
PHYSICAL REVIEW E 88, 023014 (2013)

Formation of curvature singularities on the interface between dielectric liquids
in a strong vertical electric field
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The nonlinear dynamics of the interface between two deep dielectric fluids in the presence of a vertical electric
field is studied. We consider the limit of a strong external electric field where electrostatic forces dominate over
gravitational and capillary forces. The nonlinear integrodifferential equations for the interface motion are derived
under the assumption of small interfacial slopes. It is shown in the framework of these equations that, in the
generic case, the instability development leads to the formation of root singularities at the interface in a finite
time. The interfacial curvature becomes infinite at singular points, while the slope angles remain relatively small.
The curvature is negative in the vicinity of singularities if the ratio of the permittivities of the fluids exceeds
the inverse ratio of their densities, and it is positive in the opposite case (we consider that the lower fluid is
heavier than the upper one). In the intermediate case, the interface evolution equations describe the formation and
sharpening of dimples at the interface. The results obtained are applicable for the description of the instability of
the interface between two magnetic fluids in a vertical magnetic field.
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I. INTRODUCTION

As is known [1–3], the free surface of a liquid or the
interface between two liquids is unstable in a sufficiently
strong vertical electric field. The exponential growth of the
amplitude of boundary perturbations in the initial (linear) stage
of the instability inevitably leads to a situation where nonlinear
effects begin to play a significant role [4–6]. It therefore
becomes necessary to take into account the nonlinearity of
the corresponding equations of motion.

The general approach to study the behavior of the interface
between two liquids or of the free surface of a liquid is to
reduce the equations of motion for fluids to lower dimensional
equations for the boundary motion. As a rule, the resulting
equations are nonlocal (i.e., they contain integrodifferential
operators), which seriously hampers their analysis. In most
publications, nonlinear waves on the surface of dielectric or
conducting fluids are considered under the assumption that
the characteristic wavelength is much larger than the depth
of the fluid layer [7–15] or that the excited wave packet is
spectrally narrow [6,16–23]. Both approaches make it possible
to reduce the original problem to the consideration of relatively
simple local partial differential equations. The long-wave
approximation usually leads to different modifications of the
Korteweg–de Vries equation for the elevation of the surface,
while the quasimonochromatic approximation gives various
modifications of nonlinear Schrödinger or Klein-Gordon
equations for the wave envelope.

As demonstrated in Refs. [24,25] for conducting liquids
(e.g., liquid metals) and in Refs. [26,27] for dielectric liquids
with conducting surfaces (e.g., liquid helium with the electron-
charged surface [28]), the nonlinear evolution of the free
surface can be effectively studied by analytical methods in
the strong-field limit, where the surface motion is completely

*kochurin@iep.uran.ru
†nick@iep.uran.ru

determined by electrostatic forces. In these papers the long-
wave and quasimonochromatic approximations were not used;
integrodifferential equations for the boundary motion have
been integrated directly.

In the present work we will show that a similar situation
arises when we consider the nonlinear dynamics of the inter-
face between two ideal dielectric liquids in a strong vertical
electric field (gravity and capillary forces are neglected). In
two dimensions, the weakly nonlinear equations of motion
derived in the small-angle approximation (see Secs. II, III,
and IV) can be solved exactly in two special cases: (i) when
ε1/ε2 = ρ1/ρ2 and (ii) when ε1/ε2 = ρ2/ρ1 (Secs. V and VI).
Here ε1 and ε2 are the dielectric constants of the lower and
upper fluids, respectively, and ρ1 and ρ2 are their densities
(without loss of generality, we can consider that the lower
fluid is heavier than the upper one, i.e., ρ1 > ρ2). In other
cases, i.e., for arbitrary values of dielectric constants and
densities, the evolution of a spatially localized perturbation
of the interface can be described in the framework of the
“local” approximation, based on the use of the leading-order
series expansion of the complex velocity in the vicinity of the
singular point appearing at the interface (Sec. VII).

The interaction of the electric field with polarization charges
at the interface of two fluids causes an explosive growth of
the boundary perturbations. As will be demonstrated below,
in the generic case this process culminates in the formation
of weak root singularities at the interface for which the
curvature becomes infinite, while the slope angles remain
small. Near the singularity, the interfacial curvature is negative
for ε1/ε2 > ρ2/ρ1. This condition is satisfied, in particular, for
the above-mentioned integrable case (i). For ε1/ε2 < ρ2/ρ1,
the curvature is positive. In the intermediate case, i.e., in the
case (ii), the tendency for the formation of root singularities
is absent. The instability leads to the formation and further
sharpening of dimples at the interface. Taken together, the
obtained results give a rather complete picture of the behavior
of the interface under the action of electrostatic forces.
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II. INITIAL EQUATIONS

Let us consider the dynamics of the interface between two
deep perfect dielectric (nonconducting) fluids in an external
vertical electric field. We assume that both fluids are inviscid
and incompressible, and their flows are irrotational (potential).
The dispersion relation for linear waves on the interface in the
presence of polarization charges (free charges are absent) has
the following form [1,2]:

ω2 = Ag|k| − ε0(ε1 − ε2)AEE1E2

ρ1 + ρ2
k2 + σ

ρ1 + ρ2
|k|3,

where k is the wave number, ω is the frequency, g is the
acceleration of gravity, σ is the interfacial tension coefficient,
ε0 is the vacuum permittivity, A = (ρ1 − ρ2)/(ρ1 + ρ2) is the
Atwood number (0 < A < 1), and AE = (ε1 − ε2)/(ε1 + ε2)
is its analog for the dielectric constants. The electric field
strengths in the lower and upper fluids, E1 and E2, are related
by the expression ε1E1 = ε2E2 (here and below the subscripts
“1” and “2” refer to the lower and upper fluids, respectively).

It follows from the dispersion law that if the electric field
is strong enough,

E1E2 �
√

gσ (ρ1−ρ2)

ε0(ε1 − ε2)AE

,

the second term on the right-hand side of the dispersion relation
(it is responsible for the electrostatic forces) dominates for the
wave numbers in the range

g(ρ1 − ρ2)

ε0(ε1 − ε2)AEE1E2
� |k| � ε0(ε1 − ε2)AEE1E2

σ
. (1)

As a consequence, the influence of gravity and capillary forces
can be neglected in this range, and the relation between the
frequency and the wave number takes the following simple
form: ω2 ∼ −k2.

The motion of fluids can be considered as potential if the
electrostatic forces dominate over the viscous forces. This
condition can be realized for the wave numbers

k2 � ε0(ε1 − ε2)AEE1E2

ν2(ρ1 + ρ2)
, (2)

where ν is the kinematic viscosity of the more viscous
liquid. This inequality corresponds to the situation where
the Reynolds number (Re ∼ ωk−2ν−1) is sufficiently high to
neglect viscous dissipation (see, e.g., Ref. [15]).

In the unperturbed state, the interface is a horizontal plane
(see Fig. 1). We introduce a Cartesian coordinate system in
such a way that the x and y axes lay in this plane. The electric
field vector is directed along the z axis (i.e., normally to the
unperturbed boundary). Let the deviation of the interface from
the plane z = 0 be given by the function η(x,y,t), that is, the
equation z = η defines the shape of the boundary.

The velocity potentials for both fluids, �1,2, as well as the
electric field potentials, ϕ1,2, satisfy the Laplace equations,

∇2�1,2 = 0, ∇2ϕ1,2 = 0.

The normal components of the velocities are equal at the
interface,

∂n�1 = ∂n�2, z = η(x,y,t), (3)

FIG. 1. The geometry of the problem is shown schematically.

where ∂n denotes the derivative along the normal to the
boundary z = η:

∂n = ∂z − ∇⊥η · ∇⊥√
1 + (∇⊥η)2

.

Here ∇⊥ is the two-dimensional gradient in the {x,y} plane.
The electric field potentials obey the boundary conditions

ϕ1 = ϕ2, ε1∂nϕ1 = ε2∂nϕ2, z = η(x,y,t), (4)

i.e., the tangential component of the electric field and the
normal component of the electric displacement field are
continuous at the interface. In addition, the electric field is
uniform, and the fluids are at rest at an infinite distance from
the interfacial boundary:

ϕ1,2 → −E1,2z, �1,2 → 0, z → ∓∞.

As is known [5,29,30], the equations describing the motion
of the interface z = η can be represented in the Hamiltonian
form,

ψt = −δH/δη, ηt = δH/δψ, (5)

where η and ψ play the role of generalized coordinate
and generalized momentum, respectively. The function ψ is
defined by the expression

ψ(x,y,t) = ρ1 �1|z=η − ρ2 �2|z=η .

The Hamiltonian H coincides with the total energy of the
system:

H = 1

2

∫
z<η

[
ρ1(∇�1)2 − ε0ε1(∇ϕ1)2 + ε0ε1E1

2
]
d3r

+ 1

2

∫
z>η

[
ρ2(∇�2)2 − ε0ε2(∇ϕ2)2 + ε0ε2E2

2
]
d3r. (6)

Together, the above relations form a closed system of equations
describing the motion of the interface of dielectric liquids
under the influence of the electrostatic forces caused by the
vertical electric field.

It should be noted that practically the same equations
describe the dynamics of the interface between two magnetic
fluids in the presence of a vertical magnetic field. In order to
get these equations, one needs to replace the electric fields E1,2

by the magnetic fields H1,2, the dielectric constants ε1,2 by the
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relative permeabilities μ1,2, and the electric constant ε0 by the
magnetic constant μ0.

III. WEAKLY NONLINEAR ANALYSIS

Consider the dynamics of the interface in the approximation
of small angles of inclination of the boundary, |∇⊥η| ∼ α � 1.
For convenience of the further analysis, we switch to dimen-
sionless notations as follows:

�1,2 → �1,2E1

k0

√
ε0ε1

ρ1
, ϕ1,2 → ϕ1,2E1

k0
,

ψ → ψE1

k0

√
ε0ε1ρ1, η → η

k0
,

t → t

E1k0

√
ρ1

ε0ε1
, r → r

k0
,

where k0 is the characteristic wave number.
Expanding the Hamiltonian (6) in powers of η and ψ up to

third-order terms (see details in Appendix A), we obtain from
(5) the following quadratically nonlinear equations of motion:

ψt − 2A2
E

1 − AE

k̂η = A(1 + A)

4
[(k̂ψ)2 − (∇⊥ψ)2]

+ A3
E

1 − AE

[(k̂η)2 − (∇⊥η)2]

+ 2A3
E

1 − AE

[k̂(ηk̂η) + ∇⊥(η∇⊥η)]

+O(α3), (7)

ηt − 1 + A

2
k̂ψ = −A(1 + A)

2
[k̂(ηk̂ψ) + ∇⊥(η∇⊥ψ)]

+O(α3), (8)

where k̂ is the two-dimensional integral operator with the
kernel whose Fourier transform equals the absolute value of
the wave number, i.e.,

k̂ eikxx+ikyy = |k| eikxx+ikyy .

Here kx and ky are the x and y components of the wave vector.
It should be noted that for AE = 0 (i.e., in the situation

where ε1 = ε2 and there is no polarization charge at the
interface) these equations coincide with the system that
describes the inertial motion of the boundary between two
fluids in the absence of gravity and surface tension [30].

It is convenient to introduce new functions f = (cψ + η)/2
and g = (cψ − η)/2, where c is the constant given by

2c = |AE|−1
√

(1 − AE)(1 + A).

After the substitution, the linearized equations of motion are
separated into two independent equations for the functions f

and g,

τft = k̂f, τgt = −k̂g, (9)

where τ is the characteristic time of instability development
defined by the expression

τ = |AE|−1
√

(1 − AE)/(1 + A).

The linear equation for f describes the exponential growth
of initial periodic perturbations of the interface, while the

equation for g describes their attenuation. It is clear that in the
study of the instability of the interface, it suffices to consider
only the increasing branch of solutions. So we can assume that
g is identically zero.

A similar approach can be applied to the nonlinear equa-
tions of motion. The analysis is greatly simplified if we neglect
the decreasing branch of solutions by putting g = O(α2). This
means that we can set g = 0 in the right-hand sides of the
equations for f and g. As a result, the equations describing
the interface motion take the following form:

τft − k̂f = A + AE

4
[(k̂f )2 − (∇⊥f )2]

− A − AE

2
[k̂(f k̂f ) + ∇⊥(f ∇⊥f )] + O(α3),

(10)

τgt + k̂g = A + AE

4
[(k̂f )2 − (∇⊥f )2 + 2k̂(f k̂f )

+ 2∇⊥(f ∇⊥f )] + O(α3). (11)

It is important that the nonlinear equation (10) contains only
the function f and that Eq. (11) is linear with respect to the
function g, i.e., these equations are essentially simpler than
the initial equations (7) and (8).

In the following sections, we will study the formation of
curvature singularities on the interface in the framework of
Eqs. (10) and (11). Note that the linearized equations (9)
themselves display a tendency to form singularities due to
the explosive growth of small-scale perturbations. However,
as shown below, the type of singularity is fully determined by
the nonlinear terms of Eqs. (10) and (11).

IV. TWO-DIMENSIONAL CASE:
PRELIMINARY ANALYSIS

In the previous section, we have shown that the study of the
weakly nonlinear stage of the electrohydrodynamic instability
of the interface between two dielectric fluids in a strong vertical
electric field reduces to the analysis of the integrodifferential
equations (10) and (11).

Let us now assume that interface perturbations have the
plane symmetry (all quantities do not depend on the variable
y). The operator k̂ then can be expressed in terms of the Hilbert
transform Ĥ ,

k̂ = −Ĥ
∂

∂x
, Ĥφ(x) = 1

π
p.v.

∫ +∞

−∞

φ(x ′)
x − x ′ dx ′.

In plane geometry, Eqs. (10) and (11) take the form

τft + Ĥfx = A + AE

4
[(Ĥfx)2 − (fx)2]

− A − AE

2
[Ĥ (f Ĥfx)x + (ffx)x], (12)

τgt − Ĥgx = A + AE

4
[(Ĥfx)2 − (fx)2

+ 2Ĥ (f Ĥfx)x + 2(ffx)x]. (13)

It is convenient to introduce the functions that are analytic
in the upper half-plane of the complex variable x,

F = P̂ f, G = P̂ g,
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where P̂ = (1 − iĤ )/2 is the projection operator. Since
applying the Hilbert transform to a function analytic in the
upper half-plane reduces to its multiplication by the imaginary
unit, Eqs. (12) and (13) can be rewritten as

τFt + iFx = −(A + AE)F 2
x /2 − (A − AE)P̂ (FF̄x)x, (14)

τGt − iGx = −(A + AE)
[
F 2

x /2 − P̂ (FF̄x)x
]
. (15)

The solution of Eq. (15) with the initial condition G|t=0 = 0
is given by

G = 1

τ

∫ t

0
K(x + it/τ − it̃/τ,t̃) dt̃,

(16)
K(x,t) = −(A + AE)

[
F 2

x /2 − P̂ (FF̄x)x
]
.

As for the key equation (14), its right-hand side contains two
nonlinear terms. In the general case, when all terms are present,
it is not possible to solve this equation exactly (approximate
solutions will be constructed in Sec. VII). Nevertheless, it can
be easily seen that there are two special cases,

AE = A ⇔ ρ1/ρ2 = ε1/ε2, (17)

AE = −A ⇔ ρ1/ρ2 = ε2/ε1, (18)

in which the second or, respectively, the first nonlinear
term in Eq. (14) disappears. In these cases the solutions of
the evolution equations can be obtained analytically. These
situations will be discussed in the two following sections.

The conditions (17) and (18) can be satisfied with ac-
ceptable accuracy for some pairs of immiscible dielectric
liquids. As an example, let us consider the interface between
a liquid organosilicon polymer and mineral or organic oil
(see, for instance, Ref. [31]). For polymethylphenylsiloxane
(ρ1 ≈ 1100 kg/m3 and ε1 ≈ 2.7) as the lower fluid and
transformer oil (ρ2 ≈ 880 kg/m3 and ε2 ≈ 2.2) as the upper
fluid, we get A ≈ 0.11 and AE ≈ 0.10, i.e., the first condition
(17) holds. Next, if we replace the upper fluid by linseed oil
(ρ2 ≈ 930 kg/m3 and ε2 ≈ 3.2), we arrive at A ≈ 0.084 and
AE ≈ −0.085, i.e., the second condition (18) becomes true.

In the analysis of the behavior of the interface between two
ferrofluids in the presence of a magnetic field, the dielectric
constants ε1,2 in the conditions (17) and (18) should be replaced
by the relative permeabilities μ1,2. As is known, ferrofluids
are colloidal systems consisting of nanoscale ferromagnetic
particles suspended in a carrier fluid (see, e.g., Refs. [32,33]).
Usually, the volume fraction of particles in ferrofluids is a few
percentages. By varying the concentration of nanoparticles
in the base fluids, one can always satisfy the conditions (17)
or (18).

We now discuss the existing restrictions on the applicability
of Eqs. (14) and (15). Recall that these equations were
derived under the assumption of small interfacial slopes that
corresponds to the inequality |Re Fx | ∼ α � 1. It is clear
that the characteristic slope angles of the interface grow as a
result of the instability and, hence, we should take into account
that α is a function of time. Let us find the conditions under
which α(t) will be small during the entire evolution of the
system, starting from the initial time (t = 0) up to the moment
of singularity formation (t = tc).

Suppose that there initially exists a spatially localized
perturbation of the interface,

η(x,0) = Sa0/(x2 + a0
2), (19)

where S is a constant responsible for the direction of the
perturbation (it is proportional to the area corresponding to
the perturbed interface, S = π−1

∫
η dx) and a0 is the width

of the perturbation. According to this expression, at the
initial time t = 0, the characteristic slope angles are given by
α(0) ≈ |S|/a0

2. It is clear that the small-angle approximation
is valid only for small values of the parameter S, i.e., for
|S| � 1. In terms of the functions F and G, the initial condition
(19) reads as

F (x,0) = iS/2

x + ia0
, G(x,0) = 0, (20)

i.e., the function F has the only singularity (a simple pole) at
the point x = −ia0.

In the linear approximation, the solution of Eqs. (14) and
(15) with initial conditions (20) is the following:

F (x,t) = iS/2

x + ia0 − it/τ
, G(x,t) = 0,

i.e., the pole moves with a constant velocity towards the real
axis, reaching it at the point x = 0 at time t = t0 ≡ a0τ . The
function F then ceases to be analytic and the interface shape
becomes singular. The characteristic angles increase according
to the relation

α(t) ≈ |S|/(a0 − t/τ )2. (21)

As will be demonstrated below, the contribution of the
nonlinear terms of Eqs. (14) and (15) has a decisive impact
on the type of developing singularities. So, in particular, weak
root singularities can appear at the interface under the influence
of nonlinearity. For them, the slope angles remain small near
the singular points. Such behavior differs radically from that
predicted by the linear model; according to (21), α → ∞ as
t → t0. Within the framework of the nonlinear equations, the
singularity formation time (tc) differs from its linear estimate
(t0) by the value � ≡ t0 − tc. Outside the neighborhood of the
singular point, the interface dynamics can be well described
by linear equations and, consequently, the formula (21) is
applicable. According to it, the angles in the periphery at t = tc
are given by

α(tc) ≈ |S|τ 2/�2. (22)

Hence, the small-angle approximation will be valid at the
moment of singularity formation only if � = o(|S|1/2). As
will be shown in Sec. VII, this requirement is really satisfied
in the generic case.

It should be noted that the linear term Fx can be eliminated
from the key equation (14) by the substitution x → x + it/τ ,
that is, by transition to the coordinate system moving together
with singularities in the complex x plane. Finally, by switching
to the slow time scale, we can obtain an equation in which all
terms have the same order of smallness. This explains, in the
context of systematic asymptotic expansions, why we keep
the terms of different orders of smallness, O(α) and O(α2),
in Eqs. (10) and (11). In a certain sense, this is analogous
to the derivation of the Korteweg–de Vries equation for long
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waves in shallow water, where the linear translation term is
eliminated by transition to the coordinate system moving with
the wave (see, e.g., Ref. [34]).

V. DYNAMICS OF THE INTERFACE FOR AE = A

In the present section, we will consider the dynamics of
the interface between two dielectric fluids in the presence of
a strong vertical electric field in the situation where the ratio
of the permittivities of the fluids is equal to the ratio of their
densities, i.e., AE = A. The integrodifferential equation (14)
turns into a much simpler partial differential equation,

τFt + iFx = −AF 2
x . (23)

This equation coincides (up to coefficient A) with that obtained
in Ref. [25] for describing the nonlinear dynamics of the free
surface of a conducting liquid in a strong external electric
field. An equation similar in structure to Eq. (23) has also been
considered in Refs. [30,35], where it was used to describe the
dynamics of the free surface of an ideal fluid in the absence of
external forces. Since the method of solving an equation of the
form (23) has been described in detail in the cited references,
we will only briefly present the basic relations and the most
important features of the solutions.

The governing equation (23) transforms into the complex
Hopf equation,

τVt + iVx = −2AV Vx,

by the change V = Fx . The Hopf equation is solved by the
method of characteristics; its solution has the implicit form

V = V0(x̃), xτ = x̃τ + it + 2AV0(x̃)t, (24)

where V0(x) = V |t=0, and the variable x̃ plays the role of a
parameter. The expressions (24) describe the motion of the
branch points of the function V on the complex x plane
(these points correspond to the condition ∂x/∂x̃ = 0). At some
moment t = tc when one of the branch points reaches the real
axis, the analyticity of V is violated and a singularity appears
in the solutions of Eq. (23).

As for the equation (15) for the function G, its solution with
zero initial condition is given by (16). Note that the highest
derivative on the right-hand side of Eq. (15) corresponds to
the function F̄ analytic in the lower half-plane of the complex
variable x. Its influence is suppressed by the action of the
projection operator P̂ . Otherwise, the condition of smallness
of g compared to f that was used in deriving (10) and (11)
would be violated close to the singularity.

The shape of the interface is given by the formula η =
2 Re(F − G). Let us assume that the boundary is symmetric
with respect to the point x = xc, where a singularity is formed.
It follows from the expressions (16) and (24) that, in the
vicinity of the singularity, the interface shape looks like

z − zc ∼ −|x − xc|3/2,

where zc = η(xc,tc). An important feature of such solutions is
that they are consistent with the small-angle approximation.
Indeed, near the singularity we have

ηx ∼ −(x − xc)|x − xc|−1/2.

Only the second derivative of the function η (i.e., in fact, the
curvature of the interface between two fluids) becomes infinite
at the critical time t = tc,

ηxx(x,tc) ∼ −|x − xc|−1/2, ηxx(xc,t) ∼ −(tc − t)−1/2.

It should be noted that such behavior of the interface is largely
similar to that of vortex sheets, where Moore’s curvature
singularities appear [36].

It is important that, at time tc, the slope angles are small
not only in the neighborhood of the singularity but also at the
periphery. Indeed, the characteristic angles can be estimated
using the formula (22) from the shift of the time of singularity
formation between linear and nonlinear models, � = t0 − tc.
According to Refs. [24,25], we have � ∼ S1/3 for the initial
conditions (20) with S > 0 (see also Sec. VII). Substituting this
relation into (22) yields the following estimate: α(tc) ∼ S1/3,
i.e., the small-angle approximation will be valid if S � 1.

Thus, if the condition (17) is satisfied, the electrohy-
drodynamic instability leads to the formation of weak root
singularities on the interface between two dielectric fluids.
The curvature of the boundary becomes infinite at singular
points, while the slope angles remain relatively small. Such
behavior of the boundary is similar to that of the free surface of
a perfectly conducting liquid in a strong electric field [24,25].
In a certain sense, the results of the present section generalize
the results of these works to the case of the interface between
two liquids with comparable densities. Indeed, if the density
of the upper fluid is much less than that of the lower fluid,
ρ1 � ρ2, then it follows directly from (17) that ε1 � ε2. In
such a case, the electric field does not penetrate into the lower
fluid as if it were perfectly conducting.

VI. DYNAMICS OF THE INTERFACE FOR AE = −A

Let us consider the behavior of the interface between two
dielectric fluids in a vertical electric field for the case where
the ratio of the permittivities of the fluids is equal to the inverse
ratio of their densities, i.e., AE = −A. If the condition (18) is
satisfied, the system of integrodifferential equations (14) and
(15) is split into two independent equations:

Ft + iAFx = −2A2P̂ (FF̄x)x, (25)

Gt − iAGx = 0, (26)

where we have taken into account that τ = A−1 in the
considered case. The nonlinear right-hand side of the equation
for the function G becomes identically zero. According to this
equation, the function G decays to zero, and, as a consequence,
one can put G = O(α3). In terms of the canonical variables η

and ψ , this means that

2Aη = (1 + A)ψ (27)

at the initial (weakly nonlinear) stage of the interface instability
development, i.e., η and ψ are linearly dependent functions.

It is interesting that the relationship (27) between the
canonical variables holds not only for the approximation of
small surface slopes but also for the original three-dimensional
equations of motion. Indeed, in Ref. [37] it was found that if
ε1/ε2 = ρ2/ρ1, then the special regime of fluid motion can
be realized for which the velocity and electric potentials are
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linearly related,

ϕ1 = �1 − z, (1 + A)ϕ2 = (1 − A)(�2 − z). (28)

These expressions imply the existence of a coordinate system
in which liquids move along the electric field lines, and
their velocities are directly proportional to the field strength
(see also Ref. [38]). Substituting the formulas (28) into the
boundary condition (4), after simple transformations we arrive
at (27). Thus, the relation (27) is exact for the increasing branch
of the solutions. It follows from Eq. (26) that, at least at the
initial (weakly nonlinear) stage of the instability development,
the system tends to a state where the relation (27) is true. This
suggests the stability of the flow regime corresponding to the
expressions (28).

For G = 0 the function η, which determines the shape of the
boundary, and the complex function F are related by the simple
expression F = P̂ η. Equation (25) then will directly govern
the boundary motion. The remarkable feature of Eq. (25) is
that, in some cases, it can be reduced to ordinary differential
equations (ODEs). Therefore, let us represent the unknown
function as a sum of simple poles (this corresponds to the case
of several (N ) local perturbations of the boundary):

F (x,t) =
N∑

n=1

iSn/2

x + pn(t)
, n = 1,2, . . . ,N,

where Sn are real constants and pn(t) are complex functions
that determine the locations of poles in the lower complex
half-plane [i.e., Im pn(t) > 0]. Equation (25) then reduces to
the following system of ODEs,

dpn

dt
= −iA − iA2

N∑
j=1

Sj

(pn − pj )2
, n = 1,2, . . . ,N.

It defines the trajectories of N poles in the complex x plane.
In the simplest case, when N = 1, these solutions describe the
evolution of spatially localized perturbation of the interface
with initial condition (20). Then

F (x,t) = iS/2

x + ia(t)
, a(0) = a0, (29)

where a(t) is a positive function of time which determines
the location of the pole on the imaginary axis. This function
satisfies the following ODE,

da/dt = −A + SA2/(4a2). (30)

As can be seen, if the pole is at a considerable distance from
the real axis (this corresponds to a2 � |S|), then the nonlinear
term on the right-hand side of Eq. (30) is small compared to
the linear term and, hence, the pole moves to the origin with a
constant velocity along the imaginary axis. The nonlinear term
begins to play a significant role when the pole approaches the
real axis.

For negative S (i.e., for a local perturbation of the boundary,
which is directed downwards), the nonlinearity accelerates
the pole motion, and at the moment t = tc the function a(t)
vanishes (the pole reaches the real axis). Integrating Eq. (30),
we obtain for the time of singularity formation

tc = a0/A −
√

|S|/(4A) arctan(2a0/
√

A|S|). (31)

In terms of Sec. IV, this means that the influence of nonlinearity
shifts the time of singularity formation by � ∼ |S|1/2. Note
that in the case of such dependence of � on the parameter
S, even the rough estimate for the surface-slope angles
(22) predicts the formation of strong singularities violating
the small-angle approximation. In accordance with (29), the
boundary shape becomes singular at the moment t = tc:
η(x,tc) = πSδ(x), where δ(x) is the Dirac δ function. Such
behavior of the interface fundamentally differs from that
considered in the previous section, where only the second
derivative of the function η becomes infinite in a finite time.

For positive S (i.e., for a local perturbation of the boundary,
which is directed upwards), the motion of the pole slows down.
The pole does not reach the real axis and, as a consequence, a
singularity does not appear.

Thus, the analysis of the evolution equation for the interface
(25) shows that the nonlinearity promotes the development
of the instability for boundary perturbations directed from
the lighter to the heavier fluid [i.e., for S < 0 in terms
of the particular solution (29)]; it is responsible for sharpening
the interface. It is clear that the applicability of the weakly
nonlinear model (10) and (11), based on the small-angle
approximation, breaks down for the solutions obtained. In
any case, these solutions indicate a tendency to form strong
finite-time singularities for which the slope angles increase up
to π/2.

If the lower fluid is much heavier than the upper fluid (ρ1 �
ρ2 or, what is the same, A ≈ 1), then, according to (18), the
dielectric constants satisfy the inequality ε1 � ε2 (i.e., AE ≈
−1). As a consequence, the electric field does not penetrate
into the upper fluid. From a mathematical point of view, this
is similar to considering a dielectric fluid with a perfectly
conducting free surface in the limit where the surface charge
completely screens the electric field above the fluid. Such a
situation was studied in Refs. [26,27], where exact solutions to
the corresponding equations of motion were found. According
to the solutions, the singularities (cusps) appear on the surface;
its shape in the vicinity of a singular point is defined by the
relation

z − zc ∼ |x − xc|2/3.

It is natural to assume that such strong singularities can also
form on the interface between two dielectric liquids with
comparable densities, i.e., for A �= 1.

VII. FORMATION OF SINGULARITIES
IN THE GENERAL CASE

In the two previous sections, we considered the special
cases, AE = ±A, in which the governing equation (14) can be
solved analytically. In the present section, we will study the
dynamics of singularity formation at the interface for arbitrary
AE and A, except for the particular case where AE = 0 and
the electrostatic forces are absent (then the characteristic time
of instability development τ turns into infinity). It will be
demonstrated that, in the general case, it is possible to describe
the evolution of a localized perturbation of the interface
[for instance, corresponding to the initial conditions of the
form (20)].
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Let us consider Eq. (14) in the framework of the “local”
approximation, which implies that, in studying blow-up
phenomena, one should primarily focus on the approach
of singularities of the function F to the real axis (one of
them touches the axis at t = tc). Hence, it is sufficient to
consider a small neighborhood of the closest (to the real axis)
singularity, which moves along a trajectory x = X(t) in the
lower half-plane of the complex variable x. This allows us to
simplify the right-hand side of Eq. (14). Since the influence
of singularities of the function F̄x (all of them are located in
the upper half-plane) are suppressed by the projection operator
P̂ acting on the product FF̄x , it is sufficient to keep only the
leading term in the expansion of the derivative F̄x around the
path x = X(t). So, we will assume approximately that

P̂ (FF̄x) ≈ FR(t), R(t) ≡ F̄x |x=X(t). (32)

This expression becomes exact when the function F has one
simple pole; this situation is similar to that considered in
Sec. VI.

Under the approximation (32), the equation of boundary
motion (14) rewrites as

τFt + iFx = −(A + AE)Fx
2/2 − (A − AE)R(t)Fx, (33)

i.e., we get a nonlinear partial differential equation of the first
order instead of the integro-differential equation. In the same
way as was done in Sec. V, we introduce the complex velocity
V = Fx . As a result, we arrive at the equation

τVt + Q(t)Vx = −(A + AE)V Vx,

where we have denoted Q(t) ≡ i + (A − AE)R(t). Its solution
can be constructed by the method of characteristics,

V = V0(x̃), xτ = x̃τ +
∫ t

0
Q(t) dt + (A + AE)V0(x̃)t,

(34)

where V0(x) = V |t=0 and x̃ is a parameter. On the whole, these
expressions are only slightly more complicated than those
corresponding to the particular case AE = A (see Sec. V).
The appearance of the additional quasilinear term in Eq. (33)
leads to the necessity of a self-consistent calculation of the
dependence Q(t).

The solution of the equation for G is given by the formula
(16). Together, the pair of functions F and G determines the
shape of the interface, η = 2 Re(F − G). Since the function G

remains small compared to F up to the moment of singularity
formation, we can approximately assume that η ≈ 2 Re F .

The basic relations concerning the dynamics of singularity
formation in the solutions of Eq. (33) are given in Appendix B.
From them it follows that, in the generic case, weak curvature
singularities appear at the interface (2Re Vx ≈ ηxx → ∞ at
singular points).

Let us consider the behavior of the interface for the initial
conditions (20), which, in terms of the function V0, correspond
to the expression

V0(x̃) = − iS/2

(x̃ + ia0)2
. (35)

Assume that X(tc) = 0, i.e., a singularity appears at the
point x = 0 on the interface. Substituting the expression (35)

into the relations describing the motion of singularities (see
Appendix B), we find the time tc in the leading order of the
expansion with respect to the small parameter S,

tc ≈ a0τ − 3τ [Sa0(A + AE)]1/3/2, (36)

where the inequality S(A + AE) � 0 must hold for the
parameters of the problem. This inequality gives the necessary
condition for singularity formation at the point x = 0. One
can see that, for AE > −A, the curvature singularity can
appear only if S > 0, i.e., if the perturbation is directed
upwards. The case AE = A (see Sec. V) also falls into this
category. For AE < −A, on the contrary, we have S < 0, i.e.,
the perturbation is directed downwards. In both cases, the
curvature becomes infinite in a finite time. The main difference
is the sign of the curvature. The curvature is negative for
AE > −A and positive for AE < −A.

As can be seen from the formula (36), � ∼ |S|1/3 except
for the degenerate case where AE = −A. It then follows from
the estimate (22) that at t = tc the small-angle approximation
is valid not only in the vicinity of the singular point (ηx = 0 at
x = 0) but also in the periphery. Note that the last term in the
right-hand side of Eq. (33) provides only minor corrections
of order |S|2/3 to the estimate for tc. However, in the case
where AE = −A, it is just this term which determines the
dynamics of singularity formation. It yields the following
nonlinear correction for the blow-up time: � ∼ |S|1/2 [see also
Eq. (31)]. For AE = −A, the interface behavior was studied
in detail in Sec. VI. It has been shown that, if S < 0, there
is a tendency to form strong singularities for which the slope
angles are finite.

To conclude this section, we note that the results obtained
on the basis of the approximation (32) are fully consistent with
the exact results corresponding to the special cases AE = ±A.
This confirms the quality of the model equation (33).

VIII. CONCLUDING REMARKS

In the present work, the behavior of the interface between
two liquid dielectrics in a strong vertical electric field has been
studied. In the framework of the Hamiltonian formalism, the
quadratic nonlinear integrodifferential equations (10) and (11)
describing the interface dynamics were derived in the ap-
proximation of small surface slopes. Our analysis has shown
that there exist two special cases, (17) and (18), where
the equations of motion can be solved exactly for the
plane geometry of the problem (all functions depend only
on one spatial variable). In the first case, where the ratios of
the permittivities and of densities of the two liquids coincide
with each other (ε1/ε2 = ρ1/ρ2), the development of the
instability results in the formation of root singularities on
the interface. In the second case, where the ratio of the
permittivities of the liquids equals the inverse ratio of their
densities (ε1/ε2 = ρ2/ρ1), a tendency for the formation of
strong singularities (cuspidal dimples) on the interface has
been demonstrated.

Recall that the conditions (17) and (18) correspond to
considering two different nonlinear terms existing in the
governing equation (14). In the general case, i.e., for arbi-
trary values of dielectric constants and densities, both these
terms affect the dynamics of singularity formation. For this
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situation, it was proposed to describe the evolution of a
localized perturbation of the boundary in the framework of
the approximate equation (33). Its analysis has shown that
weak root singularities, which do not violate the small-angle
approximation, appear on an initially smooth interface for al-
most any initial conditions. At the singular points, the curvature
tends to minus infinity for ε1/ε2 > ρ2/ρ1 (this also includes
the special case where ε1/ε2 = ρ1/ρ2) and to plus infinity for
ε1/ε2 < ρ2/ρ1. The stronger singularities with finite interface
slopes appear in the intermediate (degenerate) case, where
ε1/ε2 = ρ2/ρ1.

It is clear that if the boundary curvature increases in-
finitely in a finite time, the capillary forces inevitably begin
to play an essential role. According to (1), this happens
on the scale of k � k1 ∼ ε0E

2/σ , where the interface dy-
namics is simultaneously governed by capillary and elec-
trostatic forces (here E is the characteristic electric field
strength). If the permittivities of the liquids differ considerably,
then the self-similar regime of the boundary motion for
which the scale decreases as (tc − t)2/3 can be realized [39,40].
The instability development then can result in the formation
of conical tips of size k−1

1 on the boundary, for which the
interfacial curvature increases as (tc − t)−2/3. In the formal
limit of infinitely strong electric field, the size of conical
formations turns into zero, k−1

1 → 0, i.e., they are compressed
into the points corresponding to root singularities. From this
we can conclude that there exists a nonlinear mechanism for
energy transfer from the large scale k−1

0 to the small scale k−1
1

related to the formation of 3/2-power singularities. These root
singularities generate more strong singularities, whose consid-
eration is beyond the scope of weakly nonlinear analysis.

Next, let us discuss the applicability of the irrotational
flow approximation. This approximation is valid for large
Reynolds numbers [see the condition (2)] but violated for
k � k2 ∼ Eν−1(ε0/ρ1)1/2. In the formal limit E → ∞ we
have k−1

2 → 0, i.e., the flow can be assumed to be potential up
to the moment of singularity formation. For a finite value of the
scale k−1

2 , our approach, based on the Hamiltonian formalism
and, therefore, neglecting dissipation, is not applicable in the
neighborhood of the developing singularity.

Let us estimate the spatial scales k−1
1 and k−1

2 where
capillary and, respectively, viscous forces should be taken into
account. For simplicity, we consider the situation where the
upper fluid is absent. Let E = E2 = 107 V/m, i.e., the electric
field strength considerably exceeds the threshold for the onset
of surface instability (∼2.5 × 106 V/m for deionized water).
Further, let the wavelength of the initial surface perturbation
(2π/k0) be ∼0.01 m. For water (ρ = 103 kg/m3, σ ≈
0.073 N/m, and ν ≈ 10−6 m2/s) we get 2π/k1 ≈ 5 × 10−4 m
and 2π/k2 ≈ 7 × 10−6 m, i.e., the conditions (1) and (2) are
satisfied. Moreover, it is seen that the effect of viscosity can be
neglected in comparison with capillary and electrostatic forces
in the vicinity of the singularity. The same situation takes place
for other low-viscosity liquids, such as ethyl alcohol, benzene,
nitrobenzene, acetone, and so on. Similar estimates for the role
of viscosity in the formation of Taylor cones on the surface
of liquid metal in the presence of an electric field are given in
Ref. [41].

The viscosity of organic or mineral oils is much greater
than the viscosity of water. For estimations we take linseed oil

(σ ≈ 0.025 N/m and ν ≈ 5 × 10−5 m2/s). The scales
2π/k1 ≈ 2 × 10−4 m and 2π/k2 ≈ 3 × 10−4 m remain small
as compared to 2π/k0, but now they are close to each other. On
the one hand, this ensures the validity of our weakly nonlinear
analysis. On the other hand, this implies that viscous forces,
as well as capillary forces, have a significant importance at
the strongly nonlinear stages of the instability. Note that the
interfacial tension is always less than the surface tensions of
the liquid pair used; it can take the relatively small values
of 10−4–10−3 N/m (see, e.g., Ref. [31]). This can lead to a
decrease in the relative contribution of capillary forces.

Finally, for high-viscosity liquids (e.g., glycerol and some
liquid organosilicon polymers), the applicability conditions of
our model are violated. Indeed, for glycerol (σ ≈ 0.06 N/m,
ν ≈ 10−3 m2/s, and ρ ≈ 1260 kg/m3) we obtain 2π/k1 ≈
4 × 10−4 m and 2π/k2 ≈ 8 × 10−3 m, i.e., the scales k−1

0

and k−1
2 are comparable, and, consequently, the role of

viscosity is essential throughout the evolution of the system.
Usually, viscosity delays the formation of singularities without
qualitatively changing the behavior of the system (see, e.g.,
the recent paper [42] where the singularity formation on
the viscous vortex sheet caused by the Kelvin-Helmholtz
instability has been studied). It then can be assumed that
the main conclusion of the present work, namely that the
nonlinearity determines the tendency to the formation of
singularities where the interfacial curvature blows up, and its
sign coincides with the sign of the expression (ε2ρ2 − ε1ρ1),
may also be valid.
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APPENDIX A

With the use of the Green’s first theorem, the Hamiltonian
(6) can be represented as an integral over the interface,

H = 1

2

∫
S

[�1∂n�1 − (ρ2/ρ1)�2∂n�2

− ϕ̃1∂nϕ̃1 + (ε2/ε1)ϕ̃2∂nϕ̃2]SdS, (A1)

where dS ≡
√

1 + (∇⊥η)2 dxdy is the surface differential
and ϕ̃1,2 are the perturbations of the dimensionless electric
potentials,

ϕ̃1 = ϕ1 + z, ϕ̃2 = ϕ2 + (ε1/ε2)z.

Note that, for the auxiliary potentials ϕ̃1,2, the boundary
conditions (4) take the form

ϕ̃1 = ϕ̃2 + (1 − ε1/ε2)η, ∂nϕ̃1 = (ε2/ε1)∂nϕ̃2,

z = η(x,y,t). (A2)
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In order to derive the equations of motion for the interface,
we should expand the integrand of the Hamiltonian (A1) in
powers of the canonical variables η and ψ . Let us take into
account that the harmonic functions decaying at z → ∓∞
obey the relations

φ1,2|z=η =
∞∑

n=0

(±η)nk̂n

n!
φ1,2|z=0,

∂zφ1,2|z=0 = ±k̂φ1,2|z=0.

Applying them to the potentials ϕ̃1,2, �1,2, and their deriva-
tives, we can express all the functions contained in (A1) in
terms of η and ψ . In particular, we find for the potentials ϕ̃1,2

and �1,2 from the boundary conditions (3) and (A2),

ϕ̃1,2|z=η = ±AE(1 ∓ AE)

1 − AE

η

−AE(1 − AE)k̂−1[k̂(ηk̂η) + ∇⊥(η∇⊥η)] +O(α3),

(A3)

�1,2|z=η = ±1 + A

2
ψ + (1 + A)(1 ∓ A)

2
k̂−1

× [k̂(ηk̂ψ) + ∇⊥(η∇⊥ψ)] + O(α3). (A4)

In deriving the relations (A3) and (A4), the quadratic nonlin-
earity is only taken into account.

Substituting (A3), (A4), and also the expansions for the
normal derivatives of the potentials into (A1), we arrive after
simple transformations at the following expression for the
Hamiltonian of the system,

H = 1 + A

4

∫
(ψk̂ψ − Aη[(k̂ψ)2 − (∇⊥ψ)2])dxdy

− A2
E

1 − AE

∫
(ηk̂η + AEη[(k̂η)2 − (∇⊥η)2])dxdy.

It contains only second- and third-order terms in the integrand.

APPENDIX B

The expressions (34) give the solution of Eq. (33) in the
implicit form. The problem of finding the explicit solution

reduces to analyzing the map x → x̃ specified by Eq. (34).
This map ceases to be one-to-one at points where

∂x/∂x̃ = 1 + (A + AE)V ′
0(x̃)t/τ = 0. (B1)

Here V ′
0 defines the derivative with respect to the argument.

Solution of (B1) gives a trajectory x̃ = X̃(t) in the complex x̃

plane. The motion of the branch point of the function V then
is given by

X(t)τ = X̃(t)τ +
∫ t

0
Q(t) dt + (A + AE)V0(X̃(t))t. (B2)

In terms of V , the time function Q(t) is determined the
auxiliary equation

Q(t) = i + (A − AE)V̄ |x=X(t).

At the moment t = tc when the branch point touches the
real axis, i.e., Im X(tc) = 0, the solution of Eq. (33) becomes
singular.

Let us examine the behavior of the solution near a
singularity. Expanding (34) in a small neighborhood of the
point t = tc, x = xc ≡ X(tc), and x̃ = x̃c ≡ X̃(tc) and taking
into account (B1) and (B2), in the leading order we get

V ≈ V0(x̃c) + V ′
0(x̃c) δx̃,

τδx ≈ Q(tc) δt + (A + AE)V0(x̃c) δt

+ (A + AE)V ′′
0 (x̃c) tc(δx̃)2/2,

where δt = t − tc, δx = x − xc, and δx̃ = x̃ − x̃c. Excluding
the parameter δx̃ from these expressions, we obtain close to
the singularity,

V ≈ V0(x̃c)

+V ′
0(x̃c)

[
τδx − δt (Q(tc) + (A + AE)V0(x̃c))

(A + AE)V ′′
0 (x̃c) tc/2

]1/2

.

(B3)

One can see that the derivatives Vx and Vt become infinite
for δt → 0, which corresponds to the formation of 3/2-power
singularities on the interface. The exception is the special case
where AE = −A, and the expansion (B3) loses its meaning.
This situation is considered in Sec. VI.
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