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Interaction of bubbles in an inviscid and low-viscosity shear flow

Jai Prakash,* Olga M. Lavrenteva,† and Avinoam Nir‡

Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
(Received 2 June 2013; revised manuscript received 30 July 2013; published 21 August 2013)

The pressure loads on two identical spherical bubbles impulsively introduced in an inviscid simple shear
flow are calculated. The interaction force due to these pressure loads is employed to model the dynamics of air
bubbles injected to a low-viscosity fluid sheared in a Couette device at the first shear flow instability where the
bubbles are trapped inside the stable Taylor vortex. It was shown that the interaction between the bubbles in the
primary shear flow drives them away from each other. The performed simulations revealed that in an inviscid
flow the separation distances between equal size bubbles undergo complex periodic motion. The presence of
low-viscosity results in a qualitative change of the interaction pattern: The bubbles either eventually assume an
ordered string with equal separation distances between all neighbors or some of them collide. The first regime
is qualitatively similar to the behavior of bubbles at low Reynolds number [Prakash et al., Phys. Rev. E 87,
043002 (2013)]. Furthermore, if the Reynolds number exceeds some critical value the temporal behavior of the
separations becomes nonmonotonic and exhibits over- and undershooting of the equilibrium separations. The
latter effects were observed in the experiments, but are not predicted by the low Reynolds number model of
the process [Prakash et al., Phys. Rev. E 87, 043002 (2013)].
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I. INTRODUCTION

Bubbles embedded in intensive vortical flow often exhibit
complicated behavior; e.g., they may be trapped by vortices
and form ordered structures. The study of such phenomena
is of fundamental significance in several branches of fluid
mechanics such as two-phase or bubbly flows. Examples of
application of such flows can be found in, e.g., Magnaudet and
Eames [1] and Climent et al. [2]. The flow in a Couette-Taylor
device serves as a laboratory model of complex vortical
flows. Deng et al. [3] reported an experimental study of the
behavior of individual bubbles embedded in a Couette-Taylor
flow at Reynolds numbers, corresponding to the first classical
instability. It was observed that the bubbles are trapped either
near the wall at stagnation points or in the vortex core and
that equal size bubbles trapped in the core eventually assume
an ordered string with equal separation distances between
all neighbors. Experiments performed in our laboratory (Byk
et al. [4], Prakash et al. [5]) reproduced these results, provided
detailed measurements of the process evolution, and suggested
a range of simplified models for the bubbles dynamics. Byk
et al. [4] computed the force acting on two circles in a
simple shear flow of an inviscid liquid in two-dimensional
(2D) geometry and demonstrated that the interaction force is
repulsive and decays relatively fast with the separation distance
d as 1/d5. Prakash et al. [5] used the reciprocal theorem
to calculate the leading order inertia-induced forces on two
identical spherical bubbles in a simple shear flow at small but
finite Reynolds numbers where viscous effects are dominant.
This force was further employed to model bubbles interaction
in a Couette-Taylor device and the results of simulations were
compared with the experimental measurements. The Reynolds
numbers (at the bubble scale) in the experiments were of
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O(1), while the developed theory assumes small values of
Re. Nevertheless, the results of computations proved to be
in good agreement with the experimental observations; i.e.,
they describe the main effect of approaching the equilib-
rium position and provide a good measure of the evolution
relaxation time. Nevertheless, some interesting phenomena
that were observed in several experimental runs at various
rotation velocities with two bubbles, such as the overshooting
of the equilibrium separation or the reversal of the relative
bubble motion and their eventual collision (see [5]), were not
reproduced.

In this paper, we study the interaction of identical spherical
bubbles in a simple shear flow when inertia is dominant, which
is opposite to the case considered in [5]. The conditions at
noncontaminated bubble boundaries can be approximated as
free slip that allows approximating real fluids as inviscid in
high Reynolds number bubble flows (Magnaudet and Eames
[1], Legendre and Magnaudet [6]) and aeroacoustics (Howe
[7]). A brief review of the results on the motion and interaction
of solid and fluid particles in inviscid flow is given below.

The special cases of spheres in potential flows and of circles
in 2D vortical ambient flows can be found in the classical
literature (Lamb [8], Batchelor [9]). The generalization of
these results to arbitrary body shapes and arbitrary potential
flow fields are given in Landweber and Miloh [10] and Galper
and Miloh [11,12].

Most of the studies of bodies translating in a rotational
flow are devoted to the determination of a transverse or a
lift force exerted on it. Auton [13] and Auton et al. [14]
calculated the secondary velocity field induced by the vorticity
and evaluated the resulting lift force on a sphere translating in
a fully developed stationary rotational disturbance field. Their
results were further extended to an arbitrarily shaped body
(Catlin [15]). Another series of works concerns the force and
torque on 3D bodies impulsively introduced in rotational flow.
Legendre and Magnaudet [6] found the force on a sphere in an
impulsively started linear shear flow. Miloh [16] determined
the force and torque on an arbitrarily shaped deforming body
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in an ambient flow with uniform vorticity. Catlin [17] derived
dynamical equations for freely deforming bodies with more
than six degrees of freedom which are immersed in an inviscid
incompressible flow with uniform vorticity but otherwise
arbitrary nonuniform strain rate at the instant after the body
was impulsively introduced into the fluid.

In this paper, we obtain the forces exerted on multiple
spherical bubbles moving along a streamline in a simple
inviscid shear flow and employed these to develop a simplified
model of interaction of bubbles in a Couette-Taylor device.
Note that a multibody system can be regarded as a single
deformable body and, thus, the methods of [16,17] can be
directly applied to such configurations. However, in view of the
high symmetry of the system under consideration, we prefer
to use a classical approach with explicit determination of the
pressure and integrate it over the surface of each particle.

The paper is organized as follows. In Sec. II, the problem
of the interaction of two spherical bubbles in a simple inviscid
shear flow is formulated. Two methods are applied to construct
the solutions and the results for the forces acting on the bubbles
are presented. In Sec. III, two simplified models, inviscid and
low-viscosity models, of the dynamics of bubbles in a Couette-
Taylor device are formulated and discussed. Sections III A
and III B present the results for bubble dynamics according
to the inviscid and low-viscosity models, respectively, for a
range of governing parameters. Separate attention is given to
the behavior of the solutions of the inviscid and low-viscosity
models in the vicinity of equilibrium and to the dynamic
simulations according to the complete nonlinear equations,
respectively. In Sec. IV, we summarize the results of the
calculations and discuss their applicability to the experiments
in the Couette-Taylor device.

II. TWO BUBBLES IN A SIMPLE SHEAR FLOW

A. Formulation of the problem

Consider two spherical bubbles of equal radii a impulsively
introduced into an unbounded incompressible inviscid fluid of
uniform density ρ, which is subjected to a simple shear flow
v∗ = (0,0,Gx∗) along the z axis, where G is the shear rate. The
bubbles are assumed to be positioned on the same streamline
x = y = 0 at some initial separation and have some initial
velocities in the z direction that are not necessarily equal.

In the following analysis time, length, velocity, and pressure
will be nondimensionalized using 1/G,a,Ga, and ρG2a2,
respectively. Let � be the domain occupied by the continuous
fluid with �i,i = 1,2 denoting the boundary of bubble i, and d

be the distance between the centers of the bubbles (see Fig. 1).
Let v, ω = ∇ × v, and p denote the scaled velocity, vorticity,
and pressure fields around the bubbles that are governed by
the Euler equations:

∂v
∂t

+ ∇
(

v · v
2

)
+ ω × v = −∇p, (1)

∇ · v = 0, x ∈ �. (2)

Let bubble i,i = 1,2 translate with velocity vi = (0,0,vi) in
a laboratory reference frame. In this reference frame, the
velocity at the boundaries of the bubbles, �1 and �2, and far
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FIG. 1. Geometry of the problem.

from the inclusions satisfy

v · n = vi · n, x ∈ �i,i = 1,2, (3)

v → v∞ as |x| → ∞, (4)

respectively, where v∞ = (0,0,x).
The problem is completed by specifying initial conditions

for the velocity field that should satisfy (3) and (4). A popular
choice of initial conditions assumes that the introduction of the
bubbles does not alter the vorticity field that remains uniform
and that the velocity field can be decomposed into irrotational
and rotational components ([16]),

v = ∇� + v∞, (5)

where the potential � satisfies

∇2� = 0, (6)

∇� · n + v∞ · n = vi · n, x ∈ �i,i = 1,2, (7)

� → 0 as |x| → ∞. (8)

Since the problem for the potential is linear it, in turn, can
be decomposed into parts corresponding to shear flow and
translation of the bubbles,

� = �shear + �trans = �shear +
2∑

i=1

vi�
trans
i , (9)

where �shear, �trans are harmonic functions that decay at
infinity and satisfy the following boundary conditions:

∇�shear · n + v∞ · n = 0, x ∈ �i,i = 1,2, (10)

∇�trans · n = vi · n, x ∈ �i. (11)

The determination of the velocity field is thus reduced to
a number of Neumann problems for the Laplace equation.
The methods to solve these are well developed and we briefly
describe the ones employed in this study in Sec. II B.

The net force exerted on bubble i by the flow can be obtained
by integrating pn over its surface, i.e.,

Fi = −
∮

�i

pndS. (12)
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This force can be decomposed as

Fi = Fm
i + Flift

i + Fint
i + Fshear

i , (13)

where Fm
i is the added mass force, which depends linearly on

the accelerations of the bubbles, Flift
i is the transversal lift force

proportional to the vector product of the vorticity and velocity
of the bubble relative to the fluid, Fint

i arises due to the interac-
tion of inclusions and is a quadratic function of the translation
velocities, and Fshear

i is due to the interaction of bubbles with
the ambient flow that does not depend on their velocities.

Equating the force exerted on each bubble to zero (note that
the density of the bubbles is negligible compared to that of the
ambient fluid) provides two relations between the accelerations
of the bubbles, their velocities and their relative positions,
which are linear with respect to accelerations.

The added mass force Fm
i and the interaction forces Fint

i are
determined solely by the irrotational component of the velocity
field and the expressions for it can be found elsewhere, e.g.,
in Galper and Miloh [18]. The lift force Flift

i was the subject
of numerous studies. The results for a single sphere (that is,
the leading order contribution in the case of widely separated
particles) are obtained in Auton et al. [14] and the more general
case was considered by Miloh [16]. The last term Fshear

i is
quadratic in the vorticity of the ambient flow and was ignored
in early studies based on a priori assumption of weak vorticity.
Miloh [16,19] obtained this force for an arbitrary deformable
body. Catlin [17] derived expressions for the force moments of
any order. Since multibody system can be regarded as a single
deformable body (see Galper and Miloh [18]) these results,
in principle, can be employed to obtain the forces exerted on
individual particles in the system. However, we prefer to derive
these individual forces directly from the equations of motion
and boundary conditions.

Further in this section, we concentrate on the determination
of Fshear

i . It is readily seen that this is the force exerted on a
stationary bubble submerged in a simple shear flow in the
presence of another stationary bubble, i.e., when v1 = v2 = 0.
We assume that the velocity field of the form (5) is known and
derive the expression for the pressure field. The latter requires
the knowledge of the instantaneous velocity field as well as of
the solenoidal instantaneous acceleration field vt . We look for
this field in the form

vt = −(ω × v) + ∇(H + Q), (14)

where the auxiliary function Q satisfies Poisson equation

∇2Q = ∇ · (ω × v) = ∇ · (ω × v∞) = −1, x ∈ R3, (15)

while H is harmonic in � and satisfies the boundary condition

∇H · n = (ω × v) · n − ∇Q · n, x ∈ �i,i = 1,2. (16)

After substituting (14) into the Euler equation (1) the latter
can be integrated and provide an explicit expression for the
pressure field

p = p0 − (
1
2 |v|2 + H + Q

)
, (17)

where p0 is a constant and Q = − x2

2 .
Note that these considerations are based on the assumption

of a uniform vorticity that is valid only initially, or during
a short time interval, before vortex stretching effects become

important. However, as argued in Miloh [16], the case of a body
moving in an infinite expanse of fluid undergoing a simple
shearing motion at infinity can be considered as an effectively
inviscid flow with uniform vorticity.

B. Method of solution

We present the solution of two bubbles of equal radii
embedded in a simple shear flow of an inviscid liquid.
We adopt two methods, namely, approach via bispherical
coordinates, which yields an exact solution of the problem,
corroborated by the method of reflections, which provides an
approximate solution of the given problem. Following Lebedev
[20] the general solution for potential, which satisfies Laplace
equation, is presented in the form of a series in bispherical
harmonics, and the coefficients of the series are determined
from the boundary conditions. The details of this procedure
are presented in the Appendix. Below, we briefly present
the Schwarz alternating method, or the so called method of
reflections (see, e.g., Courant and Hilbert [21] or Happel and
Brenner [22] for more details).

We present the solution for the potentials �shear,�trans and
H in the case where velocities and accelerations of the bubbles
are directed along the z axis using the approximate method of
reflections. For the two spherical bubbles in Fig. 2, the solution
is presented in the form

�shear =
2∑

i=1

∞∑
k=1

�shear
i,k (ri,θi,φ),

�trans =
2∑

i=1

∞∑
k=1

�trans
i,k (ri,θi,φ), (18)

H =
2∑

i=1

∞∑
k=1

Hi,k(ri,θi,φ),

where (ri,θi,φ) are spherical coordinate systems originating
at the center of bubble i (Fig. 2) and k indicates the number
of reflections. Here, �shear

i,k , �trans
i,k , and Hi,k are harmonic in

the domain ri > 1, decaying at infinity, with �shear
i,0 , �trans

i,0 , and
Hi,0 satisfying the conditions (10), (11), and (16) at ri = 1,

r2

r1

d/2 d/2

r2=1

r1 =1

P

z

x

θ2 θ1

y

φ

P1 

FIG. 2. Spherical coordinate systems connected to two bubbles.
P1 is the projection of point P on the x-y plane.
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respectively, while

∇�shear
i,k+1 · n = −∇�shear

j,k · n, x ∈ �i, i �= j, (19)

∇�trans
i,k+1 · n = −∇�trans

j,k · n, x ∈ �i, i �= j, (20)

∇Hi,k+1 · n = −∇Hj,k · n, x ∈ �i, i �= j. (21)

It is easy to show that

�shear = 1

6d4

(
sin θ1

r2
1

− sin θ2

r2
2

)
cos φ + 1

3

(
1 − 8

3d5

)(
sin θ1 cos θ1

r3
1

+ sin θ2 cos θ2

r3
2

)
cos φ

+ 15

24d6

[
(5 cos2 θ1 − 1) sin θ1

r4
1

− (5 cos2 θ2 − 1) sin θ2

r4
2

]
+ O

(
1

d7

)
, (22)

and

�trans = −1

2

(
v1 cos θ1

r2
1

+ v2 cos θ2

r2
2

)
+ 1

2d3

(
v2 cos θ1

r2
1

+ v1 cos θ2

r2
2

)
− 1

2d4

[
v2(3 cos2 θ1 − 1)

r3
1

− v1(3 cos2 θ2 − 1)

r3
2

]

+ 3

4d5

[
v2(5 cos3 θ1 − 3 cos θ1)

r4
1

+ v1(5 cos3 θ2 − 3 cos θ2)

r4
2

]
+ O

(
1

d6

)
, (23)

and the auxiliary potential H ,

H = − 1

12d4

(
cos θ1

r2
1

− cos θ2

r2
2

)
− 1

18

(
1 − 8

3d5

)[
(3 cos2 θ1 − 1)

r3
1

+ (3 cos2 θ2 − 1)

r3
2

]

+ 1

18

(
1 − 6

d5

) (
sin2 θ1

r3
1

+ sin2 θ2

r3
2

)
cos 2φ − 5

16d6

[
(5 cos3 θ1 − 3 cos θ1)

r4
1

− (5 cos3 θ2 − 3 cos θ2)

r4
2

]

+ 155

96d6

(
sin2 θ1 cos θ1

r4
1

− sin2 θ2 cos θ2

r4
2

)
cos 2φ + O

(
1

d7

)
. (24)

The various forces exerted on bubble 1, i.e., added mass force Fm, force due to interaction Fint and force due to shear flow Fshear

are obtained as

Fm = −2π

3

(
v̇1 − 3

d3
v̇2

)
+ O

(
1

d6

)
, Fint = 6πv2

2

d4
+ O

(
1

d6

)
, Fshear = π

3d4

(
1 + 80

9d2

)
+ O

(
1

d7

)
. (25)

The shear force exerted on bubble 2 has the same magnitude
but an opposite direction. The calculated shear force exerted
on the bubbles is of a repulsive nature and it diminishes rapidly
with the separation distance between the bubbles as 1/d4.

Variation of the force (Fshear) exerted on bubble 1 versus
the separation distance is depicted in Fig. 3. The solid curve
is calculated making use of bispherical coordinates. Dashed
and dotted curves are calculated by the reflection method with
the accuracy O(1/d5) and O(1/d6), respectively. Note that at
d > 3, with one radius of separation, both methods estimate
the force in good agreement and the difference between
the exact solution computed via bispherical coordinates and
approximate one calculated by the reflection method, with
the accuracy O(1/d6), does not exceed 5%, whereas with the
accuracy O(1/d5) and d > 10 the difference does not exceed
10%.

Note that the generalization of the reflection method to the
multibubble case is straightforward and that, at the leading
order in 1/d, the result is additive, i.e., the force on a bubble
due to interaction with several others is the sum of forces
resulting from pairwise interactions. Further in this paper

FIG. 3. Force exerted on the right bubble in a pair of bubbles
embedded in a simple shear flow. The solid curve is calculated making
use of bispherical coordinates. The dashed and dotted curves are
calculated by the reflection method with the accuracy O(1/d5) and
O(1/d6), respectively.
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we use approximate expressions for the forces obtained via
reflections method.

III. BUBBLE DYNAMICS IN A
COUETTE-TAYLOR DEVICE

Consider N spherical bubbles of unit radii positioned along
a center closed streamline in a stable Taylor vortex. Let l be
the length of this streamline and ln be the distance between the
centers of the bubbles n and n + 1. It may be noted that
the presence of N bubbles of unit radii implies that l > 2N .
The distance between bubbles 1 and N can be written as

lN = l −
N−1∑
n=1

ln (N � 2). (26)

The values ln change dynamically due to the repulsive shear
force experienced by the bubbles embedded in the shear flow
during their relative motion.

In order to apply the result obtained in Sec. II B to the
dynamics of the bubbles in a Couette-Taylor device, we
propose two simplified models of the process:

(A) an inviscid flow model where the force acting on the
bubble arises purely from the variation of the pressure over the
bubble surface;

(B) a low-viscosity model where viscous drag force exerted
on the bubble tends to slow down its motion relative to the
fluid.

The following assumptions are made in order to simplify
these models.

(i) Bubble interaction is due to the primary shear flow.
The Taylor vortex keeps the bubbles at the center streamline,
preventing their rise either due to buoyancy or due to the
transversal lift.

(ii) The primary flow is modeled by an unbounded uni-
directional simple shear, neglecting nonzero curvature of the
streamlines. This follows from the diminishingly small ratio
of bubble to streamline radii in the experiments of [3–5].

(iii) In the definition of the model we defined the pressure as
given in (17) neglecting deviation of vorticity from its initial
uniform distribution in the undisturbed simple shear flow.

(iv) Each bubble interacts only with its nearest neighbors.

A. Inviscid flow model

1. Governing equations

Following (13), the force balance on the bubbles has the
form

Fm
n + Fint

n + Fshear
n = 0, n = 1, . . . ,N, (27)

where the forces are calculated taking into account the
interaction of the nth bubble with its neighbors. Solving (25)
and (27) with respect to accelerations, and keeping the leading
terms, we obtain

v̇n = −9

{
v2

n−1

l4
n−1

− v2
n+1

l4
n

}
+ 1

2

{
1

l4
n

− 1

l4
n−1

}
, (28)

where l0 = lN ,v0 = vN , and vN+1 = v1.

The temporal evolution of ln is governed by

dln

dt
= vn − vn+1, n = 1, . . . ,N. (29)

Equations (28) and (29) comprise an ODE system of the
order 2N that should be solved with initial conditions for the
velocities of the bubbles and the separations between them. It
follows from (29) that

∑N
n=1 ln is an integral of the system,

thereby reducing the system to order 2N − 1.
In the case of a two bubble system, the inviscid model (28)

yields the following two equations, which result from the force
balance on the two bubbles

v̇1 = −9

{
v2

2

(l − l1)4
− v2

2

l4
1

}
+ 1

2

{
1

l4
1

− 1

(l − l1)4

}
,

(30)

v̇2 = −9

{
v2

1

l4
1

− v2
1

(l − l1)4

}
+ 1

2

{
1

(l − l1)4
− 1

l4
1

}
.

Introduction of new variables u = v1 − v2,v = v1 + v2 sim-
plifies Eqs. (29) and (30) to

v̇ = −9uv

{
1

l4
1

− 1

(l − l1)4

}
, (31)

u̇ =
[

1 + 9

2
(u2 + v2)

] {
1

l4
1

− 1

(l − l1)4

}
, (32)

dl1

dt
= u. (33)

One can see that l1 = l/2,u = 0,v = v0 = constant is a sta-
tionary equilibrium solution of (31)–(33). Below we present
the linear analysis separately to obtain an analytical solution
in the vicinity of a stationary state followed by the numerical
solution of the general nonlinear equations.

2. Linearized solution near stationary state

Let

l1 = l

2
+ ξ, v = v0 + η, ξ,η,u � 1.

Linearization of (31)–(33) in the vicinity of a stationary
solution results in

ξ̇ = u, η̇ = 0, u̇ = −28l−5 (
1 + 9

2v2
0

)
ξ. (34)

The general solution of (34) is

ξ = c1 sin λt + c2 cos λt, η = c3,

u = c1λ cos λt − c2λ sin λt, (35)

λ = 24
√

l−5
(
1 + 9

2v2
0

)
.

The solution is periodic; i.e., a stationary solution is a center,
with the period increasing with the length of streamline and
decreasing with the initial velocity of the bubbles relative to
the fluid. It is evident that with the absence of any damping
mechanism, i.e., for a bubble in an inviscid flow field, the
separation distance, as well as the relative velocity, will sustain
periodic oscillations indefinitely.

3. Nonlinear effects

From Eq. (31), it can be concluded that if, v(0) = 0, then
v = 0 ∀ t > 0. In this case Eqs. (32) and (33) comprise a
nonlinear second order autonomous system of differential
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FIG. 4. (Color online) Effect of nonlinearity on the phase space
pattern (two bubble case), l = 100. Solid lines correspond to the initial
velocity v(0) = 0; dashed lines correspond to the initial velocity
v(0) = 1.

equations, which describes the evolution of the separation be-
tween two bubbles, that can be integrated analytically to yield

u = ±1

3

√√√√C1 exp

[
−3

l
(
l2 − 3 ll1 + 3 l2

1

)
l3
1 (l − l1)3

]
− 2, (36)

where C1 is a constant of integration.
A phase portrait of this system with v(0) = 0 and l = 100 is

shown in Fig. 4 by solid lines. Closed trajectories correspond
to periodic solutions. It is evident that the phase lines
(trajectories) in the vicinity of the stationary point resemble
ellipses predicted by the linear theory. The nonlinearity of
Eq. (32) manifests itself in the deformation of the phase
lines far from equilibrium position. Dashed lines in Fig. 4
are projections of trajectories corresponding to (31)–(33) at
v(0) = 1. One can see that the amplitude of oscillations for
relative velocity is increased while for separation it remains
almost the same.

For other cases, the system (31)–(33) was integrated
numerically for various initial conditions. It was found that
the separation distance shows a periodic behavior which
continues uninterrupted, with the absence of a dissipative
process, and no equilibrium is achieved. Sample evolution
of separation is depicted in Fig. 5(a) at different initial
separation distances l1(0) = 20 and l1(0) = 30, where l =
100, u(0) = 0, v(0) = 0.15. Figure 5(b) shows the evolution
of the composite velocity v(t). One can see that the period of
oscillation of v is considerably smaller than that of l1 and its
derivative u. Also, in contrast to the solutions of the linearized
equations, the period of oscillations depends strongly on the
initial conditions, i.e., initial separations and velocities. This
dependence on u and l1 is shown in Fig. 6. It can be seen that the
period of the oscillations increases with the initial separation as

long as it does not exceed the equilibrium value but it decreases
with initial velocities. When the initial relative velocity, u,
is zero and the initial position approaches the equilibrium,
the period tends to the value 2−5/2π

√
l5/(2 + 9v2

0) predicted
by the linear theory. For large initial deviation from the
equilibrium position, the period is considerably shorter.
Computations performed in cases of multiple (three and four)
bubbles also demonstrated periodic motion.

B. Low-viscosity model

1. Governing equations

In this section, we aim to discuss the effect of low viscosity
on the evolution of the separation distances between the
bubbles. The evolution of separation as discussed in the
inviscid case undergoes periodic motion which continues
indefinitely. We introduce a low viscous effect which produces
a drag force that slows the motion of the bubbles, and
eventually the bubbles assume equilibrium positions. In order
to simplify the model we assume that the dynamics of the
bubbles is governed by a balance between the added mass
force, force due to primary shear flow, interaction force as
in (27), and an additional viscous resistance due to the slow
translation of the bubbles relative to the ambient fluid.

The first estimate of the viscous drag, translating with a
velocity U , on a spherical bubble of radius a in the asymptotic
limit of high Reynolds numbers was obtained by Levich [23,
24] from a balance between the rate of work done by the drag
force and viscous dissipation within the fluid, and it has the
dimensional form

Fviscous = −12πμaU. (37)

Kang and Leal [25] determined this drag force directly through
the integration of the normal stress over the bubble surface
and have shown that (37) is valid in the leading order in the
Reynolds number. Stone [26] gave an alternative derivation of
this result by showing that the steady drag experienced by a
bubble or a drop of arbitrary shape moving in a uniform flow
can be expressed in terms of volume and surface integrals of
the vorticity field. For an inviscid spherical bubble, the result
of Eq. (37) was recovered. Moore [27] obtained a correction
to (37) in the steady case analyzing the flow in a thin boundary
layer and in a narrow wake where the vorticity produced by
the shear-free condition is confined, in the asymptotic limit of
high Reynolds number. Chen [28] obtained the instantaneous
viscous resistance force from the kinetic energy balance over
the whole flow domain and determined the drag coefficient that
tends to the result given by Moore for large time and found the
leading order correction to (37) at small time. Slavchev and
Simeonov [29] used a matched asymptotic expansion to find
the short time velocity and pressure fields around the bubble.
They evaluated the drag force through a direct integration of
the stress on the bubble surface and obtained the next term
in the expansion. They also considered a bubble accelerating
uniformly from rest and showed that at short time, the drag
force is essentially the sum of the added mass force and the
viscous drag force given by (37), with the Reynolds number
Re(t) based on the instantaneous slip velocity. Magnaudet and
Legendre [30] examined the drag force on a bubble with a
time-dependent radius, a(t), and recovered (37) in the special

023021-6



INTERACTION OF BUBBLES IN AN INVISCID AND . . . PHYSICAL REVIEW E 88, 023021 (2013)

(a) (b)

FIG. 5. Dynamics of evolution in the two bubble case: (a) separation distance between the bubbles, (b) composite velocity v.

case of a constant radius. More references on the subject can
be found in Magnaudet and Eames [1].

The results reviewed above concern the drag on a single
bubble in an unbounded fluid. To evaluate effect of multiple
bubbles note that at large separations, the leading order
perturbation of the flow in the vicinity of bubble 1 due to
the motion of bubble 2 translating with velocity v2 is the same
as that induced by a uniform flow at infinity with velocity
3v2/d

3 [see Eq. (23)]. Thus, the scaled viscous resistance for
bubble n in the presence of bubbles (n − 1) and (n + 1) takes
the form [assuming that all the separations are large and are of
the same order of magnitude ln = O(d)]

Fvisc
n = −12π

Re

[
vn − 3vn+1

l3
n+1

− 3vn−1

l3
n

+ O

(
1

d4

)]
, (38)

where Re = ρGa2/μ is the Reynolds number.
Similar to the inviscid case, we neglect the mass of the

bubble and require that the net force exerted on it be zero. Thus,
the force exerted on the nth bubble is balanced by added mass
force, the force due to translation of neighbor bubbles and the
viscous resistance given by (38). According to the assumptions
of the model all the forces are calculated taking into account
the presence of the (n − 1)th and (n + 1)th translating bubbles.

Force balances on all N bubbles provide N equations
relating accelerations of the inclusions, their velocities, and
separation distances. These equations are linear with respect
to accelerations. Solving them with respect to bubble accel-
erations and neglecting the terms of the order �O(d−6), we
obtain the equations of motion in the form

v̇n = −9

{
v2

n−1

l4
n−1

− v2
n+1

l4
n

}
+ 1

2

{
1

l4
n

− 1

l4
n−1

}
− 18

Re
vn, (39)

dln

dt
= vn − vn+1, n = 1, . . . ,N, (40)

where l0 = lN , v0 = vN , and vN+1 = v1 and Re is the Reynolds
number.

The equations of motion for the two bubble case, including
the viscous effect, are given by

v̇ = −9uv

[
1

l4
1

− 1

(l − l1)4

]
− 18

Re
v, (41)

u̇ =
[

1 + 9

2
(u2 + v2)

] [
1

l4
1

− 1

(l − l1)4

]
− 18

Re
u, (42)

dl1

dt
= u, (43)

where u = v1 − v2,v = v1 + v2.
It is easy to see that ln = l/N,vn = 0 is a stationary

equilibrium solution of (39) and (40) and l1 = l/2,u = 0,v =
0 is a stationary equilibrium solution of (41)–(43). Note that
in contrast to the pure inviscid model, stationary solutions
with arbitrary v are not possible. In the following section,
we first study the behavior of solution in the vicinity of the
equilibrium via solving corresponding linearized equations.
The nonlinear effects are investigated via numerical solution
of Eqs. (39)–(43).

2. Linearization near stationary solution

In the two bubble case linearization of (41)–(43) in the
vicinity of stationary solution results in

ξ̇ = u, u̇ = − 18

Re
u − 28l−5ξ, v̇ = − 18

Re
v, (44)

where l1 = l
2 + ξ,ξ,u,v � 1. The general solution of Eq. (44)

is

ξ = c1 exp(λ1t) + c2 exp(λ2t),

u = c1λ1 exp(λ1t) + c2λ2 exp(λ2t), (45)

v = c3 exp

(
− 18

Re
t

)
,

where

λ1 = − 9

Re
+

√
81

Re2 − 28

l5
, λ2 = − 9

Re
−

√
81

Re2 − 28

l5
.

One can see that, in the two bubble case, the magnitude of
the composite translation velocity v decays exponentially,
while for the separation distance and the relative velocity
there exists a critical Reynolds number Recr = 9l5/2/16 below
which these variables approach the equilibrium monotonically.
If Re > Recr , both λ1 and λ2 are complex and the solution (45)
exhibits an oscillatory behavior with exponentially decaying
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(a) (b)

FIG. 6. Dependence of the period of oscillations on various initial conditions (two bubble case).

amplitude. We define the relaxation time Trel in which the
deviations from the equilibrium decrease tenfold. It follows
from (45) that for supercritical Reynolds number, Trel = Re/3.
For subcritical Reynolds number Re < Recr , both λ1 and λ2

are real with λ2 < λ1 < 0, and the relaxation time in the
subcritical system is defined by 3/|λ1|. In a subcritical situation
the relaxation time grows monotonically with decreasing Re,
and at Re � l5/2 it can be approximated by Trel = 3/|λ1| �
27 × 2−7l5/Re [note that in experimental devices l � O(102),
see, e.g., [5], and thus the above inequality does not contradict
the assumption of high Re].

In the case of three bubbles, the stationary solution of (39)
and (40) is l1 = l2 = l3 = l/3,v1 = v2 = v3 = 0. Lineariza-
tion of (39) and (40) in the vicinity of the stationary solution,
and introduction of new variables v = v1 + v2 + v3, u1 =
v1 − v2, u2 = v2 − v3, results in

ξ̇1 = u1, ξ̇2 = u2, v̇ = − 18

Re
v,

u̇1 = − 18

Re
u1 − 2 × 36l−5ξ1, (46)

u̇2 = − 18

Re
u2 − 2 × 36l−5ξ2,

where l1 = l
3 + ξ1,l2 = l

3 + ξ2,ξ1,ξ2,u1,u2,v � 1. The gen-
eral solution of Eq. (46) is

ξ1 = c1 exp(λ3t) + c2 exp(λ4t),

u1 = c1λ3 exp(λ3t) + c2λ4 exp(λ4t),

ξ2 = c3 exp(λ3t) + c4 exp(λ4t), (47)

u2 = c3λ3 exp(λ3t) + c4λ4 exp(λ4t),

v = c5 exp

(
− 18

Re
t

)
,

where

λ3 = − 9

Re
+

√
81

Re2 − 2 × 36

l5
,

λ4 = − 9

Re
−

√
81

Re2 − 2 × 36

l5
.

One can see that, in this case also, the magnitude of the
composite translation velocity v decays exponentially, while
for the separation distances and the relative velocities there
exists a critical Reynolds number Recr = l5/2/3

√
2, below

which these variables approach the equilibrium monotonically.
Note that the critical Reynolds number in the three bubble case
is considerably lower than in the two bubble case. If Re > Recr ,
both λ3 and λ4 are complex and the solution (47) exhibits an
oscillatory behavior with exponentially decaying amplitude.
It follows from (47) that, for supercritical Re, Trel = Re/3.
For subcritical Reynolds number Re < Recr , both λ3 and
λ4 are real. The relaxation time in the subcritical system is
defined by 3/|λ3|. It monotonically grows with decreasing
Re, and at Re � l5/2 and large l, it can be approximated by
Trel = 3/|λ3| � 3−3l5/Re.

The relaxation time evaluated via the linearized equations
is depicted in Fig. 7 versus Re for two (solid line with square
markers) and three (solid line with circular markers) bubbles
at l = 100. One can observe that, at subcritical Reynolds

FIG. 7. Dependence of the relaxation time on the Reynolds
number in the two and three bubble cases. The points at which
the slope changes sign indicate the positions of critical Reynolds
numbers.
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FIG. 8. Dependence of critical Reynolds number on various
initial conditions (two bubble case).

numbers, the three bubble system exhibits a considerably faster
relaxation than the two bubble system, while at supercritical
situation, the relaxation time is almost independent of the
number of bubbles. Also, the fastest relaxation takes place
at critical Reynolds number.

Studying linearized systems with more than three bubbles
revealed a complicated behavior with multiple modes of
oscillations and damping. However, several qualitative features
and trends remain similar: At nonzero viscosity, the solutions
tend to equilibrium, there is a critical Reynolds number that
grows with the parameter l and decreases with the number of
bubbles, and the relaxation time decreases with the number of
bubbles especially at subcritical situation.

3. Nonlinear effects

The nonlinear effects were studied via numerical integration
of the system (39) and (40). It was demonstrated that, as
anticipated and predicted by the linear analysis, the presence
of the viscous force causes a damping effect, the oscillations
die out in time, and the bubbles assume equilibrium positions.
There exists a critical Reynolds number beyond which the
evolution exhibits nonmonotonic behavior that grows fast with
l. However, in contrast to the results based on the linearization,
where the critical Reynolds number depends solely on the
parameter l and on the number of bubbles in the system,
the computations of the nonlinear system of equations reveal
dependence on the initial conditions, i.e., separations and
velocities. These effects are demonstrated in Fig. 8, where
l = 100, u(0) = 0, and l1(0) = 3 and 5. One can see that the
critical Reynolds number increases with the initial separation
l1(0).

Note that at small values of v(0), the critical Reynolds
number is much higher than the values at which stable
Taylor vortices are anticipated. It may be observed, however,
that Recr decreases drastically with the growth of the initial
velocity v(0) as seen in Fig. 8. If v(0) > O(10), the critical
Reynolds number beyond which separation distance exhibits
nonmonotonic behavior is much smaller, of the order of tens
and hundreds. Note also that v(0) corresponds to the initial
composite velocity of the bubble relative to the ambient
fluid which is as it is in the experiments described in [5],
where the bubbles were introduced into an already rotating
fluid.

As in the case of the inviscid model, it follows from (41)–
(43) that if v(0) = 0, then v(t) = 0 ∀ t > 0 and the evolution of
l1 and u in the nonlinear system is governed by a second order
autonomous system of ordinary differential equations. A phase

(a) (b)

FIG. 9. (Color online) Phase space pattern at various initial conditions for the two bubble case. Solid and dashed lines correspond to the
Reynolds numbers 60 000 and 120 000, respectively (two bubble case).
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(a) (b)

FIG. 10. Evolution of the separation distance between the bubbles (two bubble case): (a) Near Recr � 19 540, (b) high Reynolds number.

portrait of this system is presented in Fig. 9(a). Clearly, the
fixed point is of the sink type and the motion is oscillatory with
decreasing amplitude. With the passage of time the amplitude
of the oscillations diminishes and bubble positions approach
equilibrium. Figure 9(b) demonstrates the projection of the
phase space to the plane (l1,u) in the case of a nonzero v(0).
Solid and dashed lines correspond to Re = 60 000 and Re =
120 000, respectively. The trajectories are qualitatively similar
to the v = 0 case. Note that the amplitude of oscillations varies
with the initial conditions.

The evolution of the separation distance in the case of
two bubbles is shown in Fig. 10 at various Reynolds num-
bers, where l = 100, l1(0) = 10, u(0) = 0, and v(0) = 0.5.
The solid curve in Fig. 10(a) represents the evolution at a
Reynolds number below the critical one where the separation
grows monotonically and slowly approaches equilibrium. The
dashed curve in Fig. 10(a) corresponds to the case just above
the critical Reynolds number, where the evolution shows
an overshooting behavior as seen in several experimental
runs reported in [5]. This nonmonotonic behavior becomes
prominent as the Reynolds number increases, as demonstrated
by the dotted curve in Fig. 10(a). From Fig. 10(a), one can see
that, similar to the linear case, the relaxation time is minimal
near critical situation.

With the further growth of Re beyond the critical value the
separation distances of the bubbles start oscillating and the
frequency of oscillations increases with increasing Reynolds
number. As time elapses the oscillations diminish due to
the viscous resistance, which causes a damping effect, and
the bubbles assume equilibrium positions [Fig. 10(b)]. Note
that the results in Fig. 10 are computed at high nonrealistic
Reynolds numbers which are presented here to illustrate
qualitative features of the model. At higher v(0) overshooting
and oscillations appear at much lower Re, but the oscil-
lations are much faster at the initial stage of the process
and the relaxation is much slower than those depicted in
Fig. 10.

It should be noted that there are several cases of initial
relative and composite velocities for which bubbles may
converge towards each other during the evolution of separation
distance up to the point of possible collision which may cause

coalescence. Typical cases are those with a large enough initial
relative velocity u(0); see, e.g., the case depicted in Fig. 11 by
dashed and dotted curves.

An example of the evolution of the separation distances in
the case of three bubbles having unequal initial separations is
presented in Fig. 12 at various Reynolds numbers, where l =
100, l1(0) = 10, l2(0) = 15 and where all the three bubbles
have equal initial velocity of translation v1 = v2 = v3 = 1.5.
It can be seen from Figs. 12(a), 12(c), and 12(e) that at
Reynolds number 4100 (solid curve), the initially minimal
and maximal separation distances exhibit monotonic behavior,
whereas the other separation distance exhibits overshooting,
a behavior also predicted by the low-inertia analysis in
[5]. However, as the Reynolds number increases all the
separation distances exhibit oscillatory behavior and the
frequency of oscillations increases with Reynolds number
[dashed and dotted curves in Figs. 12(a), 12(c), 12(e) and
all curves in Figs. 12(b), 12(d), 12(f)]. Note also that this
oscillatory behavior can become quite complex [Fig. 12(d)].
The complex pattern seems to be prominent initially and
beyond a certain time it becomes smooth and finally all the
oscillations are damped and the bubbles achieve equilibrium
positions.

FIG. 11. Illustration of collision of bubbles (two bubble case).
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(a) (b)

(c) (d)

(e) (f)

FIG. 12. Evolution of the separation distances between the bubbles at various Reynolds numbers (three bubble case).

The evolution of separations in the case of four bubbles
is presented in Fig. 13 at various Reynolds numbers, where
l = 100, l1(0) = 5, l2(0) = 15, l3(0) = 35 and where all the
four bubbles have equal initial velocity of translation v1 =
v2 = v3 = v4 = 1.2. As in the case of three bubbles at low
Reynolds number, the initially minimal and maximal separa-
tion distances l1 and l4 in the four bubble case exhibit mono-
tonic behavior, whereas the initially intermediate separation

distances l2 and l3 display nonmonotonic behavior [solid curve
in Figs. 13(a), 13(c), 13(e), 13(g)]. Beyond some critical
Reynolds number all the separation distances undergo oscilla-
tions with frequency that increases with the Reynolds number
[dashed and dotted curves in Figs. 13(a), 13(c), 13(e), 13(g)
and all curves in Figs. 13(b), 13(d), 13(f), 13(h)]. Also in this
case the pattern of oscillations can exhibit complex behavior, as
seen in Fig. 13(d). It may be noticed that the critical Reynolds
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 13. Evolution of the separation distances between the bubbles at various Reynolds numbers (four bubble case).

number for the onset of oscillations decreases as the number
of bubbles increases. Similarly, the relaxation time decreases
as the number of bubbles increases as was also predicted in the
case where viscous force was dominant over inertia [5] and in
the linearized analysis presented above.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied the effect of inviscid flow and
of low viscosity on the evolution of separation between
interacting bubbles in shear flow. We obtained the force acting
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on bubbles, which was shown to be of a repulsive nature
and was further employed to model the dynamics of the
bubbles in a Couette-Taylor device. A simplified model of such
dynamics is suggested where it is assumed that each bubble
interacts solely with its nearest neighbors. We suggest also a
low-viscosity model taking into account viscous dissipation
effect at high Reynolds number. The application of the models
results in systems of nonlinear ordinary differential equations
describing the evolution of the separations between the
bubbles.

The resulting systems of ordinary differential equations
were studied by linearization in the vicinity of the equilibrium
and by numerical integration of the nonlinear equations for
various initial conditions in cases of two, three, and four
bubbles. It was shown that, while in inviscid flow corre-
sponding to infinite Reynolds number the bubbles undergo
periodic motion, taking viscous resistance into account causes
damping of these oscillations. As a result, oscillations diminish
in time and bubbles achieve equilibrium configurations, with
the relaxation time decreasing with an increase in the number
of bubbles. The existence of a critical Reynolds number, below
which no oscillations were observed, was found. Beyond
the critical Reynolds number the separation distances start
oscillating until the bubbles reach equilibrium positions. The
pattern of oscillations in the supercritical regime, in the case of
multiple bubbles, can become quite complicated, as is evident
in Fig. 13.

The solution near stationary states obtained in the linear
theory, describes the behavior of a system with a damp-
ing mechanism that is established at large time. Hence,
it would apply to the cases discussed in Sec III B, and
it provides a description of the behavior of the solution
of the general nonlinear equations as time increases. It
was shown that the linear theory predicts that the critical
Reynolds number grows fast with the ratio of the length of
streamline to the bubble radius. At l = O(100), which is
typical for the experiments described in [5], Recr = O(105),
at which values no stable Taylor vortices are anticipated.
Thus, for the experimental conditions and in agreement with
the experimental observations, our theory predicts monotonic
approach to the equilibrium at developed stages of the
process.

In simulations of the nonlinear equations, it was found that
the critical Reynolds number drastically decreases with the
growth of the initial velocity of the bubbles relative to that of
the ambient fluid. It becomes of O(10) if quiescent bubbles are
introduced into a moving fluid and the initial relative velocity
equals that of the fluid at the center streamline in the Couette-
Taylor device described in [5].

We conclude that the effects taken into account by
our model can result in a nonmonotonic behavior of bub-
bles in a Couette-Taylor flow similar to those observed
in several experimental runs reported in [5] that add
further explanation to the low-viscosity model suggested
there.
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APPENDIX: BISPHERICAL COORDINATES

Consider the bispherical coordinate system connected with
the two bubbles of radii unity as shown in Fig. 14 and linked
with the cylindrical system (ρ,z,φ) by the relation

ρ = c sin η

cosh ξ − cos η
, z = c sinh ξ

cosh ξ − cos η
, φ = φ, (A1)

where −∞ < ξ < ∞, 0 � η � π , and 0 � φ � 2π and c is
related to the distance between the centers of bubbles, d by
c = 1

2

√
d2 − 4. The interface of bubble 1 is described by the

coordinate surface ξ = α > 0 and the interface of bubble 2
corresponds to ξ = −α > 0, where α is a constant given by
α = sinh−1(c).

Following Lebedev [20], the solution of velocity potential,
which is a harmonic function, is of the form

�shear = 1

c

∞∑
n=1

(cosh ξ − cos η)1/2

[
An cosh

(
n + 1

2

)
ξ

+Bn sinh

(
n + 1

2

)
ξ

]
P 1

n (cos η) cos φ, (A2)

where An and Bn are unknown constants to be determined
from the boundary conditions and P 1

n are associated Legendre
polynomials of degree n and order 1, respectively.

In order to determine the unknown constants An and Bn, the
gradient of Eq. (A2) is computed in bispherical coordinate and
substituted in the boundary condition (10). Then, the relations

FIG. 14. Schematics of bispherical coordinate systems in (z,ρ)
cylindrical coordinates plane. The coordinates φ in cylindrical and
bispherical systems coincide.
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between associated Legendre polynomials are used to express
both sides of the obtained equations in terms of P 1

n . These
equations are thus reduced to an infinite system of linear
algebraic equations on the following coefficients:

(i) on ξ = α,

−(n − 1)An−1 sinh

(
n − 1

2

)
α +

[
sinh α cosh

(
n + 1

2

)
α + (2n + 1) cosh α sinh

(
n + 1

2

)
α

]
An

− (n + 2)An+1 sinh

(
n + 3

2

)
α − (n − 1)Bn−1 cosh

(
n − 1

2

)
α +

[
sinh α sinh

(
n + 1

2

)
α

+ (2n + 1) cosh α cosh

(
n + 1

2

)
α

]
Bn − (n + 2)Bn+1 cosh

(
n + 3

2

)
α

= 4
√

2c2

sinh α

{
− (n + 2) cosh α exp

[
−

(
n + 3

2

)]
α − (n − 1) cosh α exp

[
−

(
n − 1

2

)]
α

+ (2n + 1) exp

[
−

(
n + 1

2

)]
α

}
, n = 1, . . . ,∞; (A3)

(ii) on ξ = −α,

(n − 1)An−1 sinh

(
n − 1

2

)
α −

[
sinh α cosh

(
n + 1

2

)
α + (2n + 1) cosh α sinh

(
n + 1

2

)
α

]
An

+ (n + 2)An+1 sinh

(
n + 3

2

)
α − (n − 1)Bn−1 cosh

(
n − 1

2

)
α +

[
sinh α sinh

(
n + 1

2

)
α

+ (2n + 1) cosh α cosh

(
n + 1

2

)
α

]
Bn − (n + 2)Bn+1 cosh

(
n + 3

2

)
α

= 4
√

2c2

sinh α

{
− (n + 2) cosh α exp

[
−

(
n + 3

2

)]
α − (n − 1) cosh α exp

[
−

(
n − 1

2

)]
α

+ (2n + 1) exp

[
−

(
n + 1

2

)]
α

}
, n = 1, . . . ,∞. (A4)

This system is truncated at some large N and is solved numerically using MATLAB. The accuracy is checked by repeating the
procedure at 2N and comparing the results. In a similar manner, the coefficients corresponding to the potential �trans and the
auxiliary potential H can be obtained.
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