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Nonstationary magnetosonic wave dynamics in plasmas exhibiting collapse
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In a Lagrangian fluid approach, an explicit method has been presented previously to obtain an exact
nonstationary magnetosonic-type wave solution in compressible magnetized plasmas of arbitrary resistivity
showing competition among hydrodynamic convection, magnetic field diffusion, and dispersion [Chakrabarti
et al., Phys. Rev. Lett. 106, 145003 (2011)]. The purpose of the present work is twofold: it serves (i) to describe
the physical and mathematical background of the involved magnetosonic wave dynamics in more detail, as
proposed by our original Letter, and (ii) to present an alternative approach, which utilizes the Lagrangian mass
variable as a new spatial coordinate [Schamel, Phys. Rep. 392, 279 (2004)]. The obtained exact nonlinear wave
solutions confirm the correctness of our previous results, indicating a collapse of the magnetic field irrespective
of the presence of dispersion and resistivity. The mean plasma density, on the other hand, is less singular, showing
collapse only when dispersive effects are negligible. These results may contribute to our understanding of the
generation of strongly localized magnetic fields (and currents) in plasmas, and they are expected to be of special
importance in the astrophysical context of magnetic star formation.
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I. INTRODUCTION

The dynamics of waves and/or oscillations in various
physical systems are very important to the understanding
of underlying physical phenomena where the parameters
of the medium are random functions of coordinates [1].
Such problems are of particular importance for the physics
of strongly nonlinear compressional waves in magnetized
plasmas where the magnetic field is strongly inhomogeneous
[2,3]. The interaction of the magnetic field with large-scale
magnetohydrodynamic (MHD) waves is an important factor
contributing to the energy balance and the dynamics of the
strongly nonlinear waves. This is why we stress here the
importance of the study of strongly inhomogeneous media
as a necessary step toward the understanding of nonlinear
dynamics in magnetized plasmas. However, the extracted
physics could also be of interest from the point of view
of general physics areas, such as liquid crystals, fluid with
vortices, accretion disks, molecular clouds, etc.

Analytical solutions obtained through the introduction
of Lagrangian coordinates [4–7], expressing the space-time
evolution of waves and/or oscillations in hydrodynamics
and other collective systems, such as plasmas in the fluid
description, have gotten a great deal of attention recently
due to their capability of predicting interesting novel physical
phenomena. The development of singular structures at a finite
time [4,8] has been one of the interesting nonlinear phenomena
in hydrodynamics and plasmas. This is because, at the breaking
or collapse event, initial regular patterns corresponding to
field variables can be completely destroyed and thus lead to
the formation of singular patterns. Typical examples include
the formation of drops and the breakup of jets [9–12], the
expansion of plasma into vacuum [13–16], etc. Utilizing
a Lagrangian fluid description, exact nonlinear space-time-
dependent solutions have been obtained in different physical
contexts, including complex plasma (e.g., dusty plasma) [17],

the formation of nonuniform structures in charged particle
beams [18], the development of instability and the wave
breaking limit [19], etc.

Studies on the generation of magnetic fields have been an
active area of research in different areas of physics over the past
years, especially astrophysical environments and laser-plasma
interaction. Thus magnetic fields are found to play a central
role in every scale of different plasma systems. A number of
different physical mechanisms have now been identified as a
source of magnetic field generation in plasmas. Among those
are the Biermann battery [20], the Weibel instability [21],
the inverse Faraday effect [22,23], the current filamentation
instability [24], and the ponderomotive force of an intense
laser beam [25–28].

More recently, new astrophysical observations have indi-
cated that magnetic fields play a larger role in the birth of stars
than previously thought [29,30]. There is an indication that the
picture of star formation in which giant clouds of gas and dust
collapse inward due to self-gravity is too simple and must
be supplemented by processes preceding this gravitational
collapse process, such as the magnetosonic-type collapse
process described in this paper. The paper is consequently
organized as follows: In Sec. II we present the basic equations
and solve them in Sec. III in the style of our previous letter,
but with a larger emphasis on their physical and mathematical
background. Section IV is devoted to a numerical presentation
of the results, and Sec. V to an alternative proof by making
use of the Lagrangian mass variable. As an application, we
offer in Sec. VI a picture of magnetic star formation being
supported analytically by our present analysis, and we finish
with a summary in Sec. VII.

II. BASIC EQUATIONS

The basic equations which describe the magnetosonic-type
compressional dispersive waves in an electron-ion collisional
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magnetoplasma are the momentum equation for electron and
ion fluid,

mene

(
∂

∂t
+ ve · ∇

)
ve

= −nee

(
E + 1

c
ve × B

)
+ meneνei(vi − ve), (1)

mini

(
∂

∂t
+ vi · ∇

)
vi

= nie

(
E + 1

c
vi × B

)
+ miniνie(ve − vi). (2)

The continuity equations for both species is

∂nj

∂t
+ ∇ · (nj vj ) = 0, (3)

and the following Maxwell equations are

∇ × E = −1

c

∂B
∂t

, (4)

∇ × B = 4πJ
c

= −4πe

c
(neve − nivi), (5)

where νei (νie) is the constant (velocity-independent) electron-
ion (ion-electron) collision frequency, j denotes e (i) for
electrons (ions), and the remaining symbols have their usual
meaning. In writing Eqs. (1) and (2), we have assumed
magnetic pressure to be large compared to kinetic pressures
of plasma species, and thus the plasma is treated as cold.
In addition, in Eq. (5) we have neglected the displacement
current compared to particle current since we are interested
in low-frequency mode, where ω is much smaller than the
electron plasma frequency, ωpe. In such a situation, we can
assume the quasineutrality condition ne ∼ ni ∼ n. Here all the
analysis will be done in one spatial variable x. Subsequently,
we assume that all the variables are functions of x and t .
Furthermore, we will assume the magnetic field to be along
the z direction, and the propagation and inhomogeneity are in
the x direction.

Using all those conditions stated above from the continuity
equations for both species, we find that

∂

∂x
[n(vix − vex)] = 0 ⇒ vix = vex = u, (6)

where we have assumed that vix(0,t) = vex(0,t) = 0. This
implies that the conduction current flows along y, the direction
perpendicular to the plasma motion. In view of these continuity
equations, we have(

∂

∂t
+ u

∂

∂x

)
n = −n

∂u

∂x
, (7)

whereas momentum equations (1) and (2) can be rewritten as

me

(
∂

∂t
+ u

∂

∂x

)
ve

= −e

(
E + 1

c
ve × B

)
+ meνei(vi − ve), (8)

mi

(
∂

∂t
+ u

∂

∂x

)
vi

= e

(
E + 1

c
vi × B

)
+ miνie(ve − vi). (9)

Here it should be noticed that the left-hand sides of
Eqs. (7)–(9) contain a common convective operator. This
nonlinear operator can be transformed into a linear operator if
we introduce Lagrangian variables (ξ,τ ) through the following
transformation relation:

ξ = x −
∫ τ

0
u(ξ,τ ′)dτ ′, τ = t. (10)

With this transformation, the derivative operators are trans-
formed into(

∂

∂t
+ u

∂

∂x

)
≡ ∂

∂τ
,

∂

∂x
≡

[
1 +

∫ τ

0

∂u

∂ξ
dτ ′

]−1
∂

∂ξ
. (11)

Using these transformations, the continuity equation (7) can
now be expressed as

∂

∂τ

[
n

(
1 +

∫ τ

0

∂u

∂ξ
dτ ′

)]
= 0,

(12)

⇒ n(ξ,τ )

n(ξ,0)
=

[(
1 +

∫ τ

0

∂u

∂ξ
dτ ′

)]−1

= ∂ξ

∂x
.

Expressing momentum equations (8) and (9) in terms of
Lagrangian variables and combining the equations, we have

∂

∂τ
(meve + mivi) = e

c
(vi − ve) × B, (13)

where we have used meνei = miνie. The x and y components
are

∂u

∂τ
= eB(x)

(me + mi)c
(viy − vey) (14)

and
∂

∂τ
(mevey + miviy) = 0, (15)

respectively. From Eq. (15), it is evident that the total mo-
mentum is conserved along the y direction. Taking vey(ξ,0) =
viy(ξ,0) = 0, we find

viy = −me

mi

vey. (16)

If we take the magnetic field associated with the wave under
study to be along the z direction, i.e., B = B(x,t)êz, where êz

is the unit vector along the z direction, we can also confirm
that the current flows along the y direction. Now from Eq. (5)
we have

ne(viy − vey) = − c

4π

∂B

∂x
. (17)

Substituting (viy − vey) in Eq. (14), we obtain

∂u

∂τ
= −

[
cB

4π (me + mi)n

]
∂ξ

∂x

∂B

∂ξ
. (18)

The evolution equation for the magnetic field can further be
expressed by taking a curl in the electron momentum equation
(8),

∇ × E + 1

c
∇ × (ve × B)

= −me

e

[
∇ ×

(
∂

∂t
+ u

∂

∂x

)
ve

]
+ meνei

e2

[
∇ × J

n

]
.

(19)
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We can simplify the above equation further by using
Eq. (4) and writing ∇ ≡ êx(∂/∂x) and rearranging as(

∂

∂t
+ u

∂

∂x

)
B + B

∂u

∂x

= −cme

e

∂

∂x

∂vey

∂τ
+ mec

2νei

4πe2

∂

∂x

(
1

n

∂B

∂x

)
. (20)

In Eq. (17), substituting viy from Eq. (16) we have(
1 + me

mi

)
vey = c

4πen

∂B

∂x
. (21)

Substituting vey in Eq. (20) (in terms of the Lagrangian
variable), we have

∂B

∂τ
+ Bn

n(ξ,0)

∂u

∂ξ

= c2

4πe2

(
memi

me + mi

)
n

n(ξ,0)

∂

∂ξ

∂

∂τ

(
1

n(ξ,0)

∂B

∂ξ

)

+ mec
2νei

4πe2

n

n(ξ,0)

∂

∂ξ

(
1

n(ξ,0)

∂B

∂ξ

)
. (22)

Now we normalize Eqs. (7), (18), and (22) by n̂ = n/n0,
û = u/vA, B̂ = B/

√
4πn0(me + mi)v2

A , ξ̂ = ξ/L, and τ̂ =
τvA/L, with n0, vA, and L denoting a constant equilibrium
density, the Alfvén velocity, and an arbitrary length scale,
respectively. Hereafter, hats will be removed for simplicity of
notation. Equations (7), (18), and (22), respectively, become

∂

∂τ

(
1

n

)
= 1

n(ξ,0)

∂u

∂ξ
, (23)

∂u

∂τ
= − 1

2n(ξ,0)

∂B2

∂ξ
, (24)

and

∂B

∂τ
= − Bn

n(ξ,0)

∂u

∂ξ
+ ε

n

n(ξ,0)

∂

∂ξ

∂

∂τ

(
1

n(ξ,0)

∂B

∂ξ

)

+ η
n

n(ξ,0)

∂

∂ξ

(
1

n(ξ,0)

∂B

∂ξ

)
, (25)

where ε = (δ/L)2 is the dispersion parameter arising from
the electron’s finite mass, η = (mec

2/4πn0e
2)(νei/LvA) is the

dissipation parameter which arises due to collision, and δ is
the skin depth defined by δ =

√
c2memi/[4π (me + mi)n0e2].

Equations (23) and (25) can now be combined to give the
following equation in a more compact form as

∂

∂τ

(
B

n

)
= 1

n(ξ,0)

∂

∂ξ

[
1

n(ξ,0)

∂

∂ξ

(
ε
∂B

∂τ
+ ηB

)]
. (26)

Furthermore, Eqs. (23) and (24) can be combined to give

∂2

∂τ 2

(
1

n

)
= − 1

2n(ξ,0)

∂

∂ξ

(
1

n(ξ,0)

∂B2

∂ξ

)
. (27)

Thereafter, the couple of partial differential equations (26)
and (27) have to be solved for n and B. We will solve them
by the method of separation of variables in the next section.
Without proof, we mention that our coupled equations (26)
and (27) can also be derived by a similar analysis, which

makes use of the resistive magnetohydrodynamic (MHD)
equations, of a 1/n-dependent resistivity and of a generalized
Ohm’s law in which the ∂(j/n)/∂τ term is kept. This implies,
as one can see by inspection, that our approach is valid if
the dispersion parameter ε is sufficiently small, satisfying
(vA/c) � ε � (me/mi). The dispersion parameter may hence
be a small quantity only (later, for illustration, we allow a larger
value: ε = 0.1) and the Alfvén velocity may not be too high
asking for a sufficiently dense plasma. From this it follows
that at a later stage when the magnetic field explodes (see
later), the MHD approximation, and with it our model, breaks
down and physical corrections are inevitable. Candidates for
the latter are pressure and dissipation with the electronic and
ionic subsystem and more generally kinetic and gyrokinetic
effects, the consideration of which is, however, beyond the
scope of the present paper.

III. SOLUTION

In this section, we present the solution obtained by
Chakrabarti et al. [8] for the sake of analytical completeness.
Proposing the separation of variable ansatz, we have

n(ξ,τ ) = N (ξ )φ(τ ), B(ξ,τ ) = b(ξ )ψ(τ ), (28)

where n(ξ,0) = N (ξ )φ(0) and B(ξ,0) = b(ξ )ψ(0) with
ψ(0) �= 0 and φ(0) �= 0. Substituting these in Eqs. (26) and
(27), we have

−φ2(0)

ψ2

d2

dτ 2

(
1

φ

)
= 1

2

d

dξ

[
1

N (ξ )

db2

dξ

]
, (29)

φ2(0)

εψ̇ + ηψ

d

dτ

(
ψ

φ

)
= 1

b

d

dξ

[
1

N (ξ )

db

dξ

]
, (30)

where the dot over ψ implies the derivative with respect to
time. In the above equations, the left-hand side is a function
of τ only, whereas the right-hand side is a function of ξ only.
Therefore, an equality can be maintained if each side is a
constant. Thus we have

−φ2(0)

ψ2

d2

dτ 2

(
1

φ

)
= α, (31)

1

2

d

dξ

[
1

N (ξ )

db2

dξ

]
= α, (32)

φ2(0)

εψ̇ + ηψ

d

dτ

(
ψ

φ

)
= β, (33)

1

b

d

dξ

[
1

N (ξ )

db

dξ

]
= β, (34)

where α,β are two separation constants to be determined later.
First let us solve the spatial part. From Eq. (32), we find

db2

dξ
= 2αNξ + c1, (35)

where c1 is constant, and since B = 0 at ξ = 0, then c1 = 0.
Therefore, we have

1

N

db

dξ
= αξ

b
. (36)
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Substituting this in Eq. (34) and solving for b(ξ ), we have

b(ξ ) =
√

α

β

ξ√
ξ 2 + ξ 2

0

, (37)

where ξ0 is an integration constant. One can easily find out the
spatial density distribution, which is

N (ξ ) = 1

β

ξ 2
0(

ξ 2 + ξ 2
0

)2 . (38)

To solve the temporal part of the solution, we considered
Eqs. (31) and (33), from which we obtain

1

ψ2

d2

dτ 2

(
1

φ

)
= −ᾱ,

1

ψ

d

dτ

[
ψ

(
1

φ
− εβ̄

)]
= β̄η, (39)

where ᾱ = α/φ2(0), β̄ = β/φ2(0). It should be noticed that
finite ε destroys the direct integrability of Eq. (39). A way
around this dilemma was proposed in Ref. [8] through the
integrating factor, introduced by

1

ψ

d

dτ
≡ f (θ )

d

dθ
, (40)

where f is an unknown function that will be determined later.
With this, Eq. (39) can be written as

f
d

dθ

[
ψ

(
1

β̄φ
− ε

)]
= η. (41)

After a little algebra we can show that the above equation
reduces to

d2 ln ψ

dθ2 = α

β

ψ

λf
, (42)

where we choose the function f (θ ) such that

f

(
1

β̄φ
− ε

)
= λ

ψ
, (43)

and λ is a constant to be determined later. Now substituting
Eq. (43) into Eq. (41), we have

f
d

dθ

(
λ

f

)
= η, (44)

whose solution is f = f0 exp(−ηθ/λ). If η = 0, we can show
that f = 1 so that f0 = 1. Also for η = 0 we have found
λ = (1 − βε)/β. If we look at Eq. (43), then at t = 0 we
have

f0

(
1

β̄φ(0)
− ε

)
= λ

ψ(0)
. (45)

The value of λ is consistent with Eq. (45). We have
ψ(0) = φ(0) = 1. Therefore, ᾱ = α and β̄ = β, and Eq. (42)
becomes

d2 ln ψ

dθ2 = α

βλ
ψ exp

(
ηθ

λ

)
. (46)

Now letting ln ψ = −2� − ηθ/λ and θ̄ = θ/
√

βε − 1, a
solution for ψ can be written as

ψ = 2

α
sech 2

(
θ√

βε − 1

)
exp

[
−ηβ

(
θ

1 − βε

)]
. (47)

The above solution must satisfy the condition ψ(0) = 1
(since θ = 0 implies τ = 0), resulting in ψ(0) = 1 = 2/α.

This implies that one of the separation constants is α = 2 and
the solution for ψ becomes

ψ(τ ) = sech 2

(
θ√

βε − 1

)
exp

[
−ηβ

(
θ

1 − βε

)]
, (48)

and the corresponding φ(τ ) solution is given by

φ(τ ) = 1

βε + (1 − βε) cosh2 θ̄ exp[−(2ηβθ̄ )/
√

βε − 1]
.

(49)

It can be noted here also that φ(0) = 1 is satisfied, which is
our requirement. Here the variable θ is a monotonic function of
time τ , which can be determined. Let us first write the complete
solution for the magnetic field and the density, which are given
by

B(ξ,τ ) =
√

2

β

{
ξ√

ξ 2 + ξ 2
0

}
sech 2

(
θ√

βε − 1

)

× exp

[
ηβθ

βε − 1

]
, (50)

n(ξ,τ ) = 1

β

{
ξ 2

0(
ξ 2 + ξ 2

0

)2

}[
βε + (1 − βε)

× cosh2

(
θ√

βε − 1

)
exp

(
− 2ηβθ

βε − 1

)]−1

. (51)

The relation between ξ and x can also be determined as
given below,

ξ = x

βε + (1 − βε) cosh2 θ̄ exp[−2ηβθ̄/
√

βε − 1]
. (52)

The relation between time τ and auxiliary variable θ are
related as

τ =
√

βε − 1

4

[
e−2η̄θ̄

(
sinh 2θ̄ + η̄ cosh 2θ̄

1 − η̄2

)

− η̄

1 − η̄2
− 1

η̄
(e−2η̄θ̄ − 1)

]
, (53)

where

θ̄ = θ√
βε − 1

, η̄ = ηβ√
βε − 1

. (54)

Still one more separation constant, namely β, needs to be
fixed. For that we use the condition for the conservation of
density,

∫ +∞

−∞
n(ξ,0)dξ = 1. (55)

We find π/(2βξ0) = 1. ξ0 can be taken as unity without
any loss of generality. So the solution given above is complete
with β = π/2.
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FIG. 1. (Color online) Initial density and magnetic field configu-
ration similar to the Harris current sheet solution.

IV. ANALYSIS

First let us see the behavior of the initial solution, i.e., at
τ = 0 = θ , which implies ξ = x and the solutions are

n(x,0) = 2

π

1

(1 + x2)2
, (56)

B(x,0) = 2√
π

x√
(1 + x2)

. (57)

At t = 0, the magnetic field and density, respectively, look
like tanh ς and sech 4ς if we set ξ ∼ sinh ς . Therefore, our
system of equations includes a Harris current sheetlike state
[31] as an initial plasma configuration, as indicated in Fig. 1.

Let us first analyze the solutions given in Eqs. (50)–(53)
in an ideal dispersionless and dissipationless situation, i.e.,
ε = η = 0. Then we find for θ̄ = −iθ ,

B(ξ,τ ) = 2√
π

{
ξ√

ξ 2 + 1

}
1

cos2 θ
, (58)

n(ξ,τ ) = 2

π

{
1

(ξ 2 + 1)2

}
1

cos2 θ
, (59)

with

ξ = x

cos2 θ
, τ = 1

4
(sin 2θ + 2θ ). (60)

It may be noted that at θ = π/2 (or, equivalently, τ =
t = π/4), the magnetic field and density solutions possess
singularities depicted in Fig. 2. This is because, physically,
in the absence of dispersion and dissipation, convective
nonlinearity being operative feeds energy to short scales in
the system, and eventually the density and magnetic field
get compressed and ultimately blow up. The critical time is
one-fourth of the wave period. It is to be noted also that when
ε = 0, the hyperbolic function becomes periodic.

Next, we take ε finite but η = 0, i.e., dispersion is present
but dissipation is absent. With this, if we examine the
solutions, then we find

B(ξ,τ ) = 2√
π

{
ξ√

ξ 2 + 1

}
sech 2θ̄ , (61)

n(ξ,τ ) = 2

π

{
1

(ξ 2 + 1)2

}
1

βε + (1 − βε) cosh2 θ̄
, (62)

ξ = x

βε + (1 − βε) cosh2 θ̄
,

(63)

τ =
√

βε − 1

4
(sinh 2θ̄ + 2θ̄ ).

The corresponding figure is displayed in Fig. 3.
Next, we take the complementary condition as discussed

above, i.e., ε = 0 but η �= 0, which means dispersion is absent
but dissipation is operative. With this, if we examine the
solutions, then we find

B(ξ,τ ) = 4√
π

{
ξ√

ξ 2 + 1

}
e−2ηβθ

1 + cos 2θ
, (64)

n(ξ,τ ) = 4

π

[
1

(ξ 2 + 1)2

]
e−2ηβθ

1 + cos 2θ
, (65)

ξ = xe−2ηβθ

1 + cos 2θ
,

τ = 1

4

[
e2ηβθ

(
sin 2θ + ηβ cos 2θ

1 + β2η2

)
(66)

− ηβ

1 + β2η2
+ 1

ηβ
(e2ηβθ − 1)

]
,

which is correct in time behavior due to dissipation. We see
that finite η alone cannot prevent the existence of singularity
either in density or in the magnetic field, as indicated in Fig. 4.
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FIG. 2. (Color online) Time evolution of the density and magnetic field in the absence of dispersion and dissipation (ε = η = 0). The figure
shows singularity in density and magnetic field arising at time π/4 in units of Alfvén transit time.
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FIG. 3. (Color online) Time evolution of the density and magnetic field in the absence of resistivity (η = 0) with finite dispersion (ε = 0.1).
The figure shows that finite dissipation cannot stop singularity in density and magnetic field, it merely delayed the singularity.

If both ε,η are present, the solutions once again can be
rewritten as

B(ξ,τ ) = 2√
π

{
ξ√

ξ 2 + 1

}
sech 2θ̄ exp(η̄θ̄ ), (67)

n(ξ,τ ) = 2

π

{
1

(ξ 2 + 1)2

}
[βε + (1 − βε)

× cosh2 θ̄ exp(−2η̄θ̄)]−1. (68)

The relation between ξ ,x and τ ,θ can also be expressed as

ξ = x

βε + (1 − βε) cosh2 θ̄ exp(−2η̄θ̄ )
, (69)

τ =
√

βε − 1

4

[
e−2η̄θ̄

(
sinh 2θ̄ + η̄ cosh 2θ̄

1 − η̄2

)

− η̄

1 − η̄2
− 1

η̄
(e−2η̄θ̄ − 1)

]
, (70)

where

η̄ = ηβ√
βε − 1

, and θ̄ = θ√
βε − 1

. (71)

In Fig. 5, it is shown that dispersion may arrest the
density singularity but not the magnetic field. With regard
to the question of why the magnetic field and the density
behave differently when dispersion is active—the former still

collapses whereas the latter stays finite—we admit that we do
not have a final, conclusive solution, as the interplay between
hydrodynamic convection, dispersion, and dissipation is a
rather complex one governed by nonlinearity. One explanation
we have in mind is that dispersion acts as usual (for magne-
tosonic waves), preventing the density from collapsing. For the
magnetic field, on the other hand, since resistivity is assumed
to scale like 1/n, being diminished at maximum density, the
field diffusion is more or less offset in this region and hence
the magnetic field behaves as in the ideal case and collapses.

V. SOLUTION BY THE LAGRANGIAN MASS VARIABLE

In this section, we are going to provide an additional proof
of the solution described in the previous section by means
of a more simplified description that utilizes the Lagrangian
mass variable. The system of coupled differential Eqs. (26)
and (27) can be substantially simplified without loss of
generality by switching to the Lagrangian mass variable [7].
Introduction of Lagrangian mass variable ζ instead of ξ yields
the mathematical operator

∂

∂ζ
= 1

n(ξ,0)

∂

∂ξ
, (72)

which can be obtained from the transformation relation: ζ =∫ ξ
n(ξ ′,0)dξ ′. Moreover, if one introduces for convenience the
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FIG. 4. (Color online) Time evolution of the density and magnetic field in the absence of dispersion (ε = 0) with finite dissipation. The
figure shows that finite dissipation cannot remove singularity in density and magnetic field.
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FIG. 5. (Color online) Time evolution of the density and magnetic field in the presence of both dispersion and dissipation (ε = 0.1,
η = 0.03). The figure shows that neither finite dispersion nor resistivity can remove magnetic field singularity, whereas for finite dispersion
density, singularity is removed.

specific volume V (ζ,τ ) = 1/n(ζ,τ ) [which is the Jacobian of
the transformation from (x,t) to (ζ,τ )], Eqs. (26) and (27) can
be written as

∂

∂τ
(BV ) = ∂2

∂ζ 2

[
ε
∂B

∂τ
+ ηB

]
, (73)

∂2V

∂τ 2 = −1

2

∂2B2

∂ζ 2 . (74)

It is worth mentioning that the space-dependent coeffi-
cient n(ξ,0) has now disappeared, leaving the system in a
substantially simpler form. Through this simpler system of
equations, we expect a more straightforward solution that may
be obtained, and the earlier solution presented in the previous
section can be recovered. A solution of Eqs. (73) and (74)
can be attempted by a separation of the variable ansatz. We
set V (ζ,τ ) = P (τ )U (ζ ) and B(ζ,τ ) = Q(τ )B(ζ ), and then the
above two partial differential equations reduce to four ordinary
differential equations as

1

[ε(dQ/dτ ) + ηQ]

d

dτ
(PQ) = 1

UB
d2B
dζ 2 = β, (75)

1

Q2

d2P

dτ 2 = − 1

2U

d2B2

dζ 2 = −α, (76)

where α and β are the separation constants, and if we choose
α = 2 and β = π/2, then we are in accordance with the
systems described in the previous sections. Now we can obtain
the spatial and temporal solutions, keeping the constant β and
setting α = 2. This may recover the previous solution, and one
can easily go beyond that with the various parameter values of
α and β. Concentrating on the temporal part of the equations,
we have

d2P

dτ 2 + 2Q2 = 0, (77)

d

dτ
(PQ) = β

(
ε
dQ

dτ
+ ηQ

)
. (78)

First, the nonresistive part of the solution is obtained by
setting η = 0. Then Q(τ ) can be easily obtained as

Q = 1 − βε

P − βε
, (79)

where the initial condition P (0) = 1 = Q(0) is used. Substi-
tution of Q in Eq. (77) and using a straightforward algebra
leads to

dP

dτ
= ±2(1 − βε)√

P − βε
, (80)

where the negative branch of the square root is taken and
P > βε is assumed. A further integration gives

P (τ ) = βε + [(1 − βε)3/2 − 3(1 − βε)τ ]2/3. (81)

The above solution indicates that P (τ ) is decreasing with
increasing time, reaching P (τc) = βε with infinite slope i.e.,
dP/dτ → ∞, as τ approaches τc (= √

1 − βε/3). Since P

stands for specific volume, i.e., 1/P for density, one imme-
diately sees that the density is compressed (i.e., increases) in
time but stays finite as long as the dispersion parameter ε is
finite. On the other hand, if the dispersion disappears, i.e.,
ε → 0, then P becomes zero and the density diverges. The
time τc is known as density collapse time. Turning back to
the magnetic field solution from Eq. (79), we observe that
Q → ∞ in either case in this limit. Therefore, magnetic field
collapse is independent of dispersion. Thus dispersion is able
to stop the density collapse but not that of the magnetic field.

Next we can concentrate on the solution with finite
resistivity, i.e., η �= 0. Finite resistivity in Eq. (78) destroys the
direct integrability. A way out of this difficulty was proposed
in a previous paper [8] by introducing an integrating factor
defined as

1

Q(τ )

d

dτ
= f (θ )

d

dθ
. (82)

Proceeding in the same way as in Sec. III, we can obtain
an explicit solution for P,Q. But here we will show that these
equations, indeed, yield the same solution that we obtained
before. Considering f (θ ) to be exponential, f = exp(Aθ ) (as
obtained in a previous paper [8]), and integrating Eq. (78), we
have

Q(θ ) = 1

(P − βε)

[
(1 − βε) + βη

A
{1 − exp(−Aθ )}

]
. (83)

Notice here that in the limit η → 0, we get back our
nonresistive solution (79). Here we recall our solution for φ
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and ψ obtained before. In the current notation, these can be
written as P = 1/φ and Q = ψ . Moreover, the solutions can
be expressed as

P − βε = (1 − βε) cosh2

(
θ√

βε − 1

)
exp

(
− 2ηβ

βε − 1
θ

)
,

(84)

Q = sech 2

(
θ√

βε − 1

)
exp

(
ηβ

βε − 1
θ

)
. (85)

It can be easily seen that these two previously obtained
solutions will satisfy Eq. (83) when A = βη/(βε − 1). Now if
we can show that these solutions will satisfy Eq. (77), then our
proof is complete. For this we can switch on the differential
operator d/dτ → d/dθ , which is

d

dτ
= sech 2

(
θ√

βε − 1

)
exp(2Aθ )

d

dθ
. (86)

Using this and Eq. (85), we have

d2P

dθ2 +
[

2A − 2√
βε − 1

tanh

(
θ√

βε − 1

)]
dP

dθ

+ 2 exp(−2Aθ ) = 0. (87)

This equation is indeed satisfied by Eq. (84). This confirms
the correctness of the results obtained in Sec. III as well as
in Ref. [8] with respect to the temporal behavior, which is the
essential part because it decides the collapse behavior.

Now we concentrate on the solution of the spatial part. For
this, from Eqs. (76) and (75) we obtain

d2B
dζ 2 − β

4
B d2B2

dζ 2 = 0. (88)

The above nonlinear equation can be simplified by using
the dependent variable transformation H = B2. From Eq. (88)
we obtain

d2H

dζ 2 = 1

H (2 − βH )

(
dH

dζ

)2

. (89)

One integration can easily be done to obtain

dH

dζ
= c2

√
H

1 − βH/2
, (90)

from which the spatial solution is given implicitly for
[ζ = ζ (B2)] by√

2

β

[
sin−1

√
βB2

2
+

√
βB2

2

(
1 − βB2

2

)]
= c2ζ + c3,

(91)

where c2 and c3 are integration constants. Since B = 0 at
ζ = 0, therefore c3 = 0, but c2 �= 0. We now have

∂x

∂ζ
= 1

n(ξ,0)

∂x

∂ξ
= 1

n(ξ,τ )
≡ V (ζ,τ ), (92)

from which, by using Eqs. (76), we obtain

x = 1

4
P (τ )

dB2

dζ
. (93)

At this point we will again use Eq. (90) to obtain the
derivative of the magnetic field occurring on the right-hand
side of the above equation. Therefore substituting dB2/dζ in
Eq. (93), we have

4x

P (τ )
= c2B√

1 − βB2/2
, (94)

from which we find

B = 4x/(c2P )√
1 + β

2 [4x/(c2P )]2
. (95)

It may be noted here that β = π/2 and the constant c2

physically signifies the maximum value of the magnetic field
gradient at ζ = 0. We can choose this constant c2 = 2

√
π

without any loss of generality. This choice exactly matches
the spatial magnetic field profile obtained before at τ = 0.
Initially, i.e., at τ = 0, P (0) = 1, and putting the value of c2

mentioned above, we have

B(x,0) = 2√
π

x√
1 + x2

, (96)

which is obtained before as indicated in Eq. (57). Therefore,
we reproduce the earlier results exactly by Lagrangian mass
variables. In Eq. (95), P (τ ) can be evaluated from (84), and a
relation that connects τ and θ is given in Eq. (53).

VI. A FIRST APPLICATION: COLLAPSE OF DENSITY
AND MAGNETIC FIELD AS A SEED FOR MAGNETIC

STAR FORMATION

The applicability of the present model is restricted to physi-
cal systems that admit in the allowed parameter range an initial
Harris-type current sheet solution, which acts as a seed and un-
dergoes amplification and collapse, such as the one described
below in this section. This is a consequence of the separation
ansatz (28). Other solutions of (26) and (27) and (73) and (74),
respectively, may be obtained by a different ansatz, such as one
that allows for nonlinear traveling-wave solutions.

As a first application, we refer now to the early stage of star
formation and to the role that the magnetic field is playing. The
simple picture of star formation calls for giant clouds of gas
and dust to collapse inward due to gravity, growing denser and
hotter until igniting nuclear fusion. The problem is that only
a small fraction of cloud material forms stars, such that there
must be additional forces that hinder the contraction process.
Magnetic fields and turbulence are the two leading candidates.
Numerical simulations of magnetohydrodynamic turbulence
[32–34] indicate that a weak magnetic field, corresponding
to super-Alfvenic turbulence, will be tangled by turbulent
eddies, and one should not expect a correlation between
field orientations inside molecular clouds and those in the
surrounding intercloud medium (ICM). On the other hand, a
strong magnetic field (sub-Alfvenic turbulence) can channel
turbulent flows and preserve field orientation over large length
scales. To give some typical numbers, molecular clouds have a
density of n > 105 cm−3 and a linear size below 1 parsec (pc),
whereas ICM has n ∼ 1 cm−3 and an (accumulation) length
of several hundred pc (e.g., 200 pc). Using optical sub-mm
polarimetry, Li et al. [29,30] studied 25 dense patches in the
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Orion molecular cloud region, each one about a light-year in
size, together with the corresponding ICM region. Their result
was that “even though the core separations exceed the core
size by as much as a factor of 100, they are for the most part
magnetically connected, i.e., the core’s mean field directions
are similar” and, moreover, these directions are close to the
mean-field direction seen in the ICM. Their conclusion is that,
comparing this result with molecular cloud simulations, only
the sub-Alfvenic cases result in field orientations consistent
with the observations. This may be considered as a hint that
a contraction process such as that described in the present
paper, being mediated by a strong magnetic field, may be the
origin of this novelty in star formation. By adjusting the para-
meters, such as n0,B0, dispersion, and dissipation, the local
amplification of the density of 105 together with the alignment
of the magnetic field in both regions are reasonably well
described by and conform with our model, especially when
it is supplemented by more realistic effects, such as pressure,
kinetic effects, or stability effects that will keep the magnetic
field finite. We may hence conclude that the collapse process
described in this paper can act as a seed of matter clumping in
the Universe prior to the onset of gravitation and turbulence.

VII. SUMMARY

In conclusion, we emphasize that our analysis of a
compressional MHD kind of collapse has been oriented
toward a simple macroscopic situation in which nonlinearity,
time dependence, dispersion, and resistive dissipation are

treated on an equal footing, resulting in an exact solution of
the governing equations. The solution shows a competition
among hydrodynamic convection, magnetic field diffusion,
and dispersion and includes a Harris-like current sheet state as
an initial plasma configuration. This results in an unbounded
amplification of magnetic field and a bounded amplification of
plasma density at a finite time. This is because the dispersive
effect is found to halt the collapse of density but not of
the magnetic field, whereas resistivity alone can neither halt
density nor magnetic field collapse. Such a collapse process
associated with magnetosonic-type compressional dispersive
waves can be a possible mechanism for the generation of
magnetic fields whose physical origin lies solely on the
electron and ion currents.

These types of nonlinear, dispersive, and dissipative solu-
tions represent a new class of transient solutions in magnetized
plasmas and may arise in a manifold of similar physical
situations [35]. We should stress that the results previously
obtained by the same authors in Ref. [8] are shown to
be correct, and they are reproduced here by presenting
solutions through another method that utilizes a Lagrangian
mass variable. Finally, we would like to mention that this
magnetic field collapse opens the possibility of very many
follow-up studies with more general fluid physics, e.g., in
terms of generalized Ohm’s law, kinetic descriptions, etc., to
determine the sturdiness of the effect described, and that more
investigations in this direction are necessary to improve our
understanding of the generation of strong magnetic fields in
plasmas, especially in astrophysical environments.
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