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Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops
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In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically
oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection
of resonance modes are observed and their dynamics subsequently investigated. We first present our method of
identifying each mode uniquely, through association with spherical harmonics and according to their geometric
patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the
classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen
that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and
analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating
sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable
liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as
drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens
devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a
harmonically driven substrate.
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I. INTRODUCTION

The dynamics of an oscillating free drop was predicted by
Lord Rayleigh [1]. This early work took account of surface
tension and inertia in the case where viscous effects are
negligible, as appropriate for water drops on the millimeter
scale. Rayleigh characterized the dynamics of a plucked, freely
oscillating, spherical drop by its natural frequencies:

ω2
n = σ

ρR3
n(n − 1)(n + 2), n = 0,1,2, . . . , (1)

where σ is the surface tension, R is the radius of the
undisturbed drop, and ρ is the density of the drop fluid.
Corresponding drop mode shapes have radial deformations
that are given by the Legendre polynomials Pn(cos(θ )), a
subset of the spherical harmonics (solutions of the Laplace
equation in three dimensions), where θ is the angle to the
north pole in a spherical coordinate system [2,3]. Note that
these shapes are axisymmetric. We shall refer to mode shapes
Pn with frequencies ωn as “Rayleigh drops.” Rayleigh’s
predictions have been verified experimentally for immiscible
drops by Trinh and Wang [4] and for free drops in microgravity
by Wang, Anilkumar, and Lee [5], both using acoustic
excitation. Rayleigh’s prediction for the oscillating free drop
still sees widespread use even in situations where the drop is
not completely free, as for a drop levitated [6,7] or in contact
with a solid [8–12] or with another liquid [13]. Modifications,
ad hoc or otherwise, to Eq. (1) are often invoked to account for
the influence of substrate contact on drop frequency [14–16].
Why has Rayleigh’s result proved to be so resilient and what
are its limits of applicability in the sessile drop case? This is
the focus of our paper.
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A sessile drop is a drop that sits on a planar substrate.
For sessile drops both the equilibrium contact angle and the
mobility of the contact line will influence frequencies and
mode shapes. A subset of Rayleigh drops are exact solutions
for sessile drops under the right conditions. This is because
even modes (n = even) have a zero normal velocity on
the equatorial plane and thereby automatically satisfy the no
penetration condition. Hence, provided the contact-line motion
of the sessile drop is not restricted (i.e., is mobile) and the
equilibrium shape is hemispherical (i.e., has a 90◦ contact
angle), the Rayleigh half-drop is a solution to the sessile drop
governing equations. These solutions will be called “Rayleigh
half-drops” and, along with their frequencies, constitute the
Rayleigh spectrum. They are illustrated in the first row of
Fig. 1 (l = 0 modes).

There are other solutions to the linear stability equations
that the Rayleigh drops solve, as noted by Lamb [2] and others
[17]. These solutions are also spherical harmonics, but include
shapes that break the axisymmetry of the Rayleigh drops:

r(θ,ψ) = 1 + εP l
k (cos θ ) cos(lψ),

(2)
0 � θ � π, 0 � ψ � 2π.

Here r is the scaled radial coordinate and θ and ψ are
polar and azimuthal angles in spherical coordinates, ε is
the magnitude of deformation such that ε � 1, and P l

k is
the associated Legendre function of degree k and order l.
The axisymmetric Rayleigh half-drops are zonal modes in
the spherical harmonic classification, corresponding to l = 0
with mode shapes Pn = P 0

n , as noted above. The shapes of
Eq. (2) have frequencies given by Eq. (1), which makes
them degenerate eigenmodes. We shall refer to these modes
and frequencies as the “Lamb spectrum.” For Lamb modes,
the condition k + l = even guarantees no penetration on the
equatorial plane and, hence, provides nonzonal solutions to
the sessile drop equations, again for hemispherical drops
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FIG. 1. Eigenmodes of hemispherical drops predicted by the
theory of Rayleigh and Lamb are spherical harmonics. Zonal modes
are in row 1 (l = 0), sectoral modes are along the diagonal (k = l),
and tesseral modes are where k �= l. Note that the shape at (0,0) is the
static drop shape.

with mobile contact lines. We will refer to these as “Lamb
half-drops.” These are illustrated in Fig. 1 in the rows below
row one. The gaps in Fig. 1 represent the missing spherical
harmonic solutions (k + l = odd). Nonzonal modes (l �= 0) are
called “sectoral” if k = l, and “tesseral” if k �= l. In Fig. 1, zonal
modes occupy row one, sectoral modes fall on the diagonal,
and the tesseral modes are all others. The (0,0) entry is the
static equilibrium spherical-cap shape.

For Lamb half-drop solutions, it turns out that nonzonals
have identical frequencies to the corresponding zonal mode,
according to the modal degeneracy. That is, all modes with
the same k have the same frequency. To excite nonzonals
in experiments with free drops, the source of excitement
must break the symmetry by some means. For example, Shen
et al. [18] have reported sectoral free drop oscillations excited
using ultrasound. They employ a modulated time-periodic
driving signal. The base signal (higher frequency) biases the
drop to a prolate shape and the superimposed modulation
(lower frequency) induces the sectoral shape. Sectorals up
to seventh order are reported (up to k = l = 7) and, with a
simple adjustment, observed frequencies compare reasonably
to Lamb’s sectoral predictions. For other levitation methods,
using various excitation techniques, only zonal modes have
been reported [6,15]. Tesseral modes have never been reported
for levitated drop experiments, as far as we are aware, although
the large-amplitude shapes reported in the free fall experiments
of Azuma and Yoshihara [19] may have started from tesserals.
Even for levitated drops, the levitating force can influence the
spectrum, as has been reported for diamagnetic levitation [6].

Drop contact with a solid has long been recognized to
modify the Rayleigh spectrum. Strani and Sabetta [8,20]
studied drops in contact with a solid support of spherical
bowl shape. Studies were restricted to axisymmetric shapes
and predicted frequencies of vibration compared favorably to

experiment [4,21,22]. More recently, Bostwick and Steen have
reported the spectrum for a drop constrained by a spherical
belt support [23,24]. This two-parameter family of constraint
recovers as special cases the Strani and Sabetta spectrum
and that for a drop pinned along a circle, also considered
elsewhere [25,26]. Strani and Sabetta’s spherical bowl results
were pressed into service to account for the influence on
frequency of the constraint of a planar substrate, with some
success, at least for nonwetting drops [27]. Smithwick and
Boulet’s measurements of a vibrating mercury drop on a
glass plate showed zonal shapes with a frequency response at
half the driving frequency [27]. A subharmonic response was
also noted by Yoshiyasu et al., who studied gravity-distorted
nonwetting sessile drops, driven by a plane-normal substrate
oscillation [14]. They reported sectoral-like shapes. Chebel
et al. subjected a buoyant drop, attached to a capillary
and immersed in a water bath, to volume oscillations [12].
They report a frequency response that matches the Rayleigh
spectrum to within 3% for the first three zonal modes, even
though the buoyancy considerably distorts the static shape.
Ganan and Barerro [28] compares measured frequencies
against predictions from their spectral-based computation to
find agreement to 4% for vibrating pinned drop modes that
include several tesseral shapes. Brunet and Snoeijer vibrate
drops on hydrophobic surfaces (contact angle 140◦) and
observe starlike, tesseral modes as the acceleration of the
surface increases [7]. They note a chaotic regime where
the coexistence between two or several modes leads to an
undefined (or fluctuating) number of nodes just before drop
breakup.

The literature on driven sessile drops is large and growing;
we have restricted our review of the literature to focus on
previous work most relevant to this experimental study. More
recently, the dynamics of the three-phase contact line has been
a focus of theoretical efforts [29–31]. Lyubimov et al. [30]
restricts to axisymmetric oscillations of a hemispherical drop,
allowing contact-line movement by a Hocking condition. A
related analysis of asymmetric disturbances considers both
plate-normal and plate-tangential driving forces [29]. The
analysis of Fayzrakhmanova and Straube [31] also restricts
to hemispherical drops and axisymmetric disturbances, where
here the new feature is that a stick-slip Hocking condition has
been implemented. Modifications of the Rayleigh spectrum
are reported in these three studies. Noblin et al. vertically
vibrated sessile drops exhibiting moderate contact angle
hysteresis (10◦–15◦) and studied the transition from pinned
to slipping contact line, the stick-slip regime [32]. These
studies showed that the transition between regimes occurs
when the contact angle fluctuation during vibration exceeds
the contact angle hysteresis. Comparison of stick-slip behavior
is also conducted in experiments that use white noise vibration
to excite multiple resonance modes of sessile water drops
on either a hydrophobic polystyrene surface (no slip), or
superhydrophobic pillared surface (with significant slip) [33].
These experiments demonstrate that resonance frequencies
decrease with contact angle and that contact-line slipping
impacts (dampens) the higher frequency modes more than the
lower ones. In a more recent follow-up study of water drops on
a hydrophobic substrate driven by plane-normal oscillations,
Noblin et al. observe sectoral shapes up to l = 3 and report
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that contact-line mobility is a necessary condition for these to
appear [34]. When the contact line is pinned, at lower driving
amplitudes, only zonal modes are seen. A model that uses the
one-dimensional dispersion relationship for gravity-capillary
waves on a liquid bath of finite depth is proposed to account
for these frequencies. Sharp et al. test Noblin’s model by
measuring frequencies of nonzonal drops over a range of
contact angles and find qualitatively similar dependence but
quantitative discrepancies on the order of 20% [16].

Another recent focus of experimental studies of sessile
drops is the “rocking mode” [9,35], an asymmetric mode, ex-
citable by either in-plane or plane-normal driving oscillations,
which seems to be linked to droplet translation [11,13,36].
Brunet et al. induce droplets to move uphill [36]. Noblin
et al. use a combination of in-plane and plane-normal driving
oscillations to induce droplets to move laterally [11]. Dorbolo
et al. bounce an oil drop on a vibrating oil-air interface
and report observed shapes using a spherical harmonics
classification [13]. They point out an asymmetric shape
(k,l) = (2,1) that, when excited, “rolls on the vibrated surface
without touching it.” Finally, Vuvvkasinovic et al. drive a
sessile water drop with a piezoelectric actuator and document
the wave patterns corresponding to resonance frequencies on
increasing driving amplitude until the drop is atomized [37].
On driving harder, they report the following sequence of
waves: axisymmetric standing, azimuthal standing, azimuthal
rotating, a “lattice mode,” preejection waves, and finally
atomized breakup. Along the way, 14 zonals are reported and
several nonzonals, by making the association via dominant
wave numbers. Their nonzonal modes may well be mixtures
between more than one pure mode as the transitions in wave
numbers are gradual. Their zonals have pinned contact lines
and respond harmonically to the driving signal. The nonzonals
respond subharmonically, consistent with other literature
reports. However, in contrast to the Noblin observation,
contact-line motion is believed to coincide with the appearance
of nonzonal modes, not to precede it.

In our experimental study, symmetry is broken by the
substrate plane and by the nonmobile contact-line behavior.
However, because disturbed drop shapes satisfy periodicity in
the azimuthal direction, the spherical harmonic classification
into zonal, sectoral, and tesseral shapes still holds. Strictly
speaking, since the shapes are modified from those for the
Lamb half-drops, these are “zonal-like,” “sectoral-like,” and

“tesseral-like” modes. However, for simplicity, we will drop
the “like” in what follows. We demonstrate the utility of this
classification by showing how zonal, sectoral, and tesseral
shapes can be identified. In particular, we report observation
of the first 36 modes, which includes zonals up to k = 14, and
sectorals up to k = l = 10, with the balance being tesserals
[save for one mode (k,l) = (10,4)]. Observed modes are sum-
marized in Fig. 5. We then turn to the observed frequency of
oscillation. It turns out that zonals respond harmonically to the
driving frequency, while nonzonals respond subharmonically.
Frequencies are then compared against those of the Rayleigh
drop, Eq. (1), and against those predicted by a recent solution of
the governing equations by Bostwick and Steen for an inviscid
sessile drop of contact angle α and pinned contact line, to be
presented elsewhere. The predictions of Bostwick and Steen do
better than Rayleigh and Lamb. Finally, we report that mode
mixing often occurs, another manifestation of nonlinearity.
Linear theory predictions are useful nevertheless.

II. EXPERIMENTAL RESULTS

A. Imaging system

In experiments, the mechanical oscillation signal is gen-
erated by an Agilent 33220A function generator (Agilent
Technologies, Santa Clara, CA), amplified by a Crown CE2000
power amplifier (Crown Audio, Elkhart, IN), and finally sent to
a VTS-100 mechanical vibrator (Vibration Testing Systems,
Aurora, OH). A RedLake HG-XL high-speed camera (DEL
Imaging Systems, Cheshire, CT) captures images of sessile
drops. The optics used on the camera are a Sigma 180
F2.8 APO Macro lens and Vitacon 2X AUTO Teleconverter
(NIF). An observation platform is capable of providing top,
left or right view, one at a time of an oscillating drop
through integration of multiple mirrors (BB1-E02 Broadband
Dielectric Mirrors, by Thorlabs, Newton, NJ). A schematic of
the integrated hardware system is shown in Fig. 2. For each
image set of a given condition, 200 sequential frames were
recorded. Further details on the resolution of imaging can be
found in the Appendix.

A key aspect of our system that enables identification
of higher drop modes is a platform that allows collection
of two-dimensional spatial drop deformation by top-view
imaging. Drops are placed on chemically functionalized glass

high-speed
camera

mechanical
vibrator

A

B

C
sessile drop

glass slide

LED lighting

metal
mesh

FIG. 2. (Color online) Schematic of imaging platform. Shown in the red (rightmost) box are the key components: mesh pattern and LED
light source under the drop. Light rays from LEDs are refracted by the drop’s deforming surface, reflected into the high-speed camera by
mirrors A, B, and C, and convey a deformed mesh pattern to the computer, thereby visualizing the deformation of the drop’s surface. A signal
generator (not shown) oscillates the surface sinusoidally in the direction perpendicular to the plane of the surface.
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surfaces that are designed to achieve a specific contact
angle range (60◦–70◦). Glass surfaces were treated with
3-aminopropyltriethoxysilane (APTES) to achieve contact
angles in this range. Wettability of coated glass slides was
characterized by measuring the contact angles of 20 μL drops
on the surfaces. Contact angles were measured using static
images of drops before using the same drop in oscillation
experiments. Details of surface preparation, functionalization,
and characterization are provided in the Materials and Methods
section.

Beneath the clear glass surface, a metal mesh with 50-μm
weave is affixed. This metal mesh is the key ingredient that
allows the deformation patterns to be identified from the top
view. To affix the metal mesh beneath the functionalized
surface securely, a second glass slide is used to create a
sandwich structure with the 2 × 2 cm2 metal mesh between
the slides. White light emitted by light-emitting diodes (LED)
from below the drop passes through woven metal mesh and
is refracted by the drop’s surface. As the drop deforms, the
mesh pattern is distorted, allowing clear visualization of the
unique patterns of troughs and peaks on the drop surface.
Refracted light is reflected by mirrors C, A, and B and finally
transmitted to a high-speed camera (Fig. 2). By rotating the
mirrors together by 90◦, side views of a drop can also be
obtained. This technique works better for drops for which
light is refracted through only one liquid-gas interface. That
is, it is better for sub- than superhemispherical drops.

In experiments, each sessile drop is excited by a sinusoidal
signal of a prescribed frequency. The range of frequency is
30–1100 Hz. minimal driving amplitude is applied to induce
the resonance modes: For zonal modes, peak accelerations
range from 0.1g to 1g; while sectoral and tesseral modes
require higher (>1g) accelerations. The highest acceleration
among all experiments was 100g. The sessile drop itself
consists of pure water of 20 μL volume. With respect to
these experimental parameters, Reynolds (Re) and Bond (Bo)
numbers are defined as

Re ≡ ar

ων
, Bo ≡ ρgr2

σ
,

where a is the driving acceleration, r is the footprint radius of
drop (typically around 2.5 mm), ω is the driving frequency in
radians per second, ν is the kinematic viscosity of water, ρ is
the liquid density, g is the gravitational acceleration, and σ is
the surface tension. For all experiments, Re is approximately
200, while Bo is less than 0.5, hence the influence of viscosity
is insignificant and surface tension dominates gravity.

B. Identifying observed shapes

As described in the Introduction, we shall catalog observed
shapes according to the zonal, sectoral, and tesseral classifica-
tion of spherical harmonics using the indices (k,l). Examples of
all three different types of modes are presented in Fig. 3. Video
files for selected modes are also available in the Supplemental
Material [38]. As can be seen from the snapshots in the bottom
two rows in Fig. 3, distortion of the mesh pattern by zonal
modes is axisymmetric to the eye. The (3,3) and (5,5) modes
exhibit one single layer of azimuthal wave patterns with three
and five peaks, respectively. For the tesseral modes, the (5,3)

zonal sectoral tesseral

(4, 0) (3, 3) (5, 3)(6, 0) (5, 5) (7, 5)

FIG. 3. (Color online) Examples of zonal, sectoral, and tesseral
modes, where the numbers in the brackets are degree k and order l

of the associated Legendre function specified in Eq. (2), according to
which the 3D surfaces are rendered in rows 1 and 2. Images in rows
3 and 4 are top-view snapshots from experiments. The two snapshots
for each mode differ temporally by one half-period of oscillation.

mode possesses a Y pattern inside a triangle and the (7,5)
shows a star of five vertices in a pentagon. Notice that for all
combinations of k and l, k + l = even numbers, consistent with
Lamb half-drops.

To further illustrate the scheme of mode identification, the
image in column 1, row 3 of Fig. 3 is marked with red circles.
These marks indicate the location of the nodal circles of the
surface wave. According to the axisymmetric distortion of
the underlying mesh pattern, the corresponding mode is zonal
and possesses no azimuthal wave pattern, and hence a zero
azimuthal wave number: l = 0. In addition, because the two
nodal circles intersect any diameter of the drop four times,
or alternatively the surface disturbance exhibits four zero
crossings, k − l = 4, we find k = 4. Therefore the zonal mode
is identified as a (k,l) = (4,0) mode. This scheme facilitates
the identification of any mode with an axisymmetric mesh
deformation.

The sectoral and tesseral modes are identified based on
their polygonal profiles from the top views. Two examples are
provided in Fig. 3, columns 4 and 5. The similarity between
the image marked with red circles in column 4, row 3, with the
simulation, column 4, row 2, is apparent: Both exhibit a pattern
of one single star pattern with five vertices, which suggests that
the former indeed results from the refraction of light across a
deformed drop interface of the same qualitative geometry as
the latter.

Similarly, in Fig. 3, column 5, the observed image is
associated with the simulated image of a (5,3) mode by
recognizing the marked “Y” pattern inside the outer tri-
angle. Notice the primary difference between experimental
images and simulations: Drops in experiments exhibit an
approximately circular footprint, while drops in simulations
exhibit a noncircular footprint. This difference is clarified
by the fact that experimental drops are observed to possess
limited mobility of their contact lines, while the simulations

023015-4



SUBSTRATE CONSTRAINT MODIFIES THE RAYLEIGH . . . PHYSICAL REVIEW E 88, 023015 (2013)

assume completely mobile contact lines, as consistent with
assumptions leading to Lamb half-drops.

C. Estimation of observed resonance frequencies

For all observed modes, the observed resonance frequencies
fo are estimated from image sequences as

fo ≈ fs

Nc

N
, (3)

where fs is the sampling frequency or frame rate for recording
the image sequence and N is the number of frames within
which the drop completes Nc cycles of oscillation. A detailed
description of the method and an error analysis is provided in
the Appendix. With the current experimental setups, errors of
measured frequencies are less than 3%.

D. Harmonic vs subharmonic resonance:
Zonal and nonzonal modes

All observed zonal modes oscillate harmonically with
respect to the driving signal. As shown in Fig. 4, the
driving frequencies (fd ) are plotted against observed resonance
frequencies (fo) for the following modes: zonal modes with
k � 14, sectoral modes with k � 10, and tesseral modes with
k � 10, k = l + 2. With virtually undetectable deviation, the
driving and observed frequencies are equal for all zonal modes.
In contrast, sectoral and tesseral modes do not oscillate with the
same frequency as the driving signal. Instead, these nonzonal
modes exhibit fd ≈ 2fo and therefore are half-frequency,
subharmonic modes. Additional frequency comparisons for
harmonic vs subharmonic modes are in the Appendix.

A qualitative explanation for such distinction between
harmonic and subharmonic responses is that since the driving
signal is vertical oscillation, it is axisymmetric with respect
to the base state of a sessile drop. Prior to breaking the
axisymmetry, zonal modes emerge. To synchronize with the
driving signal, these modes must oscillate at frequencies
close to that of the driving signal. At sufficiently high
driving amplitudes, the axisymmetry breaks down and sectoral
and/or tesseral modes emerge. These possess two azimuthally
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FIG. 4. Demonstration of distinction between harmonic and
subharmonic modes: Zonal modes exhibit fd ≈ fo and therefore are
harmonic modes. In contrast, the sectoral and tesseral modes exhibit
fo ≈ 0.5fd and are subharmonic modes.

conjugate states of maximal deflection, such as those shown
in rows 3 and 4 of Fig. 3. To achieve equal temporal presence
while synchronizing with the driving signal, either state of
deflection spans one complete oscillation cycle of the driving
signal. Therefore it takes the nonzonal modes two cycles of
excitation to complete one cycle of oscillation, and hence
they exhibit a half-frequency or subharmonic response. In
contrast, since zonal modes possess no azimuthal deflection,
resonance of zonal modes requires only synchronizing one
state of deflection with the driving signal, a harmonic response.

Interestingly, the two types of resonance behaviors have
been observed to coexist simultaneously within the same drop
driven by the same signal. Our observations of these cases
reinforce that a zonal mode oscillates twice as fast as any
nonzonal mode that mixes with it. We will describe the mode-
mixing phenomena in detail later.

E. Catalog of observed shapes

With reference to Eq. (2) and among the modes with
k � 10 and l � 10 (corresponding to the first 35 modes), all but
the (k,l) = (10,4) are observed and recorded. In addition, two
zonal modes are repeatedly observed mixing with higher-order
sectoral and tesseral modes: the (12,0) and the (14,0). Indices
(k,l) are useful as they establish the relationship to Lamb
half-drops. However, k is not the polar wave number observed.
Nevertheless, there is a simple relationship to the polar wave
number where

n ≡ k − l

2
+ 1. (4)

Notice that, by this definition, n represents the number of
layers of wave peaks for any given mode. For zonal modes,
l = 0, which possess no azimuthal variations, n is the number
of layers of polar wave peaks or troughs observable from the
side views. Sectoral modes are those that have l > 0 and n = 1,
which observationally means the modes with one single layer
of azimuthal variation. All others (those with l > 0 and n > 1)
are tesseral modes. Top-view snapshots of all observed modes
are cataloged in Fig. 5. We are unsure why the mode (n,l) =
(4,4) has not yet been observed. It is likely to be discovered
with future experimental probing.

III. COMPARISON OF EXPERIMENTAL OBSERVATIONS
AGAINST THEORY

A. Lamb half-drops against observed zonal mode

For all modes, the resonance frequencies are estimated
according to Eq. (3) and compared to predictions of Eq. (5):

ft (k,m) =
√

σ

3π × 2m
k(k − 1)(k + 2), (5)

where σ is the surface tension, k is the polar wave index, and
m = 20 mg is the mass of each sessile drop (20 μL in volume)
in experiments. The Rayleigh and Lamb theory describes free
oscillation of spherical drops in space, while in experiments
the drops are sessile and mechanically vibrated. Nonetheless,
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FIG. 5. Summary of mode shapes observed in experiments. For reference, the picture for (n,l) = (1,0) is the top view of a static drop.
Modes are arranged by physical appearance and nature frequency responses (i.e., subharmonic and harmonic): As partitioned by the double
vertical line, zonal modes (l = 0) are axisymmetric and harmonic modes; others are subharmonic modes lacking axisymmetry. Sectoral modes
only differ from tesseral modes by having n = 1.

it is of interest to determine how well the classical theory can
capture the observed resonance frequencies of sessile drops.

To compare the sessile drop equivalent to the Rayleigh and
Lamb half-drop, ideally, the sessile drop should be perfectly
hemispherical (90◦ contact angle) with freely moving contact
lines (no pinning). The experiments would then correspond
most closely to the theory and the estimated resonance
frequencies of sessile drops with mass m could be compared to
eigenfrequencies of spherical drops with mass 2m. Notice here
we restrict to undisturbed drops that are subhemispherical. A

subtle point is then how to account for the mass m to fairly
compare to the Lamb prediction.

One way to address this point is to remove the capillary time
scale (3π × 2m ÷ σ )1/2 in Eq. (5) by normalizing frequencies.
For experimental data, the average frequency f̄ of (2,0) mode
in all observations is calculated first. The ratio q of the observed
resonance frequency fo to f̄ is subsequently computed. For
theoretical predictions, the same ratios q are calculated by
normalizing all predicted eigenfrequencies by that of the
(2,0). These frequency ratios q are plotted together in Fig. 6.
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FIG. 6. (Color online) Comparison of normalized resonance frequencies and frequency scaling prediction by Rayleigh and Lamb [1]
[(a)–(c)] and Bostwick and Steen [(d)–(f)]: (a), (d) zonal modes; (b), (e) sectoral modes; and (c), (f) tesseral modes with k = l + 2.

Comparisons of actual frequencies are found in the Appendix.
As is observable from the figure, for k � 10, the normalized
eigenfrequencies, or ratio q, lie above the data points. Because
of the normalization, the capillary time scale, or in fact the
choice of volume, density, and surface tension, no longer
affects the result, and it is only the predicted scaling that is
compared to the scaling trend of experiments. According to
Fig. 6(a), there is an apparent mismatch of the theory and
experiment for zonal modes.

Recall the second fundamental distinction between theory
and experiments: The Lamb half-drops correspond to a
sessile drop with completely free contact lines. However, in

reality, these drops exhibit nearly fully pinned contact lines.
The anticipated impact of this condition is to spread the
experimentally observed frequencies for each mode as well
as to lower the mean frequency.

B. Lamb half-drops against observed sectoral
and tesseral modes

In this section, we compare the experimental frequency
measurements of sectoral and tesseral drops with Eq. (1). To
make the comparison, independent of the specified capillary
time scale in Eq. (5), the same normalization procedure for
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zonals is used. For sectorals, the experimental and predicted
eigenfrequencies are normalized by the average of the fre-
quencies of the observed (2,2) mode and by the Lamb (2,2)
frequency, respectively. Note that the (2,2) eigenfrequency
is the first nonzero Lamb frequency. For tesseral modes, the
frequencies are all normalized by those of the l = 1 modes,
i.e., (3,1), (5,1), (7,1), and (9,1), respectively. The results are
presented in Fig. 6(b) for sectoral modes and Fig. 6(c) for
tesseral modes with k = l + 2. For other tesseral modes, see
the Appendix. The Rayleigh and Lamb theory overshoots the
experimental data. We conclude that the Rayleigh and Lamb
theory is insufficient for describing behaviors of these modes.

C. Bostwick and Steen sessile drop

We now compare the experimental data with predictions
from the Bostwick and Steen solution of sessile drop oscil-
lations. The Bostwick and Steen model considers the free
oscillation of an inviscid sessile drop with prescribed contact
angle and contact-line mobility. The spherical-cap base states
are parametrized by the scaled volume or, alternatively, the
equilibrium contact angle. In either case, there is a one-
parameter family of base states. The contact-line constitutive
behavior is characterized by a mobility parameter with two
limiting cases: the fully mobile contact line and the pinned
contact line. For purposes of this paper, consistent with
experimental observation, we only consider pinned contact
lines. The governing equations are analogous to the Rayleigh
and Lamb free drop equations with the addition of the pinning
boundary condition and the no penetration velocity condition
on the substrate plane. The central challenge to solving these
equations comes with obtaining Laplace equation solutions for
the velocity potential on a spherical-cap domain with variable
boundary data. Through a functional analytic approach, much
like that used for the drop with the constraint of a latitudinal
belt [23], the equations have been solved for eigenmodes and
eigenfrequencies. Details are presented elsewhere. The final
step involves a numerical computation. Consequently, a closed
form expression like Eq. (1) is not available, but the results are
obtained via a look-up table. This look-up table for pinned
sessile drops is provided in the Supplemental Material [38]
along with instructions on how to use it. In summary, the
Bostwick and Steen modes take the form

r(θ,ψ) = 1 + εf (θ ) cos(lψ),
(6)

0 � θ � α, 0 � ψ � 2π,

where f (θ ) and frequencies are determined computationally.
The profile f (θ ) is associated with an index k. The frequencies
reported below, as they depend on wave numbers and contact
angle, come from the look-up table.

For each mode with wave indices (k,l), based on the
experimental parameters of liquid volume (20 μL), surface
tension (72 × 10−3 N/m), density (1000 kg/m3), and pinned
contact lines, two eigenfrequencies are calculated, each corre-
sponding to the maximal and minimal contact angles observed
for those sessile drops, respectively. These bounds, based on
the observed contact angle spread, are represented by the
solid lines (green, online) in Figs. 6(d)–6(f). The result is
presented in Fig. 6(d) for all observed zonal modes. In contrast
to the trend of uniform overestimation by the Rayleigh and

Lamb drop prediction, the Bostwick and Steen prediction
exhibits a reasonable agreement with the experimental result,
as the predicted frequencies fall within the lower portion
of the experimental data. Because of the neglect of viscous
effects, bandwidths of predicted eigenfrequencies are small
and prediction cannot be expected to capture a wide spread of
frequencies.

D. Bostwick and Steen drops against observed
sectoral and tesseral modes

A similar comparison between experimental data and the
Bostwick and Steen prediction for sectoral modes is presented
in Fig. 6(e). Reasonable agreement is noted. Results of the
same comparison for tesseral modes with k = l + 2 are shown
in Fig. 6(f). Comparisons for other tesseral modes are shown in
the Appendix. Among the observed modes, the ones with fewer
layers of azimuthal variations exhibit a better match between
experiment and prediction. But even for the higher modes, the
theoretical predictions fall within the spreading of experiment
data, therefore suggesting a credible consistency between the
experiments and the Bostwick and Steen predictions.

IV. MODE MIXING

In experiments, simultaneous coexistence of different
modes is frequently observed. Mixed modes are typical,
especially for modes with more complex shapes. To illustrate
the phenomena, an example image sequence of a relatively
pure (5,3) mode is first presented in Fig. 7 to facilitate
subsequent comparison. In Fig. 7, at t = 1.75 ms and
t = 4.47 ms the drop apparently exhibits a Y pattern inside a
triangle, which confirms the similarity of the observed pattern
with the postulated (5,3) mode in Fig. 3.

In contrast to the relatively pure case shown in Fig. 7,
an image sequence exhibiting the mixture of a (5,3) mode
with an (8,0) mode is shown in Fig. 8. At t = 0, 1.6, 2.0,
and 3.8 ms, a rounded triangular wave pattern close to the
contact line of the drop is first identified. The image for
t = 1.6 and 3.8 ms exhibit Y patterns inside their outer
triangular azimuthal wave patterns. Consider the common
feature of possessing Y patterns inside an outer triangle for
the two frames and those for t = 1.75 and 4.47 ms in
Fig. 7. Apparently the image sequence in Fig. 8 contains
(5,3) as one of its wave components. In contrast, by visually
examining images for t = 0.8 and 2.8 ms, one observes
roughly identical axisymmetric distribution of mesh pattern
deformation, which indeed suggests the coexistence a zonal
mode with the tesseral, (5,3) mode. With careful inspection of
images for t = 0.8 and 2.8 ms, one finds that the zonal mode is
(8,0). Indeed, such coexistence also explains why the images
for t = 0 and 2.0 ms show a smaller rounded inner pattern
instead of a sharper triangular or Y pattern. Furthermore, one
finds within approximately 3.8 ms, the (5,3) mode completes
one single period of oscillation, while two roughly identical
axisymmetric profiles (t = 0.8 ms and t = 2.8 ms) appear
approximately every 2 ms. Notice that the driving frequency
is 454 Hz. By examining the original image sequence from
which images in Fig. 8 are extracted, one finds that N = 198
and Nc = 9, both of which are associated with the occurrence
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t = 0.00 ms

2.87 ms

0.64 ms

3.35 ms

1.12 ms

3.99 ms

1.75 ms

4.47 ms

2.23 ms

5.10 ms

FIG. 7. Image sequence of a relatively pure (5,3) mode. The image of t = 1.75 ms corresponds to that with (n,l) = (2,3) in Fig. 5.

of the lower-frequency, (5,3) mode. Therefore the observed
resonance frequency is 227.27 Hz, according to Eq. (2). Since
(8,0) repeats twice when (5,3) completes one cycle, the (8,0)
frequency is 454.54 Hz. Therefore the image sequence in Fig. 8
shows that a single droplet, which is oscillated by a sinusoidal
signal of one single frequency, simultaneously exhibits two
distinct modal behaviors: one being a harmonically generated
zonal mode, and the other a subharmonically generated tesseral
mode. To further illustrate the ubiquity of mode mixing, two
other examples are described in detail in the Appendix.

In this section, the observed mode-mixing phenomena
is compared to theoretical prediction for either Rayleigh
and Lamb or Bostwick and Steen. We denote the observed
frequencies of harmonic and subharmonic modes as foh and
fos , and the theoretically predicted frequencies for the former
and the latter as fth and fts , respectively. In order for a
subharmonic mode to mix with a harmonic mode, because the
observed subharmonic modes all belong to the half-frequency
type (i.e., fos ≈ fd ÷ 2), 2 × fos must be close to foh so
that both modes can simultaneously synchronize with the

same driving signal of frequency, fd . Based on this physical
argument, we compare the theoretical frequency predictions
to the observed frequencies for a pair of harmonic and
subharmonic modes which are observed to mix. To facilitate
comparison, a frequency ratio c is defined as

c ≡ 2fts

fth

.

We denote the ratios based on Rayleigh & Lamb and Bostwick
& Steen theories as cRL and cBS. If c = 1 exactly, this means
that the theory predicts mode mixing perfectly. Therefore,
a deviation of c from 1 predicts a measure of how well a
theory predicts mode mixing. Based on the Rayleigh and
Lamb theory, the ratio for the (5,3) and (8,0) modes equals
exactly 1, precisely matching the experimental results. For
the Bostwick and Steen theory, consider that the static contact
angle for this experiment was 67◦. Using the look-up table
(Supplemental Material), the frequency ratio is 1.02. Since
both ratios deviate from 1 by less than 3% (which is the error
in the frequency estimation in experiments), both theories

t = 0.00 ms

2.00 ms

0.40 ms

2.40 ms

0.80 ms

2.80 ms

1.20 ms

3.40 ms

1.60 ms

3.80 ms

FIG. 8. Image sequence of a (k,l) = (5,3) mode mixing with a (k,l) = (8,0) mode. The (8,0) appears twice in one period of the (5,3) and
oscillates with the same frequency as the driving signal. The (8,0) is boxed to highlight that mode. The shape is confirmed by comparing the
boxed images to that of (n,l) = (5,0) in Fig. 5.

023015-9



CHANG, BOSTWICK, STEEN, AND DANIEL PHYSICAL REVIEW E 88, 023015 (2013)

TABLE I. Frequency ratios of mixing modes based on the
Rayleigh & Lamb and Bostwick & Steen theories.

Mixing pair cRL cBS

(5,3) + (8,0) 1.000 1.020
(7,7) + (10,0) 1.183 1.037
(8,6) + (12,0) 1.100 1.044

predict that mode mixing will occur for this example with
similar accuracy. Extending this analysis for the two other
examples shown in the Appendix, frequency ratios for the
mixing modes are tabulated in Table I. From these results we
observe the Bostwick and Steen theory predicts frequency
ratios to within 1+/−5%, while the predictions based on the
Rayleigh and Lamb theory deviate significantly for the last
two cases (by ∼18% and 10%, respectively).

V. DISCUSSION

In our experiments to good approximation, undisturbed
drops have a spherical-cap shape with contact angles ranging
from 60◦ to 80◦ and with pinned contact lines, to the extent
that no depinning is detectable, at least for the accelerations
and amplitudes reported in this study. As manifest in the
catalog of observed modes, Fig. 5, this deviation from Lamb
half-drops is sufficient to fully break the degeneracy of the
Lamb spectrum. That is, the first 29 nonzonal modes have been
observed. Enumeration of modes in the catalog is based solely
on arguments of symmetry breaking of the degenerate Lamb
spectrum. This is to be expected since, as surface vibrational
modes, these disturbed nonhemispherical sessile drops must be
periodic in the azimuthal direction having a meridional wave
structure, hence retaining the relevance of the (k,l) labeling. In
summary, the (k,l) labeling is useful for relating modes back
to the Rayleigh and Lamb spectra. However, for purposes
of identifying the modes from experimental images, a better
scheme is to use the wave numbers in the meridional and
azimuthal directions [n = (k − l)/2 + 1, l]. The wave number
n has the convenient interpretation as the number of vertical
layers for any mode. Zonals with up to eight and tesserals with
up to five vertical layers have been documented (Fig. 5). In
fact, up to the technical limits of our experiments, all predicted
modes have been observed, except for the (n,l) = (4,4) mode
or (k,l) = (10,4) which falls at the boundary of the observation
limits (empty box in Fig. 5). In view of some confusion in the
literature regarding mode labels [16], it is of clear benefit to
have a standard way for referring to a particular mode. Such a
standard should be based on observation as closely as possible.

The frequencies of the various modal structures are also
expected to reflect the symmetry breaking. Indeed, mea-
sured frequencies fo(k,l) show that the common frequencies
(eigenvalues) of the Lamb half-drops, same k, any l, have
split into separate frequencies (eigenvalues) for each different
(k, l) mode (eigenfunction). We first compare directly to the
degenerate Rayleigh and Lamb spectrum. More precisely,
Figs. 6(a)–6(c) compare frequency gaps of the measured
against Lamb. Although the zonal comparison [Fig. 6(a)]
is ambiguous, the sectoral and tesseral modal comparisons
[Figs. 6(b) and 6(c)] show more clearly that the Lamb

spectrum overpredicts, especially for a higher modal index
k. We should note that the most challenging aspect of the
experiments is controlling the equilibrium contact angle.
Despite careful and consistent surface preparation, surface
aging and/or inhomogeneity often are seen. For a single
drop and a single experiment, the contact angle has been
observed to vary by as much as 10◦ from beginning to end
(5 min duration). From experiment to experiment (same batch,
different drop) and from beginning to end (same experiment),
the contact angle could vary by as much as 20◦. On the
plus side, contact angles were monitored to within 5◦. That
is, variation could not be precisely controlled but could be
precisely monitored. This explains the contrast of the spread
in frequencies reported in Fig. 6 to the precision of those in
Fig. 4. Different contact angles are expected to have different
frequencies [16,33]. To further confirm the frequency splitting
illustrated in Figs. 6(a)–6(c), we compare to predictions for
drop vibrations of the solution of the eigenvalue problem that
takes account of contact angle (and pinning) [Figs. 6(d)–6(f)].
In Figs. 6(d)–6(f), for each mode, the minimum and maximum
predicted frequency corresponding to the monitored minimum
and maximum contact angle, are plotted alongside the mea-
surements. The spread in measurement typically exceeds the
band in prediction, certainly owing to deficiencies of the model
and imprecision in the experiment. A more detailed discussion
is beyond the scope of this paper.

In contrast to the zonal modes, sectoral and tesseral modes
respond subharmonically, consistent with the literature where
nonaxisymmetric response has been long associated with
parametric excitation, the Faraday problem being the canonical
example from fluid physics. According to Fig. 3, nonzonal
oscillations can be thought of as built from two conjugate
states, each with a phase shift of azimuthal angle equal to
one-half the symmetry angle. For example, for the (3,3) mode,
the symmetry angle is π/3 and the phase shift is π/6. The
subharmonic response can be thought of as an average between
the two states, neither being preferred, and hence it takes
twice the period to sample equally. The driving frequency
must, accordingly, be half the fundamental frequency. Note
that the measured nonzonal frequencies compare well to
those predicted by Bostwick and Steen from symmetry-broken
solutions, Figs. 6(e) and 6(f).

To what extent does nonlinearity from contact-line hystere-
sis or otherwise play a role in the transitions to nonzonals (or,
for that matter, to zonals)? We do not address the question in
this paper. Our main point is the utility of the Lamb half-drop
spectrum for classifying observed modes and of the Bostwick
and Steen spectrum for the splitting of frequencies. To the
extent that, in the absence of any contact with a solid, sectoral
oscillations of a free drop are also subharmonic [18] supports
our contention that contact line and any nonlinear effects are
not essential to the parametric mechanism. Nonlinear effects
in drop dynamics are discussed in a general way in Ludu [39],
for example.

Finally, the observed mode mixing (Figs. 8, 14, and 15)
is almost certainly a result of nonlinearity. However, again,
we place any discussion of this outside the scope of this
paper. Our main point is that, for mode mixing to occur, the
necessary relationship between frequencies can be predicted
by the linear spectra. As shown for the example in Fig. 8,
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fd = fo(8,0) = 2 × fo(5,3). For any driving frequency, one
can scan the spectrum and identify potentially mixing modes.
There is a reasonable correspondence between linear theory
predictions and observed mixing.

VI. CONCLUSIONS

There is a long history of applying or adapting the Rayleigh
free drop spectra [Eq. (1)] to observations of vibrations of
liquid interfaces, no matter how the interface is constrained,
if at all. We argue that the zonal, sectoral, and tesseral
labeling associated with these mode shapes remains valid
since they capture the separation of variables that will apply
for any azimuthally periodic shape arising from the spherical
harmonic solution of the underlying Laplace’s equation. In this
sense, the resilience of the Rayleigh and Lamb spectrum can
be explained.

On the other hand, these classic spectra are degenerate
in that the doubly infinite set of frequencies f (k,l), where
k = 1, 2, 3, . . . and l = 0, 1, 2, . . . , collapse into f (k).
Sufficient symmetry breaking will break this degeneracy and
split the frequencies. The experiments reported demonstrate
that a deviation from the hemispherical shape of only 10◦ or so
is sufficient to yield measurable frequency splitting, especially
for the higher k. Comparison against the Rayleigh and Lamb
and Bostwick and Steen frequencies provide a quantitative
metric of how much the Rayleigh spectrum is modified.

We have observed, identified, and cataloged the behavior
of 36 of the first 37 resonance modes of sessile drops. We
classify these modes as zonal, sectoral, or tesseral. According
to our observation, zonal modes respond harmonically, while
sectoral and tesseral modes respond subharmonically. Despite
their fundamental distinctions, several examples show that the
modes can mix without changing their respective individual
mode dynamics as exhibited in the absence of mixing.

VII. MATERIALS AND METHODS

A. Materials

APTES 99+% was purchased from Gelest (Morrisville,
PA). Glass slides (VWR VistaVision, catalog No. 16004-430,
3′′ × 1′′ × 1 mm) were purchased from VWR International
(Radnor, PA). Stainless steel woven metal mesh (#150, part
number 85385T875) was purchased from McMaster (Santa
Fe Springs, CA). Ethanol (reagent alcohol, absolute, CAS#
64-17-5; Macron Chemicals) and acetone (CAS# 67-64-1;
Macron Chemicals) were purchased from VWR International
(Radnor, PA). High-purity compressed nitrogen was purchased
from Airgas (Salem, NH). Sulfuric acid (95–98% min., MW
98.08, CAS# 7664-93-9) was purchased from VWR Interna-
tional (Radnor, PA). Hydrogen peroxide solution (50 wt%,
516813-500ML, CAS# 7722-84-1 MW 34.01 g/mol) was
purchased from Sigma-Aldrich (St. Louis, MO).

B. Preparation of surfaces

Glass slides were prepared by first sonicating them for
20 min in water to remove any solid particles on their surfaces.
To remove any organic contaminants, the slides were then
soaked for 20 min in piranha solution (70% sulfuric acid/30%
hydrogen peroxide). Afterwards the glass slides were rinsed
by de-ionized (DI) water (purified by an Elga Ultra SC MK2,
Siemens) for at least 10 min and kept fully immersed under DI
water until the next step. The interior surface of a 400-ml
staining dish and a glass rack were rinsed, in order, with
(1) soap, (2) RO water, (3) ethanol, and (4) acetone. The dish
and rack were then blown dry by nitrogen gas and baked in
the oven for 15 min. 200 ml of acetone and 8 ml of APTES
silane were deposited in the cleaned staining dish. Each glass
slide was dried by blowing high-purity nitrogen gas and placed
onto the immersed glass rack in the APTES silane solution for
20 min. After the 20-min soaking, the samples were moved to
an oven for heating at 85 ◦C for 20 min to secure the bonded
APTES molecules on the glass surface.

Prior to the first use in experiments, all coated glass
slides were rinsed with ethanol and DI water and dried with
high-purity nitrogen gas. For each coated glass slide, another
uncoated slide is cleaned by sonicating for 20 min. The two
slides were then tightly taped together to sandwich a piece of
woven metal mesh of approximately 2 × 2 cm2 between them.

C. Characterization of surfaces

Wettability of coated glass slides was characterized by
measuring the contact angles of 20 μL drops on the surfaces.
Contact angles were measured using static images of drops
before using the same drop in oscillation experiments. Images
were processed using ImageJ 1.45. Based on 222 sets of
contact angle measurements for four batches of 40 glass slides
in total, the average contact angle was approximately 68.6◦,
with a standard deviation of 5◦.
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TABLE II. Optimal frame rate and the corresponding maximal spatial resolution.

Frame rate (fps) 5000 6270 7975 9100 10470

Resolution (pixel × pixel) 512 × 512 480 × 480 416 × 416 384 × 384 352 × 352
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FIG. 9. Examples of measured accelerations. Driving and sampling frequencies, fd and fs , are (a) fd = 573 Hz, fs = 25 kHz;
(b) fd = 658 Hz, fs = 10 kHz.

APPENDIX

1. Imaging resolution

In experiments, it is empirically found that a reasonable
temporal resolution of image sequence is achieved if at least
ten frames of images are recorded within one cycle of a
zonal mode’s oscillation. For nonzonal modes which lack
axisymmetry, ten frames of images are needed for each half
cycle of oscillation. Considering that zonal and nonzonal
modes are harmonic and half-frequency subharmonic modes,
respectively, frame rates (frames per second) for high-speed
imaging are chosen to be at least ten times the driving
frequency of the mechanical vibrator. Rather than simply
recording images at ten times the driving frequency of
mechanical oscillation, the frame rates are chosen among the
set of optimal frequencies dictated by the HG-XL high-speed
camera utilized in experiments. For this camera, the frame
rates are partitioned and associated with a particular optimal
spatial resolution as shown in Table II.

2. Characterization of the mechanical oscillation

To ensure the mechanical vibration is a purely monochro-
matic sine wave oscillating in the vertical direction, we have
characterized the substrate motion by two methods. First, we
made direct visual observation of the mechanical oscillation
using high-speed image sequence. No lateral (i.e., nonverti-
cal) oscillation was observed. Second, vertical accelerations
were measured using an 8704B100 accelerometer (Kistler
Instrument Corp., Amherst, NY) on the oscillation platform.
The signal from the accelerometer was amplified first by a
signal conditioner (model No. 5114, by Kistler Instrument

FIG. 10. (Color online) Comparison of z[i] defined in Eq. (A1)
and any inner-product-based norm: (a) both detect pattern translation,
but (b) only z[i] detect brightness variation.

Corp., Amherst, NY) and subsequently sent to and recorded
by a digital oscilloscope (model GDS-1102-U, by GW Instek,
Taiwan). Two examples of acceleration measurements are
provided in Fig. 9. These examples illustrate that the sinusoidal
driving signals are reasonably clean.

3. Estimation of resonance frequencies

For all observed modes, the resonance frequencies fo are
estimated from image sequences from Eq. (3). Conceptually,
any visually observable motion described by an image
sequence must be conveyed by the variation of color or
grayscale distribution from one image to another. For
example, consecutive snapshots of an object moving with
respect to a static background must exhibit some combination
of translation, rotation, and deforming pattern of the object as
its motion evolves, while given any static scene, if thousands
of frames are recorded (especially if by high-speed imaging),
little difference is expected between any two frames. In the
current application where an image sequence describing
periodic motions of an oscillating drop is concerned, with
respect to a fixed reference image, evolution of the difference
between the reference frame and any dynamic snapshot in
the sequence is also expected to be periodic, provided an
adequate norm quantifying the difference is adopted. To
proceed, let the size of each frame be a × b pixels, and k and j

TABLE III. Error estimation of resonance frequencies.

Nc Nmax Nmin Nr εmax+ (%) εmax− (%) εmin+ (%) εmax− (%)

1 200 101 99 0.002 0.003 0.010 0.010
2 200 68 64 0.005 0.005 0.043 0.044
3 200 51 47 0.007 0.008 0.113 0.118
4 200 41 36 0.010 0.010 0.232 0.244
5 200 34 30 0.012 0.013 0.420 0.446
6 200 29 26 0.015 0.015 0.690 0.739
7 200 26 18 0.017 0.018 0.997 1.077
8 200 23 16 0.020 0.020 1.449 1.581
9 200 21 11 0.022 0.023 1.948 2.143
10 200 19 10 0.025 0.025 2.632 2.924
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FIG. 11. An example of estimating N and Nc with Eq. (A2): (a) two notches in the plot gives N = 2; (b) the position of the second notch yields
Nc = 175. Together with the 5000-Hz frame rate of the corresponding image sequence, the resonance frequency is 5000 × 2/175 = 57.14 Hz.

be the horizontal and vertical coordinates of pixels in images.
Denote the matrix of the color or grayscale values of pixels in
the reference frame and the i-th dynamic snapshot as Mr [k, j ]
and Mi[k, j ], respectively. A norm z[i] quantifying difference
between the ith frame and the reference image is defined as

z [i] =
⎧⎨
⎩

a∑
j=0

b∑
k=0

(Mi [k,j ] − Mr [k,j ] )2

⎫⎬
⎭

1/2

. (A1)

The choice of norm z[i] in Eq. (A1) is based on its relatively
broader coverage of difference between images. Formally,
z[i] quantifies the L− 2 norm of the difference between two
images. Hence unless there exists absolutely no difference
between any two corresponding pixels in two given images, a
nonzero value of z[i] will frankly indicate any slight variation
of one image from the other. This provides a broader coverage
of variation detection than, say, a norm based on inner product
(i.e., just the difference in Mr and Mi’s orientations), since
with Eq. (A1), not only can any motion (e.g., translation,
rotation, distortion, etc.) be detected and quantified, but also

(a) zonal modes: harmonic

(b) sectoral modes: subharmonic

(c) tesseral modes: subharmonic

(d) tesseral modes: subharmonic
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FIG. 12. Demonstration of harmonic and subharmonic modes: fo/fd = 1 (harmonic) for all zonal modes, and 0.5 (subharmonic) otherwise.
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any flickering of lighting even if the scene remains perfectly
static. As illustrated in Fig. 10, both z[i] and the inner product
of Mr and Mi can reflect the difference for case (a), but only
z[i] is capable of indicating the difference for case (b) since
Mr is parallel to Mi in this case, which amounts to cases
where all grayscale values of pixels in Mr are equally scaled
from Mi but nothing moves, or technically the static scenes
where the light source is blinking.

Based on Eq. (A1), the evolution of z[i] for an image
sequence of a (2,0) mode is plotted against the frame ID
i’s in Fig. 11. From Fig. 11(a), the overall variation of z[i],
two complete cycles are identified, which gives Nc = 2. By
zooming in as shown in Fig. 11(b), the position of this second
notch is located at N = 175. Therefore for this image sequence,
which is recorded with fs = 5000 fps or 5000 Hz, the observed
resonance frequency is

fo = 5000 × 2

175
= 57.14.

The driving frequency fd for this example in Fig. 11 is 58 Hz,
hence fo/fd ≈ 1, which is consistent with the behaviors of all
other zonal modes (cf. Fig. 4).

Notice that Eq. (3) in the main text provides a means
of estimation and hence the result is not exact. Among the
parameters, fs is a controlled parameter and Nc is obtained

from Fig. 11(a) with no ambiguity. Therefore any error is
expected to contribute solely from the estimation of N . Notice
that the frame ID i’s are discrete and despite the observed
minimal difference at i = 175, the exact minimal difference
may correspond to any instant between those when frames
i = 174 and 176 are captured. In other words, a maximal
under- or overestimation of one frame for N is expected. With
regard to the experimental setup aiming at recording at least
20 frames per cycle of oscillation and a total of 200 frames
for each image sequence, the result of a preliminary error
estimation is obtained as shown in Table III, where Nmax and
Nmin are the maximal and minimal number of frames per cycle
of oscillation possible given an Nc, and Nr is the remaining
frames of images not counted within the Nc cycles. The error
estimates ε are defined as

εmax ± =
∣∣∣∣ 1

Nmax
− 1

Nmax ± 1

∣∣∣∣ ,
(A2)

εmin ± =
∣∣∣∣ 1

Nmin
− 1

Nmin ± 1

∣∣∣∣ ,
and therefore are the estimates of error per single frame of
over- or underestimating N . For virtually all experiments,
Nc � 10 and Nmax and Nmin depend on each particular
mode produced by different driving frequencies. According

(c) tesseral: k = l + 2 (d) tesseral: k > l + 2

(a) zonal (b) sectoral
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FIG. 13. (Color online) Direct comparison of experimental data with the Rayleigh and Lamb theory according to Eq. (5). The comparison
yields a uniform underestimation by the theory.
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(c) tesseral: k = l + 8 (f) tesseral: k = l + 8

(b) tesseral: k = l + 6 (e) tesseral: k = l + 6

(a) tesseral: k = l + 4 (d) tesseral: k = l + 4

0.90

0.95

1.00

1.05

1.10

1.15

1.20

7 8 9 10 11 12

R
at

io
 q

k

Rayleigh and Lamb
(9, 1)
(10, 2)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

5 6 7 8 9 10 11

R
at

io
 q

k

Rayleigh and Lamb
(7, 1)
(8, 2)
(9, 3)

0.5

1.0

1.5

2.0

2.5

3.0

4 5 6 7 8 9 10 11

R
at

io
 q

k

Rayleigh and Lamb
(5, 1)
(6, 2)
(7, 3)
(8, 4)
(9, 5)
(10, 6)

400

450

500

550

600

7 8 9 10 11 12

F
re

qu
en

cy
 f
(H

z)

k

Bostwick and Steen
(9, 1)
(10, 2)

300

350

400

450

500

550

600

6 7 8 9 10

F
re

qu
en

cy
 f
(H

z)

k

Bostwick and Steen
(7, 1)
(8, 2)
(9, 3)

200

250

300

350

400

450

500

550

600

4 5 6 7 8 9 10 11

F
re

qu
en

cy
 f
(H

z)

k

Bostwick and Steen
(5, 1)
(6, 2)
(7, 3)
(8, 4)
(9, 5)
(10, 6)

FIG. 14. (Color online) Additional results of comparing experimental data to theories: (a)–(c) comparison with the Rayleigh and Lamb
theory using the normalized scheme; (d)–(f) direct comparison to the Bostwick and Steen theory.

to Table II, the estimated resonance frequencies possess a
precision of approximately 3%.

4. Detailed comparison of driving and observed
frequencies for all observed modes

For all observed modes, the ratios fo/fd of the estimated
resonance frequencies (fo) to the driving frequencies (fd ) are
plotted against the driving frequencies in Fig. 12(a) for all
observed zonal modes, Fig. 12(b) for sectoral modes, and

Figs. 12(c) and 12(d) for tesseral modes. In Fig. 12(a), ratios
of the frequencies are all equal to 1 with virtually undetectable
deviation. For sectoral and tesseral modes, however, the ratios
are equal to 0.5.

5. Direct comparison of experimental data with theories

The results of directly comparing experimental data
with theory based on Eq. (5) are presented in Fig. 13.
For all observed modes, theoretical predictions uniformly
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t = 0.00ms

1.75ms

0.32ms

2.07ms

0.80ms

2.55ms

1.12ms

3.19ms

1.44ms

3.87ms

FIG. 15. Image sequence of a (k,l) = (7,7) mode mixing with a (k,l) = (10,0). The latter appears twice in one period of the former and
oscillates with the same frequency as the driving signal, and hence is boxed to highlight. The shape is confirmed by comparing the boxed
images to that of (n,l) = (6,0) in Fig. 5, as the former possess the same number (=3) of circular regions where the mesh pattern is magnified
(peaks) as the pattern is miniaturized (troughs) in the latter.

underestimate the resonance frequencies. Therefore we con-
clude from Fig. 13 that the Rayleigh and Lamb theory is
insufficient for model behaviors of sessile drops.

6. Additional results of comparing experimental
results with theories

Results of comparing resonance frequencies of tesseral
modes (those not shown in Fig. 6) with predictions by the
Rayleigh and Lamb and Bostwick and Steen theories are
presented in Fig. 14. For tesseral modes with k = l + 4, which
are physically the modes with three layers of azimuthal wave
patterns, the same overshooting trend by the Rayleigh and
Lamb theory is obvious from Fig. 14(a), while a reasonable
match exists between experimental data and predictions by
the Bostwick and Steen theory. For tesseral modes with k =
l + 6 and k = l + 8, a conclusion of how well the experiment
and theory match one another is more difficult to draw, since
technically these modes are much more difficult to generate

and observe in experiments, which limits the number of
observations and the amount of data available for comparing
with the theories.

7. Additional mode-mixing examples

In Fig. 15, most images exhibit a heptagonal wave pattern of
one single layer, and therefore a (7,7) mode is identified. Those
of t = 0.80 and 2.55 ms clearly show axisymmetric patterns,
and the corresponding zonal mode is (10,0). Therefore, Fig. 15
demonstrates an example of a sectoral of (7,7) mixing with a
(10,0) zonal mode.

The image sequence in Fig. 16 shows another example of
mode mixing. For images of t = 0.88 and 2.26 ms, similar
zonal patterns corresponding to the (12,0) mode are identified.
Since other images all exhibit a hexagonal star confined within
a hexagon, a component of the (8,6) mode is recognized.
Therefore Fig. 16 is an example of a tesseral (8,6) mixing
with a zonal (12,0) mode.

t = 0.00ms

t = 1.38ms

t = 0.25ms

t = 1.75ms

t = 0.50ms

t = 2.01ms

t = 0.88ms

t = 2.26ms

t = 1.13ms

t = 2.51ms

FIG. 16. Image sequence of a (k,l) = (8,6) mode mixing with a (k,l) = (12,0). The latter is boxed for the same reason as the (10,0) in
Fig. 15. The shape is confirmed by comparing the boxed images to that of (n,l) = (7,0) in Fig. 5.
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