how the minimum Mach number Mmin

varies with q in the range 0.6 < q � 1, for several values of
α, and we can see that there is a minimum value of q for each
corresponding value of α according to the condition we found
in Sec. II: α � (2q − 1)/4. For example, at α = 0.24 (brown
continuous line on the figure), the corresponding minimum
value of q is 0.98. It is clear from this figure that the minimum

Mach speed is higher at lower values of q and increases with
increasing α (although the valid range for solitons diminishes
as α is increased). This is also evident in Fig. 7, which shows
the variation of Mmin with α for different q. The steeper
gradients at lower values of q illustrate the fact that the acoustic
speed is more sensitive to changes in α for smaller q.

VII. UPPER LIMIT OF MACH NUMBER M
(INFINITE COMPRESSION POINT)

The upper limit of the Mach number M (Mmax) can be
found by imposing the condition

�(φm,M) � 0,

where φm = M2
max/2 is the maximum positive value of φ for

which the ion density n is real. The ion density is real for any
negative value of φ, and so, in this model, there is no maximum
Mach number for negative polarity solitons. However, we
should note that, using the Cairns-Tsallis model, we assume
that because the electron thermal speed is far greater than
typical ion acoustic motions, the electron fluid inertia can
be ignored, and in this context, the electrons are essentially
massless [4,35,36]. Corrections for finite electron mass would
impose a cutoff for negative potential solitons at large values
of M and φ.

Figure 8 shows Mmax and Mmin versus α for values of q, for
the valid ranges of α as discussed in Sec. II. We can see that
there is a window of opportunity for both positive and negative
solitary waves to exist between the minimum and maximum
Mach values for a given combination of α and q, but in the
region above the Mmax curve, only negative polarity solitary
wave excitations are possible. In the region below the Mmin

curve, the conditions are below the minimum Mach speed
required for solitary waves.

VIII. CONCLUSION

We have investigated the properties of the hybrid Cairns-
Tsallis distribution function introduced by Tribeche et al. [33]
in the context of ion acoustic soliton behavior in plasmas with
excess superthermal particles. It was found that great care must
be taken with the use of this distribution, as the function itself
diverges for large |v| for q � 0.5, and the normalizing integral
diverges for q � 0.6. Thus, the normalization constant, and
hence the electron density ne(φ), is positive and finite in only
a very limited range of the nonextensivity parameter q, viz.,
q > 0.6. However, there is a further restriction, in that for
q > 1, the distribution exhibits a thermal cutoff and is thus
inappropriate for the consideration of plasmas with enhanced
non-Maxwellian tails, thus reducing the range of interest to
0.6 < q � 1 only.

Furthermore, the physical requirement of having a mono-
tonic distribution function to obviate the occurrence of kinetic
instability imposes a further (q,α) constraint, the limits of
which are given by q = (2α − 1)/4.

Using the Sagdeev method to find the associated pseudopo-
tential for the valid ranges of q and α, we have evaluated the
appropriate minimum and maximum Mach numbers to find
existence conditions for ion acoustic solitary waves within the
range of validity of the distribution function.
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Using this model, we see that some interesting solitary wave
structures are possible, having either enhanced or depleted
density, and coexistence of positive and negative potential
solitons may occur, as is the case for the pure Cairns
distribution, but not for the pure Tsallis distribution.

By introducing a further fitting parameter as compared to
the pure Cairns, pure Tsallis and κ distributions, it might
appear that the product Cairns-Tsallis distribution could
potentially be applicable to a wider range of situations
involving high-energy non-Maxwellian tails. However, as we
have seen, it is severely restricted in its applicability, as it is
limited to the range of values of the nonextensive parameter q

satisfying 0.6 < q � 1, subject to the further constraint given
by q = (2α − 1)/4.

Regrettably, it thus follows that the hybrid Cairns-Tsallis
distribution does not add significantly to our understanding of

the behavior of acoustic solitons in plasmas with distribution
functions having an excess of superthermal particles in non-
Maxwellian “tails,” as are often observed in both space and
the laboratory.
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