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Asymptotic and numerical analysis of electrohydrodynamic flows of dielectric liquid
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We perform an asymptotic analysis of electrohydrodynamic (EHD) flow of nonpolar liquid subjected to an
external, nonuniform electric field. The domain of interest covers the bulk as well as the thin dissociation layers
(DSLs) near the electrodes. Outer (i.e., bulk) equations for the ion transport in hierarchical order of perturbation
parameters can be expressed in linear form, whereas the inner (i.e., DSL) equations take a nonlinear form. We
derive a simple formula in terms of various parameters which can be used to estimate the relative importance of the
DSL-driven flow compared with the bulk-driven flow. EHD flow over a pair of cylindrical electrodes is then solved
asymptotically and numerically. It is found that in large geometric scale and high ion concentration the EHD flow
is dominated by the bulk-charge-induced flow. As the scale and concentration are decreased, the DSL-driven slip
velocity increases and the resultant flow tends to dominate the domain and finally leads to flow reversal. We also
conduct a flow-visualization experiment to verify the analysis and attain good agreement between the two results
with parameter tuning. We finally show, based on the comparison of experimental and numerical solutions, that
the rate of free-ion generation (dissociation) should be less than the one predicted from the existing formula.
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I. INTRODUCTION

Dielectric liquid is characterized by low conductivity and
low electric permittivity due to the nonpolar structure of the
constituent molecules. It is used as insulating material in
the electric power industry [1–3], as a medium for particle
suspension in electrophoretic display [4,5], and as a substance
to be electrically pumped [6–10]. In many practical situations,
additives such as surfactants are put into the liquid to stabilize
the particle suspension or to enhance the material transport
[5,11,12].

Figure 1 illustrates the key elements of the physicochemical
and electromechanical phenomena of the electrohydrody-
namic (EHD) flow of dielectric liquid in the vicinity of the
cathode in contact with the liquid. When a surfactant is
added to the liquid, free ions are created in the form of
reverse micelles [11–14]. The concentrations of free ions
(and so the conductivity) increase with the field intensity
due to the Onsager effect [12–20]. On the other hand, the
free cations and anions are recombined to become ion pairs
in the rate proportional to the mobility and inverse of the
permittivity. In the bulk, the rate of ion dissociation is
basically in equilibrium with that of ion recombination so
that the bulk is almost neutralized. However, local variation
of the field intensity leads to a nonzero gradient of the ion
concentrations, which then causes a relatively small amount
of concentration difference between the cation and anion
[“bulk charge” in Fig. 1(b)], corresponding to nonuniform
field-induced space charge density. The product of the charge
density and the electric field serves in the fluid-flow equations
as the momentum source, which is responsible for the EHD
flow in the bulk [“bulk-driven flow” in Fig. 1(a)]. Such EHD
flow phenomena of dielectric fluid associated with the Onsager
effect bring physical features that are not found in polar fluid.
Saville [21] reviewed the foundation and modeling of EHD
flows, and studies on deformation of drops, and hydrodynamic
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stability of drops and liquid cylinders, etc.; more recently
Suh [14] also reviewed the relevant literature and predicted
the importance of the role of thin layers near the electrode
at small scales. However, no rigorous study has been given
to exploration of the asymptotic analysis on EHD flows of
dielectric liquid including both the bulk and the DSL.

Most studies on the EHD flows in dielectric fluid have
focused on the bulk-driven flows neglecting the effect of the
thin dissociation layers (DSLs) near the electrodes [Fig. 1(a)].
During development of the so-called conduction pumps [6–8],
Jeong and Seyed-Yagoobi [22] performed two-dimensional
(2D) numerical simulation of EHD flow in an enclosure having
a pole-type electrode on the top and a flat electrode on the
bottom wall. They included in the simulation the effect of ion
dissociation as well as ion recombination, the former being
modeled by the Onsager effect. However, their numerical
results have not been compared with any experimental data.
Successful reproduction of the experimental results of the EHD
flow with a theory appeared only recently. Ryu et al. [20]
first demonstrated that the Onsager effect is responsible for
the EHD flow observed over conducting or nonconducting
solids subjected to a uniform electric field, and achieved good
comparison between the flow visualization and numerical
results. Kim et al. [10] extended the theory to the pumping
of dielectric liquid with a triangular arrangement of three
cylindrical electrodes inside a channel. Their experimental
results agree well with the numerical calculations not only
qualitatively but also quantitatively. However, the validity of
the bulk equations used in simulations [10,20] is questionable,
in particular for small scales and low ion concentrations,
because resultantly they neglected the effect of the charge
in thin DSLs near the solids [20] and electrodes [10].

Transport of ions in the DSLs for the nonpolar fluid is
similar to that for the polar fluid; counterions are attracted to
and coions are repelled from the electrodes [Fig. 1(a)]. Thus,
nonequilibrium between ion dissociation and recombination
is supposed to yield a charge density which is much higher
than that in the bulk [“DSL charge” in Fig. 1(b)]. Localized
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FIG. 1. (Color online) Schematic illustration of (a) transport and dissociation or recombination of ions, the dramatic difference in the
velocity profiles between the bulk-driven and DSL-driven EHD flows, and (b) typical ion-concentration distributions near the cathode.

DSL charge then induces DSL-driven flow, the significance
of which depends on several parameters, such as the scale of
the problem and the ion concentration. Suh and Baek [23]
performed an experimental and numerical study on the EHD
flow of a dodecane-Span80 mixture over a pair of coplanar
electrodes separated by a gap. They demonstrated that the
bulk-charge-driven flow is dominant at a large gap spacing,
whereas the DSL-driven flow is dominant at a small gap
spacing. They also found that a significant reduction of the
recombination constant from the Langevin formula is required
for the numerical simulation to successfully yield results
matching with the experiment.

Although those recent works [10,20,23] focusing on the
fundamental mechanism of EHD flows and parameter ad-
justment are encouraging in that the experimental results
could be successfully reproduced by numerical simulations, a
rigorous systematic study on the solution structure has not been
reported yet. In this study, therefore, we explore the asymptotic
structure of the governing equations consisting of ion-transport
equations for the ion concentrations, the Poisson equation for
the potential, and Stokes equations for the velocity. We aim
to derive simplified governing equations for each order of
perturbation parameters separately for the bulk and for the
DSL and to understand the way those two solutions match
each other. Exploring parameters affecting the competition
between the bulk-driven and DSL-driven flows is also one of
the main issues to be addressed in this study. As an application,
we choose a pair of circular cylinders as electrodes and derive
closed-form solutions of the asymptotic equations for the bulk;
flat-plate electrodes [23] may provide a benefit in constructing
meshes but they suffer from the unavoidable singularity at the
plate edges. We also perform 2D numerical simulation with
the full equations for the ion-transport and fluid-flow problem
in order to verify the asymptotic analysis. Further, we execute
experimental visualization and measure the velocity data not
only for quantitative verification of the numerical methods but
also for parameter tuning.

II. FORMULATION

We consider a pair of electrodes with a characteristic length
R submerged in a liquid dielectric with density ρ, viscosity
η, and electrical permittivity εp. A small amount of surfactant
is added to increase the electric conductivity and to enhance
the EHD flow [5,11,12]. As usual, it is assumed that free ions
are created through the dissociation effect. Without an external

field, the free ions are completely neutralized everywhere and
concentrations of cation and anion, c∗

+, c∗
−, are homogeneously

distributed in the domain with the zero-field concentration c0;
therefore the fluid velocity u∗ vanishes because of zero induced
charge. When a dc voltage difference Va is applied across
the electrodes, concentrations are increased with the local
electric-field intensity due to the Onsager effect. Such space-
dependent concentration then leads to the creation of charge
and EHD flow. The equations governing the development of
concentrations of monovalent ions c∗

±, the electric field E∗,
and the fluid velocity u∗ can be written as follows [14,23].

∂c∗
+

∂t∗
+ ∇∗ · [(u∗ + μ+E∗)c∗

+] − D+∇2
∗c

∗
+

= w∗ − αc∗
+c∗

−, (1a)

∂c∗
−

∂t∗
+ ∇∗ · [(u∗ − μ−E∗)c∗

−] − D−∇2
∗c

∗
−

= w∗ − αc∗
+c∗

−, (1b)

εp∇∗ · E∗ = e(c∗
+ − c∗

−) ≡ q∗, (1c)

ρ

[
∂u∗

∂t∗
+ (u∗ · ∇∗) u∗

]

= −∇∗p∗ + η∇2
∗u∗ + q∗E∗, (1d)

∇∗ · u∗ = 0, (1e)

where μ± is the ion mobility, D± the diffusivity, w∗ =
w0F (E∗; γ ∗) the local ion-dissociation rate, w0 = αc2

0 the
zero-field dissociation rate, q∗ = e(c∗

+ − c∗
−) the space charge

density, α the ion-recombination constant, and e the elemen-
tary charge. The mobility μ± is related to the ionic radius a±
by μ± = e/(6πηa±) and to the diffusivity by μ± = D±/ςT ,
where ςT = kBT /e is the thermal potential, kB the Boltzmann
constant, and T the temperature; so, once a± is set, it
automatically determines μ± and D±.

The function F (E∗; γ ∗) to be called “Onsager function”
reads [14]

F (E∗; γ ∗) =
∞∑

k=0

(4γ ∗E∗)k

k!(k + 1)!
. (2)

We note that F monotonically increases with the field intensity.
The Onsager constant γ ∗ is to be determined with a reduc-
tion factor κO from γ ∗ = κOγ ∗

O , where γ ∗
O ≡ e/(16πεpς2

T )
corresponds to the original Onsager constant; we open here
the possibility of tuning γ ∗ based on the literature showing
discrepancy between the Onsager theory and the experimental
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data. Onsager theory has long been accepted as an appropriate
model for the conductivity enhancement at high electric
field. It, on the other hand, overestimates the conductivity
in particular at high field as shown in [24] for an acid
solution. They attributed the discrepancy to the hydrodynamic
interaction between ions neglected in the Onsager theory. The
overestimation of the theory is also reported for nonpolar
liquid, such as dodecane in [25]. Onsager theory is also
reported to significantly underestimate the conductivity of
a highly purified water in [26]. Zhakin [27] addresses the
discrepancy in the field-enhanced conductivity between the
experimental data and the Onsager theory and the possible
improvement of the theory by considering the finite size of
ions, instead of point ions. Variation of the Onsager parameter
(in fact γE in the present terminology) is also tried to fit the
experimental data of the conductivity of the silicone oil [28].

The recombination constant α is determined from α =
κLαL, where κL is a control parameter, αL = 2eμ̄/εp the
Langevin constant, and μ̄ = (μ+ + μ−)/2 the averaged mo-
bility. In our previous study on the EHD flow over coplanar
electrodes [23], we have shown that for successful qualitative
and quantitative matching between experimental and numeri-
cal results, α should be substantially reduced from αL. We will
also experience in this study a similar necessity of parameter
tuning.

Under the assumption of steady state, Eqs. (1a)–(1e) can be
written in terms of dimensionless variables as follows.

ε{∇·[(u + m+E)c+] − m+δ∇2c+} = 2κL[F (E; γ ) − c+c−],

(3a)

ε{∇·[(u − m−E)c−] − m−δ∇2c−} = 2κL[F (E; γ ) − c+c−],

(3b)

ε∇ · E = c+ − c− ≡ q, (3c)

Re(u · ∇) · u = −∇p + ∇2u + MqE,

(3d)

∇ · u = 0. (3e)

Here, the spatial coordinates are scaled by R, the concentra-
tions by c0, the field by Va/R, the space charge density by
ec0, the velocity by μ̄ Va/R, and the pressure by ημ̄ Va/R

2.
Dimensionless parameters involved in Eqs. (3a)–(3e) are
Reynolds number Re = ρμ̄ Va/η, the body-force factor M =
ec0R

2/(ημ̄), the DSL thickness ε = εp Va/(ec0R
2), the mo-

bility m± = μ±/μ̄, the diffusion parameter δ = ςT /Va , and
half of the distance between the electrodes d = d∗/R. Further,
γ = γ ∗Va/R is the dimensionless Onsager constant.

We need boundary conditions to solve Eqs. (3a)–(3e). The
simplest but most plausible conditions for the concentrations
may be that cations and anions are completely depleted on the
cathode and anode, respectively [6–8,23]:

c+ = 0 on ∂�+, c− = 0 on ∂�−,

where ∂�± denotes the electrode surface. If we assume
δ � 1 (typically δ = 5 × 10−5) and neglect the diffusion
terms, as is done in our asymptotic solution in the following
section, we do not need boundary conditions for counterion
concentration on each electrode. In the numerical simulation
of the full two-dimensional (2D) equations with a nonzero
value for δ, however, we may apply either ∂c+/∂n = 0 or

∂2c+/∂n2 = 0 upon convenience, e.g., on the cathode, but
no significant difference should occur if δ remains negligibly
small. The fundamental reason for neglecting the diffusion
terms can be explained in terms of the normal component
of the dimensionless flux of counterions at the cathode
wall, J+n = −m+(Enc+ − δ ∂c+/∂n), where the subscript n

denotes the normal component, and the fluid’s impermeable
condition has been applied. If the zero-flux condition, J+n = 0,
were to be applied, we expect that ∂c+/∂n must be very large
in O(δ−1) within the thin layer of O(δ), for the balancing
between the two terms. However, the zero-flux condition must
be abandoned because complete screening of the electrode by
the accumulation of counterions would then result in the zero
field and zero current, which is not the case (see, e.g., [11,12]).
In fact, in this study we allow free charge of counterions such
that δ|∂c+/∂n| � |En|c+. This can be achieved by specifying
either ∂c+/∂n = 0 or ∂2c+/∂n2 = 0 on the cathode.

III. ASYMPTOTIC SOLUTION METHOD

For asymptotic analysis to be feasible, we assume that
the convective and diffusive terms in Eqs. (3a) and (3b) are
negligible and ε � 1 (typically ε = 7 × 10−4). Since a small
parameter ε multiplies to the highest derivatives in each of
Eqs. (3a)–(3c), we expect thin layers, i.e., DSLs, near the
electrodes. In this section, we present the structure of the
solutions in the bulk and DSL by using the asymptotic analysis.
Since the velocity is scaled by the typical ion-migration speed,
μ̄ Va/R, we expect |u| � 1; as will be shown later, |u| = O(ε).
The effective Reynolds number is then of O(ε) because Re is
of O(1). Thus we can neglect the convective terms in the
ion-transport equations so that they are decoupled from the
fluid-flow problem. Further, neglecting the diffusive terms, we
can write Eqs. (3a)–(3c) as follows.

c+c− = F − εm̃+∇ · (c+E), (4a)

c+ − c− = ε∇ · E, (4b)

∇ · [(m̃+c+ + m̃−c−)E] = 0, (4c)

where m̃± = m±/(2κL) is the modified mobility.

A. Bulk solution

In order to get the asymptotic solutions of Eqs. (4a)–(4c)
for small ε, we expand the variables as

(c+,c−,E) =
∞∑
i=0

εi(fi,gi,Ei),

where (fi,gi,Ei) are again expanded for small γ as

(fi,gi,Ei) =
∞∑

j=0

γ j (fij ,gij ,Eij ).

F (E; γ ) is then expanded as

F (E) = F0 + εF1 + ε2F2 + · · · ,
where

F0 = 1 + 2γH00 + γ 2
(
2H01 + 4H 2

00

/
3
) + · · · ,

F1 = 2γH10 + γ 2(2H11 + 8H00H10/3) + · · · ,
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F2 = 2γH20 + γ 2(2H21 + 8H00H20/3 + 4H 2
10

/
3
) + · · · .

A detailed formula for the expression of Hij is given in
Appendix A. We also need the expansion for

√
F0:√

F0 = 1 + γH00 + γ 2
(
H01 + H 2

00

/
6
) + · · · .

Substituting these into Eqs. (4a)–(4c), we obtain the
following equations for f0, g0, and E0:

f0 = g0 =
√

F0, (5a)

∇ · (f0E0) = 0. (5b)

To solve these nonlinear equations, we may use a numerical
method. Depending on the simplicity of the geometry of the
given problem, we may attempt an analytic-solution method
for (5a) and (5b) by using the double expansions of the
variables. Then we get the following for f0, g0, and E0.

f00 = g00 = 1, (6a)

∇ · E00 = 0, (6b)

f01 = g01 = H00, (7a)

∇ · E01 = −E00 · ∇E00, (7b)

f02 = g02 = H01 + 1
6H 2

00, (8a)

∇ · E02 = −∇ · (f01E01 + f02E00), (8b)

and so on.
Next, the equations for the three unknowns f1, g1, and E1

are

f0(f1 + g1) = F1, (9a)

f1 − g1 = ∇ · E0 ≡ q1, (9b)

(m̃+ + m̃−)∇ · (f0E1) = −∇ · [(m̃+f1 + m̃−g1)E0]. (9c)

In passing, note that after solving Eqs. (5a) and (5b),
we can get the leading-order charge density q1 from q1 =
∇ · E0 = −E0 · ∇(ln f0) as seen from Eqs. (9b) and (5b).
Further, following Eq. (5a), the concentration f0 increases
monotonically with the field intensity E. So, we can say, in
the O(ε), that the dimensionless space charge density εq1 is
negative when the field intensity increases in the direction of
the field vector, and vice versa.

When expansions for small γ are again used for variables
f1, g1, and E1, we get

f10 = g10 = 0, (10a)

∇ · E10 = 0, (10b)

f11 + g11 = 2E00 · E10/E00, (11a)

f11 − g11 = ∇ · E01 ≡ q11, (11b)

∇ · E11 = −∇ · (E00E10) − ∇ · [(f11 + g11)E00/2], (11c)

and so on. The space charge density q is then determined by

q = εγ (q11 + γ q12 + γ 2q13 + · · ·) + O(ε2), (12)

where q1j = ∇ · E0j . We can see from this formula that the
leading-order term of the space charge density is O(εγ ).

The analytic-solution procedure can be summarized as
follows. First, we obtain the potential φ00 and subsequently
the field E00 from the solution of ∇2φ00 = 0 with potentials

specified at each of the electrode surfaces. This then gives f01

via Eq. (7a). Next, we obtain φ01 and E01 by solving Eq. (7b), or
∇2φ01 = E00 · ∇E00 with homogeneous boundary conditions
for φ01, which in turn gives f02 via Eq. (8a). In this way, we
repeat the solution procedure up to the required order of γ .
Then, we get q1j and q from Eq. (12). In all cases treated in
this study, the leading-order solutions of O(ε0) are accurate
enough.

Once the space charge density is determined, the body-force
terms MqE in the Navier-Stokes equations can be evaluated
and then used in calculating the velocity field. Analytically
solving the Navier-Stokes equations (3d) is possible only in
rare cases, and in general we must resort to the numerical
method. Nevertheless, the order of magnitude of the bulk
velocity, ub, can be readily estimated from Eq. (3d) as
ub ∼ εγM or in dimensional quantity,

u∗
b ∼ εpγ ∗

O

η
κO R

(
Va

R

)3

. (13)

So, we see that the bulk velocity increases in cubic power of
the reference field, which is supposed to be in the same order of
magnitude as the applied field. This has been experimentally
shown by [10,20]. It also increases with the Onsager factor κO

and the reference length R.
Based on the above asymptotic analysis, we can present

more robust simplified bulk equations for the electric field,
modified from the solution of ∇ · E∗ = 0 due to the Onsager
effect, as follows.

∇ · [E∗√F (E∗; γ ∗)] = 0, (14)

which is valid in O(ε). Note that no Onsager effect means F =
1. After solving this nonlinear equation for E∗ (or practically
for the potential φ∗), the charge density is obtained from

q∗ = −E∗ · ∇√
F√

F
. (15)

In [10,20], Eq. (14) is employed with a simple approximation,√
F ∼= 1 + γH00, to get the space charge density and subse-

quently the fluid flow. Such a simplified formula, however,
is applicable to the relatively low field problems as will be
seen in Sec. IV B. We will also see that the bulk solutions
alone, without considering the DSL effect, cannot match the
experimental results for small scales and low concentrations.

B. Dissociation-layer solution

Contrary to the bulk, the DSL can produce nonzero space
charge density in the O(ε0) equations. We assume that DSL is
very thin compared with the reference length and the tangential
gradient ∂ϕ̂/∂s for any dimensionless DSL variable ϕ̂ is much
smaller than the normal gradient ∂ϕ̂/∂n, where n and s are
dimensionless normal and tangential coordinates, respectively,
on the electrode surface; we attach hats to the dependent
variables for the DSL equations. Further, we introduce a
stretched variable Y for the normal coordinate n such that n =
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ε[E0b/(2κL

√
F0b)]Y . As in the bulk solution, we expand the

DSL variables as (ĉ+, ĉ−, Ên) = (
√

F0bf̂ ,
√

F0bĝ, E0bĥ) +
O(ε). Then the leading-order equations read

m+
d(ĥf̂ )

dY
+ f̂ ĝ = F0

F0b

, (16a)

−m−
d(ĥĝ)

dY
+ f̂ ĝ = F0

F0b

, (16b)

2κL

dĥ

dY
− f̂ + ĝ = 0. (16c)

The functions F0b(s) and E0b(s) are given from evaluation
of the bulk solutions F0(x,y) and E0(x,y) on the electrode
wall. Boundary conditions are ĝ = 0 at Y = 0 and ĥ → −1 as
Y → ∞ for the cathode wall (f̂ = 0 at Y = 0 and ĥ → 1 as
Y → ∞ for the anode wall), and (f̂ , ĝ) → (1, 1) as Y → ∞
regardless of the electrode polarity. Note that the term F0/F0b

in Eqs. (16a) and (16b) is a function of both s and Y and
so are (f̂ , ĝ, ĥ). Under the limit γ → 0, however, F0/F0b

tends to 1 and thus the DSL variables are only functions of
Y . In this study, the nonlinear one-dimensional (1D) ordinary
differential Eqs. (16a)–(16c) (to be called “DSL equations”
hereafter) are solved using a numerical method [14]. Arbitrary
transient terms are added to the left-hand side (LHS) of
Eqs. (16a) and (16b) in order to overcome numerical instability
through the relaxation effect. A second-order upwind method
is used to discretize the conduction (first) terms of Eqs. (16a)
and (16b), while the central difference scheme is employed
for the first term of Eq. (16c), which is rewritten in terms of
the localized potential φ̂ as −2κLd2φ̂/dY 2; φ̂ is related to
the dimensional potential φ∗ (defined as E∗ = −∇∗ φ∗) by
φ∗ = [εE2

0bVa/(2κL

√
F0b)] φ̂. Boundary conditions as well

as the discretization schemes of the conduction terms take
different forms for different electrode polarities. In the
following, we explain the numerical methods for the DSL
equations near the cathode. In solving Eq. (16b) for ĝ, the
variables f̂ and ĥ are treated known, and calculation is
performed marching from the cathode wall Y = 0, where the
boundary condition is specified as ĝ = 0, toward the end of the
computational domain, Y = Ym; in this study we take Ym = 10.
On the contrary, in solving Eq. (16a) for f̂ , the variables
ĝ and ĥ are treated as known, and we march from Y = Ym

where the boundary condition is specified as f̂ = 1 toward
the cathode wall. Boundary conditions of φ̂ at Y = 0 can
be taken as arbitrary, and we set φ̂ = 0 there. At Y = Ym,
we set dφ̂/dY = 1. When the DSL solutions near the anode
are to be obtained, we can either run a code specifically
designed for the anode or run the code for the cathode but
with m+ and m− assigned with the actual values of m− and
m+, respectively, and understand the given results (f̂ ,ĝ,ĥ)
as (ĝ,f̂ , − ĥ).

In order to understand the nature of the DSL solutions, we
present, in Fig. 2, the numerical results of 1D simulation of
the DSL equations (16a)–(16c) near the cathode given with
m± = 1 and under the limit γ → 0; then, the given solutions
are universal in that they are independent of any parameter.
Here, fw and hw denote the values of f̂ and ĥ, respectively,
evaluated on the cathode wall. Ye stands for the dimensionless
thickness of the DSL where ĝ = 0.99. We can see from this

FIG. 2. (Color online) Dimensionless counterion concentration
(fw) and negative electric field (−hw) evaluated on the cathode wall
given from the simulation of the 1D ion-transport problem within
DSL for m± = 1 and γ = 0. Also shown is Ye, the Y coordinate
of the DSL edge, and the dimensionless quantity Ye/(2κL) which is
proportional to the actual DSL thickness n∗

e .

figure that both fw and −hw are larger than 1 at κL = 1. The
former decreases as κL is decreased, and at roughly κL < 0.5
it becomes less than 1, which will also be proven from simple
asymptotic solutions in Sec. IV B. The value −hw, however,
increases monotonically as κL is decreased. The influence of
κL on the charge density and the momentum force in the DSL
can also be understood from this figure. The dimensionless
charge density is proportional to f̂ − ĝ and so it should be
approximately proportional to fw because gw = 0. However,
since both −hw and the effective dimensionless DSL thickness
Ye/(2κL) increases very sharply as κL is decreased, we expect
that the momentum force (product of the charge density and
the field) would increase as κL is decreased. Now, it can be
shown that under the plausible assumption Ye = constant and
the limit γ → 0, the dimensionless DSL thickness can be
estimated by

ne ∼ εpE∗
0b

eκLc0R
=

(
ε

κL

)(
E∗

0b

Va/R

)
. (17)

Thus it increases as each of κL, c0, and R is decreased or
the local bulk field intensity E∗

0b is increased. On the other
hand, note that the magnitude of the charge density within the
DSL is of O(1) but it is confined to the thin DSL in O(ε).
On the contrary, Eq. (12) indicates that the magnitude of the
bulk-charge density is small in O(εγ ) but it covers the bulk
of the size in O(1). Thus, curiosity arises as to how those two
effects are competitive in determining the EHD flow around
the electrodes. The question may be answered by considering
the slip velocity which is a manifestation of the DSL effect.

C. Slip velocity and slip-velocity model

Let us look into the momentum equations to determine the
slip velocity at the edge of the DSL. In addition to the condition
|∂ϕ̂/∂s| � |∂ϕ̂/∂n|, we assume that the normal component of
the velocity ûn can be neglected when compared with the
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tangential component ûs . Then, Eq. (3d) becomes

∂p̂

∂s
= ∂2ûs

∂n2
+ Mq̂ Ês, (18a)

∂p̂

∂n
= Mq̂ Ên. (18b)

Applying the relation q̂ ∼= ε ∂En

∂n
, we can integrate Eq. (18b)

to get p̂ = εM E2
0b(ĥ2 − 1)/2, where E2

0nb
∼= E2

0b is assumed
and p̂ is taken zero at the DSL edge. Differentiating this with
respect to s and substituting the result into Eq. (18a), we obtain

∂2ûs

∂n2
= εM

2

∂

∂s

[
E2

0b(ĥ2 − 1)
]

+ εM

2κL

√
F0b(f̂ − ĝ)

∂

∂s

[(
E2

0b

/√
F0b

)
φ̂
]
, (19)

where Ês in Eq. (18a) has been written in terms of the potential
drop in the DSL near the anode (or potential rise for the
cathode) φ̂. Integrating Eq. (19) twice with respect to n under
the no-slip condition on the wall (ûs = 0 at n = 0) and the
far-field condition (∂ûs/∂n → 0 as n → ∞) gives us the slip
velocity uslip. For practical purposes, however, we must employ
a numerical method to integrate (19) twice with respect to n

to get the slip velocity.
The first term of Eq. (19) comes from the osmotic-pressure

effect, while the second comes from the tangential variation
of the potential drop in the DSL of the anode (or potential
rise for the cathode). In the derivation of the classical
Helmholtz-Smoluchowski (HS) formula (see, e.g., [29]) for
the slip velocity of the polar fluid, the contribution of the
osmotic-pressure term is after all canceled out by a part
of the tangential Coulombic-force term, and more importantly
the remaining body-force term in the tangential component of
the momentum equations can be readily integrated twice with
respect to the normal coordinate, yielding to a very compact
form for the slip velocity. This holds not only for the case
where a fixed charge is specified at the dielectric wall (classical
electro-osmosis, [29]) but also for the case where a constant
potential is applied at the electrode (induced-charge electro-
osmosis, [30–36]). Mathematically, it can be shown that the
very compact formulation for the HS slip velocity of the polar
fluid comes from the fact that in the diffuse layer of EDL the ion
concentration is related to the potential through the Boltzmann
distribution law [29–32], which is again the outcome of the
equilibrium between the conduction and diffusion terms in the
ion-transport equations. For the EHD flow of nonpolar fluid,
however, the DSL shows equilibrium between the conduction
and ion-dissociation and recombination terms, and thus the
situation is different from that with polar fluids.

Noting n is of O(ε/κL) and assuming that both the first
and the second terms on the right-hand side (RHS) of Eq. (19)
are of O(εM) (numerically we will see in Sec. IV B that this
is correct), we can derive uslip ∼ ε3M/κ2

L, or in dimensional
quantity,

u∗
slip ∼ ε3

p

ηe2

(Va/R)4

κ2
Lc2

0R
. (20)

Thus, the slip velocity induced by the DSL charging increases
in the fourth power of the reference field. It also increases as

the Langevin factor κL, or the zero-field concentration c0 or
the reference length R is decreased. Then, from Eqs. (13) and
(20) we get

u∗
slip

u∗
b

∼ ε3
pς2

T

e3

Va/R

κOκ2
Lc2

0R
2
. (21)

So, we can say that, under the assumption of a fixed reference
field Va/R, the role of DSL referred to that of the bulk in
determining the flow field increases as c0 and R of the problem
decrease. It also increases as 1/(κOκ2

L) as the factors κO and
κL are decreased.

We are now ready to propose a slip-velocity model, where
the conventional bulk-solution method [10,20] is improved by
imposing slip velocity on the electrode walls in solving the
fluid-flow problem; we still take the benefit of being free from
solving the ion-transport equations in the bulk. Following the
in-depth analysis given so far, we first solve the nonlinear bulk
equation (14), which being decoupled from the DSL equations
constitutes a purely electrical problem; such 2D simulation
with the bulk equation (14) will be referred to as B2D. The
one-dimensional DSL equations are next solved with the local
electric-field intensity evaluated at n = 0 from B2D solutions
serving as the far-field condition. Then, by integrating Eq. (19)
we get the local slip velocity, which is in turn imposed as a
boundary condition in solving the system of equations (1d) and
(1e). The body-force term q∗E∗ in Eq. (1d) can be evaluated
from B2D solutions for E∗ and from Eq. (1c) for q∗.

IV. APPLICATION TO A PAIR OF CIRCULAR CYLINDERS

A. Problem description and analytical and numerical
methods for solutions

We consider, as an example of applications, EHD flow
around a pair of circular electrodes with radius R submerged in
a cavity of height H and length L; see Fig. 3 for the geometric
configuration of the problem considered. The RHS electrode
is applied with a dc voltage Va , while the LHS is grounded.
It was found that this geometry allows an analytic treatment
for the bulk solutions whereas the 1D numerical simulation
must be employed for the DSL solutions. We also show in this
section how the two solutions match each other at the edge of
the DSL.

First, we present the analytical treatment of the bulk
equations asymptotically valid for small ε and γ under the

FIG. 3. (Color online) A pair of circular electrodes of radius
R submerged in a viscous fluid and subjected to an applied dc
voltage, Va .
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assumption of very large cavity; H/R 
 1 and L/R 
 1. For
this, we introduce bipolar coordinates w = ξ + iη related to
the Cartesian coordinates z = x + iy as w = ln[(z + c)/(z −
c)], where c = √

d2 − 1 = sinh ξw, and ±ξw = ± cosh−1 d is
the value of ξ on the right and left cylinders, respectively. Then
the scale factor is given by |dz/dw| = c/(cosh ξ − cos η).
The leading-order equation to be solved for the field is
∇ · E00 = 0,or

∇2φ00 = 0, (22)

with boundary conditions, φ00 = 0 at ξ = −ξw (LHS elec-
trode, cathode) and φ00 = 1 at ξ = ξw (RHS electrode, anode),
where the potential φ00 is related to the field as E00 = −∇φ00.
The solution is simply φ00 = (1 + ξ/ξw)/2. Thus, we have

E00 = cosh ξ − cos η

−2cξw

eξ , (23)

where eξ denotes a unit vector. The next equation to be solved
for the potential φ01 is

∇2φ01 = E00 · ∇E00, (24)

with homogeneous boundary conditions, φ01 = 0 at ξ = ±ξw.
We substitute E00 of Eq. (23) into this and derive the solution
as φ01 = [− sinh ξ + (sinh ξw/ξw)ξ ]/(4cξ 2

w) and

E01 = (cosh ξ − cos η)(cosh ξ − sinh ξw/ξw)

4c2ξ 2
w

eξ . (25)

We can also derive the higher-order solution as follows.

E02 = E02ξ eξ + E02ηeη, (26)

E02ξ = (cosh ξ − cos η)

96c3ξ 3
w

×
[
−11 cosh 2ξ + 10(cosh ξ + ξ sinh ξ ) cos η

+ 24 sinh ξw

ξw

cosh ξ − 10ξw cosh ξw

sinh ξw

cosh ξ cos η

+ sinh ξw

ξ 2
w

(11ξw cosh ξw − 24 sinh ξw)

]
, (27a)

E02η = 5(cosh ξ − cos η) sin η

48c3ξ 3
w

×
[
−ξ cosh ξ + ξw cosh ξw

sinh ξw

sinh ξ

]
. (27b)

Then we obtain the following formula for the space charge
density in the bulk.

q = εγ [q11 + γ q12 + O(γ 2)] + O(ε2), (28)

q11 = (cosh ξ − cos η)2 sinh ξ

4c3ξ 2
w

, (29a)

q12 = (cosh ξ − cos η)2 sinh ξ

24c4ξ 3
w

×
(

−11 cosh ξ + 5 cos η + 6 sinh ξw

ξw

)
. (29b)

We can see from (23) and (28) that, to the leading order of ε and
γ , the Coulomb force qE is heading from each electrode to the

centerline x = 0. As a supplement, it can be shown that the
source term, ∇q × E, in the equation for the dimensionless
vorticity, ∇ × u, is negative (positive) in the first and third
(second and fourth) quadrants, so that the vortical flow should
be clockwise (counterclockwise) there; see [33] for detailed
derivation of the vorticity equation. We thus expect that the
fluid near the centerline would go up in the upper domain
y > 0 and come down in the lower domain y < 0.

The 1D nonlinear DSL equations for the ion transport and
potential are then solved by using a separately developed
code based on the finite difference method described briefly
in Sec. III B; the formulation and numerical-solution methods
are general purpose and problem independent, but the quantity
E0b at a local point s on the electrode wall to be supplied from
the bulk solutions of course depends on the specific geometry
concerned. Once the ion concentrations and the potential are
derived, the slip velocity is calculated from the numerical
integration of Eq. (19).

On the other hand, we also use the commercial software
COMSOL to obtain the numerical solutions of the full 2D
equations, (1a)–(1e), without approximation (to be called F2D
solutions). Three kinds of COMSOL models employed in the
simulations are species-transport model for Eqs. (1a) and (1b),
electrostatics model for Eq. (1c), and fluid-flow model for
Eqs. (1d) and (1e). In order to avoid the numerical instability
we use the perturbed variables �c∗

± instead of c∗
± defined as

c∗
± = c0

√
F + �c∗

± (refer to [23] for details). To resolve the
thin DSLs near the electrodes, we employ very fine grids in
the proximity of the electrodes. Preliminary test runs were thus
needed to attain a proper grid resolution.

B. Results

The liquid used is dodecane mixed with the surfactant
Span80 in three proportions: 0.5%, 0.3%, and 0.2%. The liquid
mixture shows almost a constant viscosity, η = 1.34 mPa s.
We further set T = 295 K, εp = 2 × 8.85 × 10−12 F m−1,
ā = 2.25 nm (averaged ionic radius), and κO = m± = 1. The
mobility and the diffusivity are calculated from the formulas
μ̄ = μ± = e/(6πηā) and D± = ζT μ±, respectively. We set
the geometric parameters as follows: R = 0.15 mm, H =
2.4 mm, and L = 12 mm. Half of the gap spacing between
electrodes is set at d∗ = 0.38 mm for the 0.5% mixture and
0.355 mm for the 0.3% and 0.2% mixtures.

In order to determine the zero-field concentration, we
performed a current-voltage experiment for each liquid mix-
ture by using an apparatus with a set of parallel electrodes
similar to [12]. The curves of current density versus electric
field indeed show enhancement of conductivity at high field
following the Onsager effect. Our purpose is to obtain a
critical point in the (cμ0,γ

∗) space showing the best curve
fitting by using the least-squares method, where cμ0 ≡ μ̄c0 is
a parameter proportional to the conductivity; in this fitting,
we allowed not only the concentration but also the Onsager
constant γ ∗ to be varied. We have found that the rms error
associated with the curve fitting is minimized at a critical
point as expected, but the value of γ ∗ at that point is usually
less than γ ∗

O . More importantly, the low-level contours of
rms error show very slender ellipses as shown in Fig. 4
typically for the 0.3% mixture; the other two concentrations
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FIG. 4. (Color online) Contours of the rms error, in the (cμ0,γ
∗)

space, given in fitting the experimental data of the current-density
and electric-field relationship for the 0.3% mixture of dodecane-
Span80 by the Onsager function. Note that low levels of rms
error are distributed along a straight line, cμ0 = (p1 − 107γ ∗p2) ×
1010 s−1 m−1 V−1 with p1 = 4.826 and p2 = 0.2858 (dashed blue
line).

also show similar patterns as this. We derive the principal axis
as cμ0 = (p1 − 107γ ∗p2) × 1010, where cμ0 and γ ∗ should
be in the units s−1 m−1 V−1 and m V−1, respectively. The
two constants used in this equation depend on the liquid
mixture and we found p1 = 11.35 and p2 = 0.750 for the 0.5%
mixture, p1 = 4.826 and p2 = 0.2858 for the 0.3% mixture,
and p1 = 3.345 and p2 = 0.188 for the 0.2% mixture. Instead
of choosing γ ∗ at the critical point for use in the simulation,
we may allow it to be varied depending on the problems in
hand, e.g., for a better agreement between the simulation and
experimental results. Figure 5 illustrates the result of curve
fitting with the Onsager function to the experimental data
with the critical value γ ∗ = 2.25 × 10−7 m V−1. It is seen that
the experimental data are remarkably well reproduced by the

FIG. 5. (Color online) Typical result of the curve fitting by the
Onsager function (solid line) with the experimental data (red symbols)
for the current-density and electric-field relationship for the 0.3%
mixture of dodecane-Span80. The Onsager constant is set at γ ∗ =
2.25 × 10−7 m V−1 for this plot. The dashed blue line shows Ohm’s
law in terms of the zero-field concentration given with the formula
presented in the text for the 0.3% mixture.

FIG. 6. (Color online) Comparison between the electric-field-
intensity distributions along a part of the symmetric line, y∗ = 0,
computed from the asymptotic solutions (solid lines) and that given
from the F2D solutions (symbols) for the 0.5% mixture at Va = 500 V
and κL = 1.

Onsager function. In this study, however, we do not consider
adjustment of γ ∗ but use the original Onsager constant γ ∗

O ,
that is, κO is fixed at 1.

The asymptotic bulk solutions given in Sec. IV A may be
useful as benchmark solutions (for example, in validating
numerical simulation results). Figure 6 shows a comparison
between the electric-field distribution along a line segment on
y∗ = 0 obtained from F2D and from the asymptotic solutions
(23), (25), and (26); the solution E03 was also obtained but
is not presented in this paper. We can see that the asymptotic
solution tends toward the numerical solution as the number
of terms is increased in the analysis. With the parameter set
used for this result, we can evaluate the perturbation parameter
as ε = 7.2 × 10−4 being much smaller than 1, which ensures
that the leading-order solutions for ε are accurate enough.
On the other hand, we get γ = 0.96 (or as a more reasonable
quantity, γE = 0.43 based on the maximum value of E∗ taken
from Fig. 6), a result which is seemingly contradictory to
the requirement, γ � 1, for the validity of the perturbation
methods with the expansion of variables in terms of γ .
Nevertheless, it is found to provide accurate solutions with
four leading terms as shown in Fig. 6, confirmatively because
the expansion of the Onsager function (2) has infinite radius
of convergence.

Validity of the 1D model for the DSL is next confirmed
from a comparison of the 1D simulation results and those
given from F2D as shown in Figs. 7(a) and 7(b) obtained at
κL = 1, and Figs. 7(c) and 7(d) obtained at κL = 0.1; in the 1D
simulation, the value of E0b at the edge of the DSL is supplied
from the 2D bulk solutions, B2D. They are again remarkably
in good agreement with each other. Such excellent agreement
is of course indebted to the fact that ε remains small enough.

At a lower κL [Figs. 7(c) and 7(d)], the counterion (i.e.,
cation) concentration within the DSL is less than the bulk
value. In order to help understand such peculiar results, we
have derived the asymptotic solutions valid for large Y (see
Appendix B). The solutions (A3a) and (A3b), indicate that as
κL decreases fw is decreased whereas −hw is increased, being
consistent with Fig. 2. Further, the critical value of κL at which
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(a)

(b)

(c)

(d)

FIG. 7. (Color online) Distribution of concentrations (a), (c) and
electric-field intensity (b), (d) along the normal distance to the cathode
measured from the point (x,y) = (−d,1). Solid lines are computed
from the 1D simulation of the DSL equations, (16a)–(16c), and the
symbols from F2D for the 0.5% mixture at Va = 500 V and κL = 1
in (a) and (b) and κL = 0.1 in (c) and (d).

FIG. 8. Counterion fluxes through two sections, I and II, separated
by a small distance �n∗ and located close and parallel to the cathode,
(a) within the diffuse layer of the EDL with polar fluid and (b) within
the DSL with nonpolar fluid.

perturbation to fw vanishes is predicted to be κL = 0.5, which
was also confirmed by Fig. 2 and the related discussion given
in Sec. III B.

Lowering of the counterion concentration in the thin layer
near the electrode below the value at the edge of the layer is
not possible for the ion transport within the diffuse layer of
EDL with polar fluid. Within the diffuse layer of the EDL,
the total normal flux of the counterion concentration through
a sectional plane normal to the electrode wall, which is given
by the sum of the conductive normal flux, J ∗

+nc = μ+E∗
nc

∗
+,

and the diffusive normal flux, J ∗
+nd = −D+∂c∗

+/∂n∗, must
be zero; J ∗

+nc + J ∗
+nd = 0. Since E∗

n is negative when the
coordinate n∗ has its origin at the cathode (Fig. 8) and c∗

+
is positive, it is expected that J ∗

+nc < 0 and J ∗
+nd > 0 leading

to ∂c∗
+/∂n∗ < 0. This means that the cation concentration must

decrease monotonically with n∗ near the cathode. Figure 8(a)
illustrates the variation of the ionic fluxes through an imaginary
slab of small thickness �n∗. On the other hand, within the DSL
of nonpolar fluid, the spatial gradient of the conductive flux is
balanced by the ion source; ∂J ∗

+nc/∂n∗ ∼= �J ∗
s /�n∗, where

�J ∗
s = κLαL(c∗2

0 − c∗
+c∗

−)�n∗ [Fig. 8(b)]. Since �J ∗
s > 0,

we arrive at ∂J ∗
+nc/∂n∗ > 0 indicating that −J ∗

+nc should

FIG. 9. (Color online) Contribution of the osmotic-pressure-
driven slip velocity (dashed red line) and that of the tangential
Coulomb-force component (dash-dot green line) to the total slip
velocity (solid blue line) around the LHS cylinder calculated from
double integration of Eq. (19) with the field distribution E0b obtained
from B2D for the 0.5% mixture at Va = 500 V and κL = 0.5.
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FIG. 10. (Color online) Variation of u∗
smt(= u∗

sm1 + u∗
sm2), maxi-

mum value of u∗
slip over the half circle 0 � θ � π , upon the change

of κL. The other parameters are set the same as in Fig. 9. Also shown
are u∗

sm1, the osmotic-pressure-driven slip velocity (dashed red line),
and u∗

sm2, the tangential-Coulomb-force-driven slip velocity (dash-dot
green line).

decrease with n∗ as illustrated in Fig. 8(b). As κL is decreased,
�J ∗

s decreases accordingly and the gradient ∂J ∗
+nc/∂n∗ also

decreases. In view of J ∗
+nc = μ+E∗

nc
∗
+ we can see that when

−E∗
n decreases so rapidly with n∗ it can happen that c∗

+
should rather increase with n∗, as in the case shown in
Fig. 7(b).

We have shown that the dimensionless slip velocity uslip can
be obtained from double integration of Eq. (19) with respect
to n. For the 0.5% solution, B2D was run to get E0b around
each electrode, which was then substituted into Eq. (19) and
integrated twice over 0 � n � n∞, where n∞ was taken large
enough so that ĥ2 − 1 and f̂ − ĝ asymptotically vanish there
with enough accuracy. Figure 9 shows a typical distribution
of u∗

slip on the LHS cylinder. We see that u∗
slip > 0 over

0 < θ < π [θ is angle measured from the facing stagnation
point of the LHS cylinder at (x,y) = (1 − d,0)] and u∗

slip < 0

over −π < θ < 0. This means that the slip velocity on the
cylindrical electrodes causes the fluid adjacent to the electrodes
to move away from the facing stagnation point, which tends to
drive the fluid near the vertical line x = 0 toward the origin of
the coordinates contrary to the role of the bulk-charge density.
We will see that the slip velocity is the root of the DSL
vortex. Figure 9 also reveals that the contribution of the osmotic
pressure to the total slip velocity is almost at the same level as
that of the tangential Coulomb-force component.

In order to explore the effect of the reduction of the
Langevin constant on the slip velocity, we plotted the variation
of the maximum slip velocity on the LHS electrode as a
function of κL as shown in Fig. 10. Thus, the slip velocity
scales almost at u∗

slip ∼ κ−2
L over such wide range of κL being

consistent with Eq. (20). It also shows again that contribution
of the osmotic pressure to the slip velocity is almost at the
same level as that of the tangential component of the Coulomb
force over the whole range of κL.

We now present a qualitative and quantitative comparison
between the numerical and experimental results. The experi-
mental streamlines of Fig. 11(a) obtained for the 0.5% solution
indicate that the flow field is dominated by the bulk-driven
flow, and fluid near the vertical centerline x∗ = 0 goes up in
the upper region y∗ > 0 and comes down in the lower region
y∗ < 0 as predicted in Sec. IV A. The F2D result [Fig. 11(b)]
given at κL = 0.3 well reproduces the experimental one. In this
solution mixture, the numerical simulation with a different κL

gives the pattern indistinguishable from Fig. 11(b) and the
quantitative difference is also insignificant; for instance, the
vertical velocity component at (x∗,y∗) = (0,0.6) mm becomes
v∗

c = 4.5 mm s−1 at κL = 0.3 and v∗
c = 5.0 mm s−1 at κL = 1

showing only a 10% difference. Figure 12 reveals the 1D
distribution of the vertical velocity component, denoted as
v∗

1D, along the horizontal line y∗ = 0.6 mm, obtained by
particle tracking velocimetry (PTV) measurement and F2D
with the same parameter set as in Fig. 11(b). Considering
that in most studies on electrokinetics quantitative comparison
between the numerical and experimental results was not as

FIG. 11. Streamlines obtained from (a) flow-visualization experiment and (b) numerical simulation for the 0.5% mixture at 500 V. Numerical
result is obtained at κL = 0.3.
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FIG. 12. (Color online) 1D distribution of the vertical velocity
component at y∗ = 0.6 mm obtained from PTV experiment (red
symbols) and numerical simulation (solid blue line) with the same
parameter set as in Fig. 11.

consistent [30–35], we can say that the agreement between the
two results shown in Fig. 12 is quite excellent.

Equations (20) and (13) indicate that as the concentration of
the surfactant Span80 in the mixture is decreased (that is, as c0

is decreased), the DSL effect is increased through the increase
of the DSL-driven slip velocity, whereas the bulk-driven flow
is unaffected. Figure 13 shows the streamline patterns obtained
for 0.3% and 0.2% mixtures at 400 V. Compared with the case
of the 0.5% mixture (Fig. 11), the DSL-driven slip velocity for
the 0.3% mixture is large enough to cause the emergence of
two new vortices (to be referred to as DSL vortices) around the
electrodes [Figs. 13(a) and 13(b)]; the streamline patterns at
Va = 500 V are qualitatively the same as the patterns of Fig. 13
given at 400 V for both mixtures. Although the DSL vortices
are almost of the same size as the electrodes, the thickness of
DSL is only 10% of the cylinder radius. This ensures that the
DSL vortex is indeed an outcome of the slip velocity at the
edge of the DSL. In the case of the 0.2% mixture, Figs. 13(c)
and 13(d), the whole domain is now dominated by the DSL
vortices and we observe a flow reversal; the fluid near the
vertical centerline comes down in the upper region y∗ > 0 and
goes up in the lower region, contrary to the case with the 0.5%
mixture (Fig. 11). Notice that the DSL still remains thin, about
0.02 mm, and thus the resultant flow should be categorized

FIG. 13. Experimental (a), (c) and numerical (b), (d) streamlines for the 0.3% (a), (b) and 0.2% (c), (d) mixtures at 400 V. Numerical results
are obtained at κL = 0.174 in (b) and κL = 0.168 in (d).
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(a)

(b)

FIG. 14. (Color online) Experimental (scattered square symbols)
and numerical (solid lines with symbols) results of v∗

c for (a) 0.3% and
(b) 0.2% mixtures; v∗

c is the vertical velocity component at the point
(x∗,y∗) = (0,0.7) mm in (a) and (0,0.25) mm in (b). Dashed lines
denote the experimental data averaged at each Va . In the numerical
simulation, three different numbers of leading terms are used in the
series representation of the Onsager function [Eq. (2) in the text].
κL = 0.331, 0.203, and 0.174 are used in (a) and κL = 0.354, 0.205,
and 0.168 in (b) for the two-, three-, and infinite-term expansion,
respectively; these are determined so as to match the experimental
data at Va = 500 V with each expansion.

as induced-charge electro-osmosis (ICEO) [30–36]; further
discussion on the different features between the conventional
ICEO with polar liquid and that with nonpolar liquid will be
given in the last part of this section. For both mixtures, the
numerical streamlines again appear to be in good agreement
with the experimental ones.

As predicted previously, a decrease of the factor κL brings
an increase of the DSL-driven slip velocity. We also revealed,
in the case of the 0.5% solution (Fig. 11), that the velocity
measured from the experiment can be matched with the numer-
ical solution by adjusting the parameter κL in the simulation.
However, it turns out that κL, while providing a successful
matching at one voltage, does not result in a satisfactory
matching at another voltage. Figure 14 demonstrates this for
the 0.3% and 0.2% mixtures. For the 0.3% mixture [Fig. 14(a)],

F2D with κL = 0.174 yields v∗
c = 1.21 mm/s that exactly

matches the experimental result at Va = 500 V, where v∗
c is

now the vertical velocity component at (x∗,y∗) = (0,0.7) mm.
However F2D with the same κL overestimates the experimental
data at larger voltages and underestimates at smaller voltages
when the original Onsager function is used. A similar trend
is observed in the 0.2% mixture as shown in Fig. 14(b); in
this case, the numerical simulation gives v∗

c = −1.30 mm s−1

at (x∗,y∗) = (0,0.25) mm with κL = 0.168 for Va = 500 V,
which exactly matches the experimental data. These results
imply that truncation of the series for the Onsager function
after a few terms may improve the matching, because the
resultant function should be always lower than the original
Onsager function. Figures 14(a) and 14(b) show that the
numerically given v∗

c with three-term expansion for the
Onsager function indeed matches the experimental data better
than with the original (infinite-term) function for the range of
voltage, 400−700 V; here the two-term expansion corresponds
to overtruncation. Since the Onsager function is responsible for
the charge generation, we may argue from the above reasoning
that the Onsager function in its original form, Eq. (2), tends to
overestimate the charge generation.

As described at the end of Sec. III, we can apply the slip-
velocity model in 2D simulation of EHD flows by combining
the bulk and DSL solutions. Figure 15 shows a comparison
between v∗

c obtained from the F2D simulation and that from
the slip-velocity model. We can see that the slip-velocity model
slightly overpredicts the F2D results but otherwise the former
closely follows the trend of the latter. On the other hand, the
conventional B2D without the DSL effect (horizontal straight
line in Fig. 15) cannot successfully reproduce the F2D data, in
particular at small κL, for which the DSL effect is estimated to
be considerable. The same argument holds for the cases with
low concentration or small-scale geometry, where the DSL
effect becomes relatively large or u∗

slip/u
∗
b is large, as can be

seen from Eq. (21). That is, the B2D solutions alone, as used in
[10,20], cannot predict DSL vortices or flow reversal of Fig. 13.

FIG. 15. (Color online) Comparison between the simulation
result with the slip-velocity model (red solid line with circles) and
that with the full F2D (blue solid line with squares) in terms of
v∗

c , the vertical velocity at (x∗,y∗) = (0,0.5) mm, obtained for the
0.5% mixture at 500 V with various κL. The solid straight line
corresponds to the simulation result, v∗

c = 5.94 mm s−1, obtained
from the conventional bulk-solution method without considering the
DSL effect, i.e., B2D.
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(a)

(b)

FIG. 16. (Color online) Distribution of the tangential velocity
component u∗, along the normal distance from the point (x∗,y∗) =
(−d∗,R) on the cathode wall, for the 0.5% mixture at 500 V with
(a) κL = 0.1 and (b) κL = 0.3. Blue symbols correspond to the F2D
data and the solid red lines to the slip-velocity-model solutions. Note
d∗ = 0.38 mm for the 0.5% mixture.

The advantage of the slip-velocity model compared with the
full model is obvious; firstly, we do not need to solve the
ion-transport equations for the bulk region, and secondly, since
the DSL is well resolved by using a separate program for the 1D
equations, the numerical simulation for the bulk, B2D, is still
free from constructing extremely fine grids near the electrodes.

In order to capture the extent of the DSL within the DSL vor-
tex and to understand the way the DSL solutions match the bulk
solutions, we plot the 1D distribution of the tangential velocity
component along the normal distance from a point on the LHS
electrode as shown in Fig. 16. We can confirm the asymptotic
approach of the velocity from the sharp increase near the wall
to the slow variation in the bulk in particular with κL = 0.1
[Fig. 16(a)]. From Fig. 16(a), we measure the thickness of the
DSL as about 0.015 mm, and this is considerably smaller than
the size of the DSL vortex, 0.1 mm, which means that the DSL
is completely embedded in the DSL vortex. On the other hand,
for κL = 0.3 [Fig. 16(b)] the slip velocity is much smaller than
Fig. 16(a) and thus the DSL thickness is comparable to the size
of the DSL vortex. In summary, the DSL vortex can be said
to be a manifestation of the induced-charge electro-osmotic

TABLE I. Comparison of important features of induced-charge
electro-osmotic flow (ICEO) between polar and nonpolar fluids. The
formula showing the velocity’s dependence on the field, scale, and
concentration applies only when the corresponding layers (indicated
by ∗) are thin enough compared with the bulk.

Fluid Polar [30–36] Nonpolar
[10,20,22,23]

Electrical permittivity High Low
Electric field Low High

Effective with ac or dc? ac (dc) ac (dc)
Relevant scale nm to μm μm to mm

Charge-induced region Double layer∗ Bulk DSL∗

Velocity’s Field ∼ E2 ∼ E3 ∼ E4

dependence on Scale ∼ R ∼ R ∼ R−1

Concentration – – ∼ c−2
0

flow driven by the thin DSL, and its size is dependent on the
competition between the bulk-charge-induced flow and the
DSL-charge-induced slip velocity.

Now we can compare the key elements of the conventional
ICEO for polar fluid (PF-ICEO) and those of the present study
for the nonpolar fluid (NF-ICEO) as shown in Table I. Since
the body force in the Stokes equations takes the same form
in both flow types, i.e., product of charge density and field,
either ac or dc can be applied to yield ICEO; however, dc
is not practical in PF-ICEO because of the degradation of
electrodes. In PF-ICEO, the Onsager effect is not concerned
because the applied field is in a low level, and so the flow is
induced only within the double layer. Most distinctively, the
double layer in PF-ICEO is an outcome of the balance between
the diffusion and conduction (ion migration) terms in the ion-
transport equations [30–36], whereas the DSL in NF-ICEO
is that between the conduction and ion-dissociation terms.
Similar to PF-ICEO, the bulk-driven velocity is proportional
to the scale in NF-ICEO. On the contrary, the DSL-driven
velocity is proportional to the inverse of the scale, so it should
dominate over the bulk-driven flow as the scale is decreased.
Dependence of the flow velocity on the field is the weakest in
the PF-ICEO (∼ E2) and the most pronounced in the DSL-
driven ICEO (∼ E4). Compared with the other two velocities,
the DSL-driven slip velocity in the NF-ICEO is expected to
increase with a decrease in concentration.

V. CONCLUSIONS

We performed an asymptotic analysis for the charge-
transport and fluid-flow problems of dielectric liquid under
the limit of small ε and small γ . We have derived a series of
governing equations valid to O(ε) in linear form that are used
to hierarchically obtain the electric field and ion concentrations
in the bulk. The analysis justifies the use of simplified but
nonlinear equations (B2D) for the bulk electric field encom-
passing the Onsager effect, which is valid only if the DSL
effect is negligible. The order-of-magnitude analysis shows
that the bulk-charge-induced flow velocity is proportional
to the geometric scale and cubic power of the applied field
independent of the ion concentration, in line with [10,20].
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We have also derived 1D nonlinear equations for the
ion-transport problem within DSL that should be practically
solved with a numerical method. It was found that the DSL
thickness is proportional to the applied electric field and
inversely proportional to the zero-field ion concentration.
Thus, we expect that, without additives such as Span80, the
ion concentration tends to vanish and the EHD flow should be
dominated by DSL-charge-driven electro-osmotic flow.

We have further derived a formula to be integrated twice
on the normal coordinate to obtain the slip velocity at the
edge of the DSL. The slip velocity turns out to be proportional
to the fourth power of the field and inversely proportional to
the geometric scale and the quadratic power of concentration.
One of the most important consequences of the asymptotic
analysis is given as Eq. (21). Dominance of the DSL-driven
flow over the bulk-driven flow is increased as the electric field
is increased and the geometric scale or the ion concentration
is decreased. It also reveals that decrease of the Onsager’s
dissociation effect and the recombination rate also causes the
DSL-driven flow to be more dominant.

Application of the analysis to the EHD flow over a pair
of circular electrodes presents closed-form solutions for the
bulk electric field and charge density. The dimensionless
leading-order charge density is found to be O(εγ ). The vortical
flow was predicted to be clockwise (counterclockwise) in the
first and third (second and forth) quadrants of the domain,
which was also confirmed from experimental visualization
and numerical simulation. Numerical solutions of the DSL
equations are also shown to be in good agreement with the
results obtained with F2D, confirming the validity of both
solution methods.

Flow solutions obtained from numerical simulation with the
full 2D equations compare well with the experimental ones for
the 0.5% mixture not only qualitatively but also quantitatively,
and the flow structure is consistent with our prediction from
the asymptotic analysis. It turns out that the contribution of the
osmotic pressure to the slip velocity at the edge of the DSL
is at the same level as that of the tangential Coulomb-force
component.

The experimentally observed flow reversal at lower mixture
concentrations could be well captured by F2D with reduced re-
combination constants. The conventional EHD flow simulation
method with only B2D, in which the DSL effect is neglected,
cannot reproduce such flow reversal because the flow reversal
is caused by the increase of the DSL-driven slip velocity, which
counteracts the bulk-charge-driven flow in particular near the
electrodes. The DSL is confined within the DSL vortex with
its thickness being much smaller than the size of DSL vortex,
implying that the apparent extent of the DSL vortex should not
be confused with the DSL region.

In this study, the role of the reduction factor for the
recombination constant, κL, in the DSL solution was also
clarified. As the factor is decreased, the slip velocity increases
due to the increase of the DSL thickness and the field intensity
in the DSL. Adjustment of κL is thus mandatory for matching
between the experimental and numerical solutions.

Further, we have also numerically shown that the Onsager
function in its original form tends to overestimate the charge
generation. This conclusion is drawn from the requirement that
the experimentally measured velocities at different applied

voltages should be reproduced with the same value of κL.
Further study is needed to see if the same argument holds for
different geometric variations, such as coplanar electrodes.
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APPENDIX A: DERIVATION OF Hi j

We need to expand F (E) in terms of the expansion
parameters ε and γ . For this, we write

E = |E0 + εE1 + ε2E2 + · · ·| = H0 + εH1 + ε2H2 + · · ·,
where each term in the expansion Hi = ∑∞

j=0 γ jHij is to be
written in terms of Eij . Then, we get

E2 = H 2
0 + 2εH0H1 + ε2(2H0H2 + H 2

1 ) + · · ·.
Equating this with the expansion of E · E where we use the
double expansion for E, we get

H00 = E00, H01 = E00 · E01

E00
,

H02 = 2E00 · E02 + E2
01 − H 2

01

2E00
, H10 = E00 · E10

E00
,

H11 = E00 · E11 + E01 · E10 − H01H10

E00
,

H12 = E00 · E12 + E01 · E11 + E02 · E10 − H01H11 − H02H10

E00
,

H20 = 2E00 · E20 + E2
10 − H 2

10

2E00
,

H21 = E00 · E21 + E01 · E20 + E10 · E11 − H01H20 − H10H11

E00
.

APPENDIX B: DERIVATION OF THE ASYMPTOTIC
SOLUTIONS OF EQS. (16a)–(16c) FOR LARGE Y

For m± = 1 and γ � 1, we can write Eqs. (16a)–(16c) as

d

dY
(ĥ f̂ )′ = 1 − f̂ ĝ, (B1a)

−(ĥ ĝ)′ = 1 − f̂ ĝ, (B1b)

2κLĥ′ = f̂ − ĝ, (B1c)

where the prime denotes the derivative with respect to Y ;
ϕ′ = dϕ/dY . Next, we consider perturbation of the variables
from the bulk values (f̂ ,ĝ,ĥ) = (1,1, − 1); f̂ = 1 + �f ,
ĝ = 1 + �g, and ĥ = −1 + �h. Substituting these into
Eqs. (A1a)–(A1c) and neglecting product of small-order terms,
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we get

�f ′ − �h′ = �f + �g, �g′ − �h′ = −(�f + �g),

2κL�h′ = �f − �g.

This constitutes a linear system of ordinary differential
equations, and we can find the solutions easily;

f̂ = 1 +
√

2κL − 1√
2κL + 1

exp(−λY ), (B2a)

ĝ = 1 − exp(−λY ), (B2b)

ĥ = −1 − 1√
2κL + 1

exp(−λY ), (B2c)

where λ = √
2/κL, and the boundary condition ĝ = 0 at

Y = 0 is applied to determine the unknown constant. The
wall values are then derived as follows.

fw = 1 +
√

2κL − 1√
2κL + 1

, (B3a)

−hw = 1 + 1√
2κL + 1

. (B3b)
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