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Dynamics of squeezing fluids: Clapping wet hands
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Droplets splash around when a fluid volume is quickly compressed. This phenomenon has been observed
during common activities such as kids clapping with wet hands. The underlying mechanism involves a fluid
volume being compressed vertically between two objects. This compression causes the fluid volume to be
ejected radially and thereby generate fluid threads and droplets at a high speed. In this study, we designed and
performed laboratory experiments to observe the process of thread and drop formation after a fluid is squeezed.
A thicker rim at the outer edge forms and moves after the squeezing, and then becomes unstable and breaks
into smaller drops. This process differs from previous well-known examples (i.e., transient crown splashes and
continuous water bells) in aspects of transient fluid feeding, expanding rim dynamics, or sparsely distributed
drops. We compared experimental measurements with theoretical models over three different stages; early
squeezing, intermediate sheet-expansion, and later break-up of the liquid thread. In the earlier stage, the fluid
is squeezed and its initial velocity is governed by the lubrication force. The outer rim of the liquid sheet forms
curved trajectories due to gravity, inertia, drag, and surface tension. At the late stage, drop spacing set by the
initial capillary instability does not change in the course of rim expansion, consequently final ejected droplets
are very sparse compared to the size of the rim.
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I. INTRODUCTION

The atomization process of a liquid thread is observed
in many industrial applications (e.g., coating [1], cooling,
etc. [2,3]) and everyday life (e.g., raindrop formation [4],
clapping wet hands). In particular, we have all experienced
the splashing effects of clapping with wet hands. When water
splashes, numerous water droplets, rather than fluid threads,
are dispersed. Such a squeezing motion of the hands makes
the fluid in between eject and eventually break into drops. This
outburst of fluid motion is the primary motivation behind this
study.

Drop formation from a fluid sheet has been observed and
studied in two notable cases: a crown splash [5–10] and a
water bell [11–15]. In a crown splash, the crown shape of the
fluid results from an instability along a cylindrical fluid-sheet
forming due to transient fluid impact. In this process, a drop of
a fluid is released and impacts a bath of the same fluid at rest or
a solid substrate. After impact, a cylindrical sheet forms and
moves upwards, eventually creating droplets along the edge
of the fluid rim [16]. Liquid crowns of various geometries
have been studied extensively; on a bulk of the same fluid
[10,17], on a solid wall [18,19], on a thin fluid layer [20,21],
on a rod [22,23], and more. The water bell [14,15] is another
example sharing some features with our study of clapping with
wet hands, i.e., the fluid rim connected to the sheet. When a
continuous fluid jet hits a localized solid obstacle (i.e., a rod),
the jet radially spreads and forms a circular sheet called a water
bell [24]. Similar to the liquid crown, the water bell has the
drop-formation mechanism in which the fluid sheet radially
expands and breaks into smaller droplets.
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Uniqueness of the proposed work, clapping wet hands, lies
in these three points: First, the flow of fluid to a liquid sheet is
transient and follows the inverse power law due to a lubricating
flow between two plates, which is not observed in the other two
cases. Second, the thick rim in this case expands radially in a
different manner than other liquid sheets. All water bells are
steadily forming both a rim and a liquid sheet without temporal
dynamics due to a continuous liquid feed. Third, an undulatory
thick rim is developed at an early stage and later gravity and
radial expansion amplifies this rim’s waveness. But, a crown
splash develops a decelerating liquid sheet against gravity and
becomes unstable at a later stage when it reaches close to
its maximum position. Water bells are either closing the fluid
sheet at the lower end or splashing radially with a continuous
jet.

In this paper, we investigate how a fluid sheet and rim
develop and move due to the squeezing motion of disks, and
how fluid droplets form from the rim due to the capillary
instability as illustrated in Fig. 1. Again, this study is
motivated by the familiar act of clapping with wet hands,
which has unique features compared to traditional splash
problems, e.g., crown splashes and water bells. First, Sec. II
describes the experimental setup and procedure. In Sec. III,
we compare experimental data with three theoretical models:
the lubrication flow, the ejecting dynamics, and the capillary
instability of the rim. Finally, we discuss the conclusion of our
findings and the future direction in Sec. IV.

II. EXPERIMENTAL METHODS

The experimental setup is designed to understand and
mimic the motion of clapping hands: a squeezing fluid motion
caused by two circular disks [see Fig. 2(a)]. An upper disk
is actuated to fall vertically at a fixed speed and eventually
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FIG. 1. Image of a liquid sheet (silicone oil of 100 cSt) squeezed
from two clapping plates at the velocity of 10.2 cm/s.

collides with a bottom disk. Both disks have the same radius
(Rdisk = 3.8 cm) and are aligned accurately in order to avoid
any sliding motion. The impact speed (Vdisk) of the upper
disk varies from 5 to 13 cm/s and is controlled by a linear
actuator (Xslide XN10-0040-E04-71, Velmex Co.). The fluid
motion is recorded at 1000 Hz by using either one MotionXtra
N3 from the side or two Fastcam APX RS Photrons from

FIG. 2. (Color online) (a) Experimental apparatus and schematics
of the sheet of fluid being ejected from the plates. (b) Zoomed
schematics to explain the coordinate system of the rim dynamics.

both the top and the side. The high-speed camera on the
top is located approximately 2 m away from the disk to
prevent any optical distortion. We experimented using silicon
oil (Clearco Products) with kinematic viscosities (ν = μ/ρ;
where μ is absolute fluid viscosity and ρ is fluid density) of
20, 50, and 100 cSt and surface tensions (γ ) of 20.6, 20.8, and
20.9 dynes/cm, respectively. We also used a mixture of 80%
glycerol and 20% water of about 75 cSt to test a high surface
tension fluid of 65.7 dynes/cm [25]. For each experiment,
the same amount of fluid (7 ml) is first degassed and gently
deposited on the top of the lower disk using a syringe to remove
any initial bubbles in the bulk. The thin fluid layer deposited
on the lower disk is about 1.5 mm in height.

The dimensionless parameters for describing the clapping
hands experiment are the Reynolds number, Re = VdiskRdisk/ν;
the Weber number, We = ρV 2

diskRdisk/γ ; and the Ohnesorge
number, Oh = μ/

√
ργRdisk = √

We/Re. Our experiments
cover ranges of Oh = 0.02 ∼ 0.1, Re = 20 ∼ 200, and
We = 2 ∼ 20.

When the two plates squeeze deposited fluids within about
10 to 30 ms, the fluid is ejected in a mostly radial direction
through the small gap between the two plates. In the course
of squeezing, a fluid rim is quickly formed in about 20 ms
(capillary timescale; tcapillary =

√
ρa3/γ ) on the edge of the

sheet primarily due to surface tension. The measured rim radius
(a) is about 2 mm, is independent of the disk speed, and close
to the capillary length (

√
γ /ρg ≈ 1.5 mm). This indicates that

the formation of the rim is mainly due to the capillary force
and happens quickly in about 20 ms. In the intermediate stage,
the rim and sheet curve down due to gravity and decelerate
due to drag and surface tension [see images after t = 40 ms in
Fig. 3(a)]. Eventually, an instability will be initiated along the
rim and drops will form on the tip of the fluid rim as shown in
the images at t = 0,40,80,120,160 ms in Fig. 3(a). Depending
on fluid viscosities and clapping speeds, variations in the fluid
sheet and rim are observed, as shown in Figs. 3(b)–3(d).

Recorded images from the two high-speed cameras are
analyzed using the MATLAB image processing toolbox to
determine the position, size, and wavelength of the fluid rim.
This program analyzes the intensity of each rim radius; the
radius is found by locating the largest peak in intensity and
the location of this peak will be the distance between the
rim and the disk center. Then, the program analyzes the
luminosity around the rim versus the angle for a certain range
of angles as the pictures are difficult to analyze on the whole
semi-arc. These experimental results from image analysis will
be discussed and compared with theoretical models in the next
section.

III. RESULT

A. Squeezing flow: Early stage

When the upper plate strikes the thin fluid on the lower
plate, the fluid splashes radially due to the squeezing motion
of the two plates. Due to the small thickness of the fluid
(∼1.5 mm) and high fluid viscosity (20 ∼ 100 cSt), the
low-Reynolds number lubrication approximation [26] can be
considered in our experiments. The impact force (F0) from
the upper disk is presumably proportional to the impact
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FIG. 3. Side-viewed image sequences (a) at t = 0, 40, 80, 120, and 160 ms with viscosity of 100 cSt and Vdisk = 5.08 cm/s, at t = 80 ms
with Vdisk = 12.70 cm/s with viscosity of (b) 100 cSt, (c) 50 cSt, and (d) at t = 80 ms with Vdisk = 12.70 cm/s with 75 cSt water-glycerol
mixture.

plate velocity (Vdisk) [27] and is then applied to compress
the fluid in between. We can assume that the total fluid
volume is conserved (R(t)2H (t) = R2

diskH0) and then solve
the lubrication equation with initial conditions (H |t=0 = H0,
R|t=0 = Rdisk). The continuity equation in terms of radial and
vertical velocities (vr , vz) and the nontrivial component (r) of
the momentum in a cylindrical coordinate are written as

1

r

∂

∂r
(rvr ) + ∂

∂z
vz = 0,

∂P

∂r
= μ

∂vr

∂z2
. (1)

If one solves for the vertical velocity, then P (r) yields

P (r) = −3μ
r2

H 3

∂H

∂t
. (2)

Integrating the pressure P (r) over the plate surface (r ∈
[0,Rdisk] and θ ∈ [0,2π ]) gives the force exerted by the plate:

F0 = 3πμ

2

R(t)4

H (t)3

∂H

∂t
. (3)

Finally, using the constant volume condition [R(t) =
Rdisk

√
H0/H (t)] gives the fluid height

H (t) = H0

(
1 + 8

3πμ

H 2
0 F0

R4
disk

t

)−1/4

. (4)

For reference, this height expression is different from other
lubrication calculations using the constant contact area condi-
tion [28]. Combining the linear relation of impact force with
disk speed [27], the initial radial velocity will be

dR

dt

∣∣∣∣
t=0

= H 2
0 F0

3πρνR3
disk

∝ Vdisk
νwater

ν
. (5)

It indicates that the initial radial velocity of the ejecting fluid
is proportional to the clapping speed and inversely proportional
to the fluid viscosity, which is in good agreement with the
experimental observations with R2 = 0.82 as shown in Fig. 4.

B. Expanding Rim: Intermediate stage

One of the fascinating features in this experiment is the
spreading of a thick fluid rim caused by the collision of two
plates. The static shape of a closed fluid sheet, like a flowing
fluid balloon, has been studied in Refs. [15,24]. Here, we
will develop our model for the rim dynamics by considering
various effects on a fluid rim in a coordinate system described
in Fig. 2(b).

The mass of a small section of rim ρπa2Rdφ is moving in a
curved trajectory where φ is the azimuthal angle in a cylindrical
coordinate. Hence, the centrifugal force acts outwards as

�Fc = ρπa2Rdφ
|d �x/dt |2

Rc

n̂, (6)

where �x(=Rr̂ + Zẑ) is the position vector of a rim, n̂ is the
unit vector normal to the rim’s trajectory, Rc = (−dθ/ds)−1

is the radius of curvature of the rim’s trajectory, and the drag

FIG. 4. Initial radial velocity of the rim vs. normalized disk
velocity with different viscosities. The solid line is the best fit line with
R2 = 0.82. Initial radial velocity is measured over an 8-ms interval
just after the clapping.
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force acts opposite to the rim’s trajectory as

�Fd = − 1
2ρCD|d �x/dt |2(2aRdφ)ŝ, (7)

where ŝ is the tangential unit vector along the rim’s trajectory,
R is the radial distance of the rim, and CD is the drag
coefficient. There are different models of the drag coefficient
describing drag on a drop or a liquid film [29], but we have
chosen 24/Reair, using air kinematic viscosity for simplicity.
Since a thin fluid sheet is connected to the back side of the
rim, the tangential capillary force can be expressed as

�Fγ 1 = −2γRdφŝ, (8)

where the factor of 2 is due to the upper and lower sides of a
liquid sheet. Also, the capillary force acts along the cylinder’s
surface due to the curved cylindrical rim. The resultant force
points in the negative normal direction as

�Fγ 2 = −γ a
R

Ra

dφn̂, (9)

where Ra = R/ cos θ is the azimuthal curvature of the rim.
Last, gravity pulls the rim downward as

�Fg = ρgπa2Rdφẑ. (10)

After adding all above forces, we write the governing
equation for the liquid rim as

ρπa2Rdφ
d2 �x
dt2

= �Fc + �Fd + �Fγ 1 + �Fγ 2 + �Fg, (11)

Then, we can solve this equation numerically
using the following boundary conditions: R|t=0 =
Rdisk, z|t=0, dz/dt |t=0 = 0, and dR/dt |t=0 is from the
mean radial velocity in Fig. 4 at a given fluid viscosity and
clapping speed as a result of lubrication force, which is
described in the previous section.

Simulation results are compared with experiments in Fig. 5.
Here, trajectories of only gravity (open squares), the full
model solving Eq. (11) (open circles), and experiments (closed
circles) exhibit a similar parabolic profile. In experiments, the
position of the end tip of the silicone oil sheet is tracked instead

FIG. 5. (Color online) Positions of fluid rims with different
velocities and viscosities. Open symbols are from experiments and
closed symbols are from numerically solving Eq. (11). Each line with
different symbols shows a trajectory over 112 ms, and symbols are
separated by 8 ms.

of the undulating rim tips. We found that the rim trajectories
solving Eq. (11), including centrifugal force, drag, surface ten-
sion, and gravity, are quite close to experimental trajectories.
However, the parabolic trajectories [R(t) = dR/dt |t=0 t and
Z(t) = 1

2gt2], considering only gravity, exhibit longer travel
distances than the other two due to the lack of drag and surface
tension and rapid downward trajectories due to the lack of
centrifugal force.

The numerical result solving Eq. (11) still exhibits a slight
mismatch with experiments, especially at later times. One
possible explanation is that our assumption of a smooth
cylindrical rim is not valid at later times due to the capillary
force causing the straight rim to undulate and further turn into
drops. This drop formation due to the capillary action will be
discussed in the next section.

To remark on the water-glycerol cases, experiments with a
water-glycerol mixture show a very short fluid sheet lifetime,
mainly due to high surface tension [see Fig. 3(d)]. Therefore,
no water-glycerol data is presented in this rim-dynamics
section.

C. Unstable rim: Final stage

The traditional Plateau-Rayleigh instability [30] shows that
a cylindrical jet becomes unstable and breaks into droplets.
In our case, although the rim is shaped like a torus, it can be
approximated as a straight cylinder because the radius of the
liquid sheet is much larger than the radius of the rim (about
100 times bigger). We also assume that the attached liquid
sheet does not affect the instability of the rim.

In this falling cylindrical fluid rim, we evaluate three time
scales to find dominant forces for the drop formation at later
times in the frame moving with the rim. First, the capillary
break-up time (tcapillary) scales as

√
ρa3/γ ≈ 20 ms where

the measured rim radius (a ≈ 2 mm) is used. The next
is the extension time, which scales as R/(dR/dt) ≈ 0.1 ∼
1 s measured in experiments. Last, the viscous time scale
(a2/ν = 40 ∼ 200 ms) is slightly higher than the capillary
timescale and lower than the extension timescale. Therefore,
the primary force controlling the instability breaking a fluid
rim into drops is the capillary force, while the viscous force
is a secondary cause of the instability. This viscous effect
slows the dynamics of capillary instability and weakly affects
the most unstable mode, as its growth rate is (ω)predict =
1/[tcapillary(2

√
2 + 6Oh)] and its unstable wavenumber is

(ka)predict = 1/
√

2 + 3
√

2Oh [31,32].
In the experiments, we have observed apparent undulations

from the smooth surface of the rim after approximately
15 ms, which is close to the capillary time scale. As this
perturbation grows in time, clear drops hanging on a fluid
rim are formed after about 80 ms. Within this time scale, the
rim becomes unstable due to the capillary force; however, the
rim’s position is not very far from the disk perimeter. Hence,
the characteristic length scale is chosen to be the disk radius
for further calculations.

Capillary instability sets an initial drop spacing in the
beginning of this squeezing motion on the order of the capillary
timescale (∼20 ms). Figure 6(a) shows the formation of both
the undulating rim and drops from the top view. Locations of
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FIG. 6. (Color online) (a) Two super-imposed snapshots at 30
and 70 ms with viscosity of 100 cSt and Vplate = 12.7 cm/s. The
invariable waveangle of undulations in the course of rim expansion.
Plots of (b) nondimensional wavenumber (ka) and (c) waveangle (φ
in degrees) with different fluid viscosities and varying plate velocities.
The gray area in (b) is the nondimensional wavenumber predicted by
the Rayleigh-Plateau instability with viscous effects.

thick and protruding rim sections due to capillary force at the
very beginning (∼20 ms) further develop into drops as time
goes on. While they fall downward and expand radially, this
spacing does not change noticeably.

The Plateau-Rayleigh instability by considering viscous ef-

fects predicts (ka)predict = 1/
√

2 + 3
√

2Oh, where Oh ranges
from 0.02 to 0.1 for silicone-oil experiments. While our ex-
periment changes viscosity from 20 to 100 cSt (80% changes),
the corresponding predicted (ka)predict range from 0.69 to 0.64
(only 7% changes). This result is compared with experimental
measurements in Fig. 6(b). Assuming small radial expansion
of the rim when capillary force determines the most unstable
waveangle, the Plateau-Rayleigh instability also predicts
the wave angle as (φ)unstable ∼ 2πa

(ka)predictRdisk
∼ π/6.32 = 28.5◦,

which is close to the mean value of measurements shown in
Fig. 6(c). However, some distributions in measured ka and
wavelangle are observed. One major source of uncertainty
might come from the fluid rim interacting with a connected
sheet and surrounding air. Due to small Ohnesorge numbers,
the liquid rim is formed and propagates interfacial waves
along the liquid sheet, and then this rim-sheet-coupled system
becomes unstable [12,33], which we do not take into account
in this study.

IV. CONCLUSION

In this paper, we have studied the dynamics of a fluid
squeezed by two circular disks. First, the initial spreading
velocity is estimated using lubrication theory. Second, the
position of a rim is described by balancing inertia with
drag, centrifugal, and surface tension forces. Finally, the most
unstable wavelength (or wave angle) is estimated using the
traditional Rayleigh-Plateau analysis of capillary instability.
Experimentally, we have tested with different clapping speeds,
fluid viscosities, and surface tensions to understand the effect
of fluid and kinematic properties on the dynamics and have
shown that theoretically predicted rim position and drop spac-
ing are in good agreement with experimental measurements.
This study explains how sparse droplets are generated when a
fluid is squeezed.

In future studies, we will continue to investigate the
dependence on the diameter or shape of the plates. At the
beginning of our experiment, we tested using rectangular-
shaped blocks and noticed that the control of initial fluid
thickness on large circular or rectangular plates is rather
difficult.
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