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Simple model of the Rayleigh-Taylor instability, collapse, and structural elements
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The mechanisms and structural elements of the Rayleigh-Taylor instability whose evolution results in the
occurrence of the collapse have been studied in the scope of the rotating shallow water model with horizontal
density gradient. Analysis of the instability mechanism shows that two collapse scenarios are possible. One
scenario implies anisotropic collapse during which the contact area of a collapsing fragment with the bottom
contracts into a spinning segment. The other implies isotropic contracting of the area into a point. The rigorous
integral criteria and power laws of collapses are found.
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I. INTRODUCTION

There exist situations when a fluid dynamic system quickly
transitions from its initial stable equilibrium state to an
unstable one as a result of change of external governing
conditions or of the system control parameters. The most
notable example is the Rayleigh-Taylor instability (RTI). The
classic (the simplest) RTI occurs when a fluid with lower
density accelerates a fluid of higher density, or when a
higher density fluid is positioned above a fluid with lower
density in a gravitational field or in an accelerating frame
of reference. It is a dynamic process where the two fluids
seek to reduce their combined potential energy. An initial
perturbation (of small magnitude) of the interface between
fluids starts in the exponential regime (described by linear
differential equations for interface deformation), proceeds to
the nonlinear regime, and finally enters a turbulent regime
where multiple space scales emerge. Understanding of the
dynamics of this process is crucial to the understanding of
many phenomena of combustion processes in astrophysical
and geophysical environments, the inertial (laser) fusion,
accelerating medium of variable density, two-phase flows, and
many other phenomena.

One should distinguish between two limit cases based on
the ratio of thickness l of the fluid layer (“vertical” size of
the container) and the characteristic space scale of initial
horizontal deformation of the interface k−1 (“horizontal” size
of the container): “deep” kl � 1 and “shallow” kl � 1 fluids.

In the case of kl � 1, a small initial sinusoidal deformation
of “deep” fluid interface h(x,0) ∼ sin kx with kh(x,0) � 1
initially grows as h(x,t) � h(x,0) exp �t with the growth
rate (for a single-mode k) � = √

Agk (when one neglects
surface tension). Here, k−1 is the horizontal perturbation space
scale in the single-mode approximation, g is the gravity or
inertial acceleration directed from the h fluid to the l fluid,
dimensionless parameter A = (�h − �l)/(�h + �l) > 0 is the
Atwood number, �h and �l are the densities of the heavier
and lighter fluids, respectively, and h(x,0) is the factor that
defines the initial single-mode magnitude. When the initial
deformation of the interface is not single mode, in the regime
with exponential growth each perturbation mode develops
independently and is described by linear stability theory [1]. As
the deformation of the interface becomes large, kh(x,t) � 1,
the fluid interface is transformed prior to transitioning to the

turbulent regime of the interface motion into “spikes” (where
the heavier fluid penetrates the lighter fluid) and “bubbles”
(where the lighter fluid rises into the heavier fluid) [2–4].

In this work we focus attention on the other limit case,
the so-called “shallow-water”-like approximation (SWL) with
kl � 1. The SWL approximation arises in many physical sit-
uations when the characteristic horizontal scale perpendicular
to the imposed external (for example, gravity) acceleration
g is much larger than the vertical dimension of the flow,
or when the collinear to g component of fluid velocity is
strongly suppressed for some reason. In this case the fluid
dynamic description can be drastically simplified, permitting
the use of simplified models. So, in astro- and geophysical
fluid dynamics, many oceanic and atmospheric large-scale
currents, flows in rivers, avalanches, and so on, may be
investigated using layered models in which the continuous
vertical structure is approximated by a small stack of layers
with varying thicknesses [5]. In the simplest approximation,
the fluid variables within each layer, such as density and
horizontal flow velocity, are considered to be vertically
uniform, depending only on horizontal coordinates and time.
The simplest layer model is the SWL model which describes
a single layer of incompressible fluid with a free surface.
Finer effects, for example, baroclinic effects due to unaligned
density and pressure gradients in a continuously stratified
fluid, may be modeled using two or more layers. Inasmuch
as layer models with constant layer densities in general have
difficulty representing thermodynamic phenomena such as
heating or fresh medium forcing that can become important,
Ripa [6] proposed to consider a family of layered models
that permitted horizontal variations in fluid density within
each layer. These density variations may be attributed, for
example, to horizontal temperature gradients. In the ocean
and atmosphere, gravity currents are driven by temperature
and salinity inhomogeneities, or considered as turbidity
currents whose density derives from suspended mud or
silt [5].

Besides geophysical fluid dynamics, the classical SWL
models can be useful for studying certain astrophysical
phenomena. For example, a SWL analog was used to describe
the shock instability taking place in the collapsing inner
core prior to explosion of a protoneutron star [7]. The SWL
model can also describe the dynamics of the tachocline of
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a star, as was done in [8] and [9] for the tachocline of the
Sun. The tachocline is a thin layer of the star’s interior,
straddling the convection zone and the radiative interior. The
tachocline is divided into two sublayers: an inner “radiative”
layer and an outer “overshoot” layer. Both sublayers have
stable subadiabatic temperature gradients, but the overshoot
layer is much closer to being adiabatic. In [8] and [9], the
fluid was treated as ideal and the flows as very subsonic, so
acoustic compressibility was ignored. The simplest shallow-
water system was considered—with one layer of variable
thickness, a “free” surface at the top and a rigid boundary at the
bottom. It was noted that, in the solar case, the more significant
role is played by the boundary between the two layers of the
tachocline, rather than the boundary between the tachocline
and the convection zone. The convection zone, being adiabatic
or superadiabatic, offers no buoyancy resistance to a bulge
from below, but the stable subadiabatic stratification within the
tachocline provides some negative stratification in an amount
proportional to the “subadiabaticity” of the layer. Thus, small
fluctuations of the temperature regime can shift the system
from a state with positive buoyancy to a state with negative
buoyancy, leading to the hydrodynamical instability of the
system.

For SWL flows, as well as for many other nonlinear systems,
the problem of stability is central because development of
instability determines the possible final regimes realized
in the flows. These outcomes depend on the specifics of
the model and the initial conditions (integrals of motion).
Various scenarios of instability exist, and one of them is the
collapse mostly referred to as the “blowup.” The extensive
literature on this phenomenon is reviewed in [10–15]. This
phenomenon implies formation of finite-time singularities and
is a rather universal mechanism by which instabilities manifest
themselves in nonlinear physical systems [16–23]. In addition,
there is good reason to believe that collapses can be key to the
understanding of strong turbulence [24–26].

The basic premise of this paper assumes that the develop-
ment of large-scale instability leads to disintegration of flow
and to the occurrence of droplike fluid fragments. In following
stages, these quasiregular formations play the role of structural
elements from which it is possible to compile an overall picture
of the instability up to the final stage when collapse initiating
small-scale turbulence is involved in the game. The main goal
of this work is to study the scenarios and structural elements of
collapses in the well-known shallow-water models. By virtue
of the general relativity principle, the results obtained in this
paper obviously hold for both a system in a homogeneous
gravity field g, and for the one moving with acceleration V̇(t)
[thus replacing g → −V̇(t) in all formulas].

One disadvantage of Ripa’s models is that they cannot
incorporate the effects of the Rayleigh-Taylor instability due
to the fact that, by definition, buoyancy is supposed to be
positive in each layer. To overcome these limitations, we have
proposed a simple one-layer model [23], whose dynamics is
described by a relative buoyancy of alternating sign. As shown
therein, an interesting phenomenon, the so-called collapse
(blowup), is possible only under certain initial conditions
when the integral criterion is fulfilled and the distribution of
density (temperature) is such that the potential energy integral
is nonpositive. This means that the mechanism responsible

for initiating the collapse is the Rayleigh-Taylor instability.
Undoubtedly, sooner or later the collapse leads to small-scale
processes which the simplified model [23] ignores. However,
it is extremely unlikely that in a more complete dissipation-
free model the solutions would change so dramatically that
collapses would be completely avoided. In particular, as
shown in [19,22], accounting for nonlinear dispersion due
to nonhydrostatic pressure effects does not suppress the
occurrence of collapses in shallow-water models. Even if the
collapsing solutions are not explicitly realized (which is most
likely due to the loss of self-similarity), the theoretical value
of these solutions is that they can be considered as initial or
intermediate asymptotics [27].

Work [23] was limited only to the study of integral criteria
and power laws of collapses. Finding the space structure for
self-similar solutions was outside its scope. In the present
work we fill this gap. By analogy with [18–22], it is natural
to expect that the development of large-scale instability in
the discussed below model also leads to disintegration of
the strongly perturbed flow and to the occurrence of droplike
fluid fragments. These formations play the role of structural
elements that can be used to assess the overall picture of the
preturbulence instability. Since the droplike fragments produce
space-time singularities responsible for the power-law tails
in the short-wave range of the spectrum, the study of the
structural elements provides a key to the understanding of
strong turbulence [24,25].

The importance of the issue becomes clear in the follow-
ing historical episode. The well-known Manhattan Project
required implementation of a simultaneous and uniform ex-
plosive compression of a spherical target of density �h � 19.3
by a spherical layer of less density, �l � 19.0 (Atwood number
A � 0.008 � 1)—this is how the implosion was created.
Physically, the behavior of the �h/�l interface, which during
target compression moves locally with acceleration, is equiva-
lent to the behavior of a fluid in a drinking glass turned upside
down (subject to the gravity of Earth). In such a situation, the
interface is obviously unstable (Rayleigh-Taylor instability)
and quickly deforms producing “fingers” and “spikes.” In the
sense of “rigorous” mathematics, such a problem is “ill posed.”
However, the success of the entire Project was critically
dependent on the ability to determine the conditions under
which the development of this hydrodynamical instability was
slower than the rapidity of the implosion; otherwise, instead
of a powerful explosion one would get a trivial “whiff.” Enrico
Fermi and John von Neumann were instrumental in analyzing
this problem. Fermi obtained (notably, with the use of a
beautifully simple and elegant model) for the magnitude of
the surface deformation in the nonlinear regime of evolution
one of the most important results for the Project realization:
the fact that the time dependence of the instability evolution
growth is proportional to the square of time, not exponential
and, as we all know, in the end successfully implemented
the Project [28]. In modern terms, they were interested
exactly in the “collapses” (which is what our paper is about)
that appear as jets and bubbles resulting due to Rayleigh-
Taylor instability when a heavy fluid sinks into a lighter
one.

This article is organized as follows. In Sec. II we construct
the minimal model and formulate the governing equations
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in the shallow-water approximation with horizontal density
gradients. In Sec. III we discuss the rigorous integral criterion
for isotropic collapse. We assume that this phenomenon arises
at the final stage when the development of instability has
led to disintegration of strongly perturbed flows. After the
formation of localized fluid fragments, there comes a time
when finite-time singularities form. The self-similar scenarios
of collapses and their corresponding structural elements are
considered in Secs. IV–VI. In Sec. VII we summarize our
results.

II. MINIMAL MODEL

To illustrate the concept we consider the simplest model
which can be proved within the framework of the two-layer
model (see the Appendix for more details). This model
supposes that two incompressible fluids with densities � =
const and � + �′(x1,x2,t) are separated by the interface z =
h(x1,x2,t) and contained between two rigid parallel planes
z = 0 and z = l under action of gravity g. When the space-
temporally depending density jump �′ between the fluids is
small and the lower layer is sufficiently thin, so inequalities
�′/� � 1 and h/l � 1 hold, then we can obtain evolution
generalized SWL equations

∂tui + uk∂kui − 2�eikuk = −∂i(hτ ) + 1
2h∂iτ, (1)

∂th + ∂k(huk) = 0, (2)

∂tτ + uk∂kτ = 0. (3)

These equations describe depth-averaged flow in the lower
layer. The used notations are as follows: xi = (x1,x2) are the
Cartesian coordinates; ∂t = ∂/∂t , ∂i = ∂/∂xi ; eik is the unit
antisymmetric tensor, e11 = e22 = 0, e12 = −e21 = 1; ui =
(u1,u2) are horizontal components of depth-averaged velocity
in layer; and h is its thickness depending on coordinates
and time. Hereinafter, summation over repeated indices is
implied. Since � is constant angular velocity with which
the layer is rotating about the vertical axis, the term 2�eikuk

implies components of Coriolis acceleration. The field variable
τ = g�′/� has the meaning of relative buoyancy and therefore
may take any sign.

In those cases when density variations are produced only by
temperature ones �T and are linearly connected, the relative
buoyancy can be computed as τ = −gβ�T , where β is the
thermal expansion coefficient. This parametrization allows one
to study heating and cooling effects in SWL models [29,30].

Note that in the case τ = 1 Eqs. (1)–(3) reduce to the usual
SWL equations. The other limiting case τ = −1 leads to the
so-called “inverted” SWL model describing the layer of a
heavy fluid bounded above by a solid slab. The equilibrium
in the unperturbed state is provided by the pressure of a
light fluid or a gas lying below. Examples of using the
inverted shallow-water model in various applications are
presented in [31]. Understandably, such equilibrium is unstable
(the Rayleigh-Taylor instability) and short lived. Eventually
the heavier fluid falls down to the bottom. But initial and
intermediate stages of the instability, when the system is far
from the final state, are of the utmost importance. Their study
provides a way for an understanding of the different important

processes such as, for example, the processes of vertical mixing
in many physical applications, including nuclear physics and
atmospheric and ocean science.

There is one more useful interpretation of Eqs. (1)–(3) as
equations of hydrodynamic type driven from first principles
(conservation laws). As can be verified directly, if variables
h and τ are considered as “mass density” and “entropy” (not
to be confused with the classical entropy), Eqs. (1)–(3) follow
from the Hamiltonian formulation [17,32] of two-dimensional
motion of a nonbarotropic rotating gas with the Hamiltonian

H =
∫

dx
(

h
u2

2
+ ε(h,τ )

)
.

Here, ε(h,τ ) is an internal energy density which in our case is
given by the expression ε = h2τ/2, and dx = dx1dx2.

In terms of variables h, τ , and

m = δH

δu
= hu

(referred to as the hydrodynamic momentum density), non-
trivial Poisson brackets defining the dynamics for the given
family of models take the form

{mi,m
′
k} = ∂ ′

i (m
′
kδ) − ∂k(miδ) + 2h�eikδ, (4)

{h,m′
k} = −∂k(hδ), {τ,m′

k} = −δ∂kτ. (5)

Here primed field variables mean the dependence on the
primed spatial coordinates, and δ = δ(x − x′) is the Dirac delta
function.

Evolution equations (1)–(3) conserve integrals of total mass
Q and total energy H ,

Q =
∫

dx h, H = 1

2

∫
dx(hu2 + h2τ ). (6)

In addition, any system with the Poisson brackets (4),(5)
automatically conserves the integrals (Casimirs)

C =
∫

dx (∂1u2 − ∂2u1 + 2�) F (τ ),

for any function F (τ ). Among them we note the conservation
law

n =
∫

dx τ (∂1u2 − ∂2u1 + 2�) . (7)

As we will see, this quantity together with other constants
of motion play an important role in determining self-similar
solutions considered in Secs. IV-VI.

III. COLLAPSE CRITERION

If the fluid moves as a whole, then it is convenient to go from
old coordinates x to new ones x′ connected with the center of
mass reference frame. In this case the primed and unprimed
coordinates and velocities are related by the transformation

x = X + x′, u = Q−1P + u′. (8)

Here coordinates of the center of mass X and components of
the total momentum P are defined as

X = Q−1
∫

dx hx, P =
∫

dx hu,
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and on the grounds of Eqs. (1)–(3) are governed by the
equations

∂tXi = Q−1Pi, ∂tPi = 2�eikPk.

Since the transformation (8) leaves invariant Eqs. (1)–(3),
we will not change the notations by merely setting P = 0 and
X = 0 from the very beginning.

As shown in [23], the model (1)–(3) admits a simple
mechanical reduction in terms of variables

V =
∫

dx hxiui, M =
∫

dx h (x1u2 − x2u1) ,

I =
∫

dx hx2. (9)

Integrals I , M , and V denote the moment of inertia, the kinetic
moment, and the virial, respectively, and obey a closed system
of equations

∂t I = 2V, ∂tV = 2H + 2�M, ∂tM = −2�V. (10)

Equations (10) give two more motion integrals

m = M + �I, V 2
0 = (M + �−1H )2 + V 2, (11)

and can be easily integrated to obtain

I = �−2 (H + �m) − V0

�
cos 2� (t − t0) , (12)

M = −�−1H + V0 cos 2�(t − t0), (13)

V = V0 sin 2�(t − t0). (14)

Here t0 is a constant of integration.
The integral I serves as an indicator of the isotropic

collapse, in the course of which this positive-defined quantity
undergoes specific temporal changes: I decreases with increas-
ing t and reaches the value I = 0 at a finite point t = t0 > 0.
The condition for such behavior is the inequality

(H + �m)2 � �2V 2
0 . (15)

This inequality is the criterion for collapse in the rotating
shallow-water model with horizontally nonuniform density.
Only under this condition, the development of instability leads
to the formation of a singularity in the point x = 0.

According to (15), the stability of the system is determined
by four constants of the motion: H , m, V0, and �. In place
of them it is a more suitable to use two nondimensional
parameters

ν = H

m�
, υ =

(
V0

m

)2

,

in terms of which the possible scenarios of stability and
instability can be analyzed with the diagram shown in Fig. 1.

From the diagram of stability, we see that increasing the
angular velocity |�|, so ν → 0 as |�| → ∞, allows the system
to leave the collapse region only if υ � 1, i.e., |V0| � |m|.
However in the opposite case υ > 1 (and hence |V0| > |m|)
under otherwise fixed parameters, an analogous behavior of
|�| does not lead to the same result.

Since in the case of isotropic collapsing the h behaves as
a self-similar function so that h = β−2f (x/β), one can write

FIG. 1. Stability diagram. The collapse region is indicated by the
gray color.

the relation

I = β2C, (16)

where β(t) is a function of time, and C is a positive constant
depending on the shape factor f only.

On the other hand, expanding the function I in powers of
(t0 − t) in the vicinity of the collapse time t0, we approximately
obtain

I ≈ a1 (t0 − t) + a2 (t0 − t)2 + · · · , (17)

where t0, coefficients a1,a2, and integrals of motion are
connected by relations

a1 = 2
√

V 2
0 − �−2 (H + �m)2,

a2 = 2 (H + �m) ,

H + �m = V0� cos(2�t0).

Thus, the comparison of (16) with (17) allows us to make
the following conclusions.

(1) If a1 �= 0, i.e., the inequality (15) is strict, then the
isotropic collapse obeys laws

β ∼ (t0 − t)1/2 , h ∼ β−2 ∼ (t0 − t)−1 . (18)

(2) But if a1 = 0, i.e., the inequality (15) turns into equality,
then, instead of (18), we obtain the laws

β ∼ (t0 − t) , h ∼ β−2 ∼ (t0 − t)−2 .

It should be noted that system (10) may be viewed as
one of the generalizations of the virial theorem which allows
one to get the Vlasov-Petrishchev-Talanov-type criterion for
collapse in the nonlinear Schrödinger (NLS) equation. This
criterion was first formulated for the two-dimensional NLS
equation [33] and later was generalized to many other models.
Among them is the NLS model in quasiclassical limit [34]
when the Zakharov equations transform into the hydrodynamic
type system. In particular, in the absence of rotation, system
(10) reduces to the equation

∂tt I = 4H, (19)

which coincides with that for the two-dimensional NLS
equation, and after integration gives

I = 2Ht2 + I ′
0t + I0. (20)
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Here, the initial data I0 = I |t=0 and I ′
0 = (∂t I )|t=0 = 2V |t=0

are used as constants of integration. In this case the criterion
(17) reads as

2HI � V 2 = 1
4 [(∂t I )]2 (21)

and enables us to make the following conclusions.
(1) If H < 0, the isotropic collapse occurs always. Since H

can be represented as

H = K + , K = 1

2

∫
dx hu2,  = 1

2

∫
dx h2τ, (22)

the inequality H < 0 implies that |t=0 < K|t=0. The only
way to provide this condition is by appropriately choosing
the initial distribution for field τ which, unlike h, can be sign
alternating.

(2) If H � 0, the fulfillment of criterion (22) depends on I0

and I ′
0, so at initial time we have the condition

8HI0 � (I ′
0)2, (23)

where I ′
0 must be negative because I decreases with time.

On the other hand, on the base of the Cauchy inequality we
can write

(∂t I )2 = 4V 2 � 8IK. (24)

It is clear that inequalities (23) and (24) are consistent only if

H � (I ′
0)2

8I0
� K|t=0. (25)

As a consequence, we come to the condition K|t=0 � |t=0 �
0. Therefore, irrespective of the sign of H , the collapse
becomes possible, if only |t=0 � 0. The negative quantity
−K|t=0 plays the role of a critical level. For values |t=0

below the critical level no conditions are required, but above
or at this level the additional conditions must be met.

IV. STRUCTURAL ELEMENTS OF COLLAPSES

As known [27], self-similar solutions are intermediate
asymptotics of nondegenerate problems and are very useful
in studying the final stages of strongly nonlinear processes,
when the system forgets about details related to the initial
data and its behavior depends on the motion integrals. For
any dynamical system, the existence of self-similar solutions
reflects the existence of fundamental internal symmetries and
allows us to judge the tendencies in the development of the
instability at the final stage. This type of solution is of particular
importance for studying the phenomenon of collapse—the
formation of a singularity in a finite time [10–15,34].

As a self-similar substitution for h and τ we consider
expressions

h = Q|G|
π

(1 + γ )f γ , τ = τ0f
1−γ , (26)

f = 1 − (GUx)2. (27)

Here, exponent γ satisfies 0 � γ � 1, τ0 is a magnitude-
specified parameter, G and U are dilatation and rotation
matrices

G =
(

β−1
1 0

0 β−1
2

)
, U =

(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)
,

β1(t) and β2(t) are positive deformation parameters, and
variable ϕ(t) is the angle of rotation in transformation x′ = Ux.

The ansatz (26), (27) describes a liquid drop concentrated
on a compact carrier of elliptic shape

x ′2
1 β−2

1 + x ′2
2 β−2

2 = 1,

and rotated with the angular speed ∂tϕ.
Direct substitution into Eqs. (1)–(3) shows that expres-

sions (26) and (27) are exact solutions if in the rotating
coordinate system x′ = Ux velocity components u′ = dx′/dt

obey the relations

u′
1 = α1

β1
x ′

1 − λ
β1

β2
x ′

2, u′
2 = α2

β2
x ′

2 + λ
β2

β1
x ′

1. (28)

Equations (28) correspond to the uniform vorticity distribution
inside the domain with elliptical liquid contour boundary.
Variables αi , βi , λ, and ϕ′ = ϕ − �t as functions of time
satisfy equations

∂tαi = −βi�
2 + (−1)i2 (β2 − β1) λ∂tϕ

′

+βi(λ − ∂tϕ
′)2 + Qτ0 (1 + γ )2

πβiβ1β2
, (29)

∂tβi = αi, (30)

m′ = λβ1β2 − 1
2

(
β2

1 + β2
2

)
∂tϕ

′, (31)

n′ = 1
2λ

(
β2

1 + β2
2

) − β1β2∂tϕ
′. (32)

Here m′ and n′ are parameters connected with motion
invariants m and n by relations

m′ = (2 + γ )
m

Q
, n′ = (2 − γ )

n

2πτ0
.

Note that Eqs. (31) and (32) can be alternatively derived by
substituting (26), (27), and (28) into the right-hand sides of (7)
and (11).

After eliminating variables λ,ϕ′ from Eqs. (29)–(32), we
find that variables αi and βi obey the canonical equations of
motion

∂tαi = −∂H

∂βi

= −βi�
2 + 2

(n′ + m′)2

(β1 + β2)3

− (−1)i2
(n′ − m′)2

(β1 − β2)3
+ Qτ0(γ + 1)2

πβiβ1β2
, (33)

∂tβi = ∂H

∂αi

= αi, (34)

which describe a system with two degrees of freedom and
Hamiltonian

H = 2
(γ + 2)

Q
(H + �m) = 1

2

(
α2

1 + α2
2

)

+
(

n′ + m′

β1 + β2

)2

+
(

n′ − m′

β1 − β2

)2

+ �2

2

(
β2

1 + β2
2

) + Qτ0(1 + γ )2

πβ1β2
. (35)
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Once we know variables β1 and β2, we can find variables λ

and ∂tϕ:

λ = 2
n′ (β2

1 + β2
2

) − 2m′β1β2(
β2

1 − β2
2

)2 ,

∂tϕ = � + 2
2n′β1β2 − m′ (β2

1 + β2
2

)
(
β2

1 − β2
2

)2 .

Thus, ansatz (26),(27),(28) reduces the initial infinite-
dimensional Hamiltonian system given by Eqs. (1)–(3) to a
two-dimensional canonical system.

If motion invariants n and � are finite, it is convenient to
convert the problem to dimensionless form by choosing spatial
scale L and characteristic time T so that

T = |�|−1, L = |n′/�|1/2.

After nondimensionalizing, Hamiltonian (35) is rewritten as

H = 1

2

(
α2

1 + α2
2 + β2

1 + β2
2

) + σ − 1

β1β2

+
(

1 + μ

β1 + β2

)2

+
(

1 − μ

β1 − β2

)2

,

where μ and σ are the nondimensional parameters

μ = m′

n′ = 2π
(2 + γ )

(2 − γ )

τ0m

Qn
,

(36)

σ = 1 + 4π

(
1 + γ

2 − γ

)2
Qτ 3

0

n2
.

The corresponding equations of motion for αi , βi , and ϕ

are given by

∂tαi = −∂H

∂βi

= −βi + σ − 1

βiβ1β2

+ 2
(1 + μ)2

(β1 + β2)3 − (−1)i2
(1 − μ)2

(β1 − β2)3 , (37)

∂tβi = ∂H

∂αi

= αi, (38)

∂tϕ = 1 + 2 sign (n′)
2β1β2 − μ

(
β2

1 + β2
2

)
(
β2

1 − β2
2

)2 . (39)

V. ISOTROPIC SOLUTIONS

Below we will discriminate isotropic solutions of two types:
rotating (� = 1) and nonrotating (� = 0).

Let � = 1, and assume that solutions are radially symmet-
ric. Hence

β1 = β2 = β, α1 = α2 = α.

As analysis shows such solutions are degenerate and are
possible only if μ = 1 or m′ = n′. This is the reason why
the rotational effect due to ∂tϕ loses theoretical legitimacy
and Eq. (39) is no longer valid. Instead, one can see directly
from (31) and (32) that functions ϕ and λ become linearly
dependent:

μ = 1 = β2 (1 + λ − ∂tϕ) .

Thus isotropic solutions are rotationally invariant.

In this case Eqs. (37) and (38) reduce to the following form:

∂tα = −∂H1

∂β
= σ

β3
− β, ∂tβ = ∂H1

∂α
= α, (40)

where

H1 = 1

2

(
α2 + β2 + σ

β2

)
. (41)

The analytical solutions of Eq. (40) can be written as

β =
√

H1 − (
H 2

1 − σ
)1/2

cos 2(t0 − t),
(42)

α =
(
H 2

1 − σ
)1/2

sin 2t(t0 − t)√
H1 − (

H 2
1 − σ

)1/2
cos 2(t0 − t)

.

Relevant structures look like radially symmetric drops.
Without loss of generality we can assume that σ equals

either 0, 1, or −1. On condition that � = 1, depending on the
parameter σ , there are three different branches of solutions,
hereafter referred to as neutral (σ = 0), cold (σ = 1), and
warm (σ = −1) rotating regimes. The parameter σ is chosen
according to the rule

σ =
⎧⎨
⎩

0, if τ0 = τ ∗
1, if τ0 > τ ∗

−1, if τ0 < τ ∗;

where the threshold value τ ∗ is determined from (36) subjected
to condition σ = 0, which yields

τ ∗ = −
(

n2

4πQ

)1/3 (
2 − γ

1 + γ

)2/3

.

(1) In the neutral regime, when σ = 0, the motion can occur
only if H1 > 0. As shown in Fig. 2, the system moves along
open trajectories in the form of semicircles. The arrows placed
along the phase trajectories represent the direction of motion
in time. Relevant solutions for h look like drops collapsing

FIG. 2. Phase portrait of the rotating isotropic model in the neutral
regime (σ = 0).

023002-6



SIMPLE MODEL OF THE RAYLEIGH-TAYLOR . . . PHYSICAL REVIEW E 88, 023002 (2013)

FIG. 3. Phase portrait of the rotating isotropic model in the cold
regime (σ = 1).

according to laws

β ∼ t0 − t, α ∼ −
√

2H1, h ∼ (t0 − t)−2.

(2) In the cold regime, the motion can occur only if H1 � 1.
According to Fig. 3, the typical trajectories of the dynamical
system are depicted by closed curves which correspond to
periodic solutions. Relevant solutions for h look like pulsating
drops. The minimum H1 = 1 is attained at the point α = 0,
β = 1 and corresponds to a stationary (nonpulsating) solution.

(3) In the warm regime, the system moves along open
trajectories shown in Fig. 4. The collapse point is reached
for both positive and negative values of H1 when α → ∞ and
β → 0. In this regime variable β and α asymptotically (as
t → t0) tend to zero and infinity, respectively, according to the

FIG. 4. Phase portrait of the rotating isotropic model in the warm
regime (σ = −1).

FIG. 5. Phase portrait of the nonrotating isotropic model in the
cold regime (σ = 1).

following laws:

β ∼ (t0 − t)1/2, α ∼ (t0 − t)−1/2, h ∼ (t0 − t)−1,

where collapse time

t0 = 1

2
arccos

H1√
1 + H 2

1

is determined from (42) on the condition that β(t0) = 0.
It is worth emphasizing that in the case � = 1 among

solutions of Eqs. (40) there are no spreading regimes for which
β → ∞ at t → ∞. These regimes occur only in nonrotating
shallow-water models when � = 0. Since the proper analytical
treatment implies dropping from Hamiltonian (41) the term
with β2, Eqs. (40) are reduced to form

∂tα = −∂H0

∂β
= σ

β3
, ∂tβ = ∂H0

∂α
= α, (43)

where

H0 = 1

2

(
α2 + σ

β2

)
.

Phase trajectories of Eqs. (43) are presented in Figs. 5 and 6
for both cold and warm nonrotating regimes. The steady-state
case σ = 0 is of no interest because of its triviality. Regardless
of the sign of the parameter σ , spreading regimes are realized
only on trajectories with H0 > 0. In Fig. 6 the spreading (H0 >

0) and collapsing (H0 < 0) regimes are separated by the dashed
line. Thus, if σ = −1 (i.e., a regime is warm) and H0 < 0, the
topology of phase trajectories does not depend on whether the
shallow-water model is rotating or not.

VI. ANISOTROPIC SOLUTIONS

Eqs. (37) and (38) can have solutions that violate the
radial symmetry. In such situations, using positive definite
integral (9) to test the anisotropic collapse is not a good
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FIG. 6. Phase portrait of the nonrotating isotropic model in the
warm regime (σ = −1).

idea, since this quantity reaches zero only if β1 and β2 vanish
simultaneously.

First of all, we consider the anisotropic collapse scenario,
according to which the cross sectional area (s = πβ1β2) tends
to zero due to the unilateral compression along one of the
semiaxes (e.g., β1), whereas the other semiaxis β2 remains
finite (Fig. 7). As a result, the elliptic contact area of a
collapsing liquid fragment contracts into a line segment rather
than into a point.

Analysis of the anisotropic collapse solutions in the vicinity
of point t = t0 results in the following asymptotics for

FIG. 7. Anisotropic collapse. The solid, dashed, and dotted lines
are β2, β1, and ∂tϕ, respectively. The calculation was performed for
the parameters σ = −4, μ = 2.8, and the following initial values:
β1(0) = 5.5, β2(0) = 13, α1(0) = 3, α2(0) = −2.

β1 and β2:

β1 ≈ b (t0 − t)2/3 + a (t0 − t)4/3 , (44)

β2 ≈ −9

2
b−3(σ − 1) + b5

9(σ − 1)
(t0 − t)4/3 . (45)

Here b and a are constants dependent on the initial conditions
and closely connected with other constants of motion by the
relationship

H = 34

23

(σ − 1)2

b6
+ b6 23

34

1 + μ2

(σ − 1)2
+ 10

9
ba.

Asymptotics (44) and (45) denote two things. First, the
anisotropic collapse is possible only if σ < 1 and, corre-
spondingly, requires a negative value of τ0. Second, since
h ∼ (β1β2)−1, such collapse obeys the law

h ∼ (t0 − t)−2/3 .

In contrast, the isotropic collapses follow the comparatively
quicker laws h ∼ (t0 − t)−1 or h ∼ (t0 − t)−2.

Note that when t → t0 the contact area s between liquid
and bottom shrinks into the line segment which rotates with
the constant angular velocity

∂tϕ = 1 − 2μβ−2
2 = 1 − 23

34

μb6

(σ − 1)2
.

Collapsing solutions in the flat model have the same
character as in the 2D model, with the only difference being
that the contact area s shrinks not into a line segment but into
an infinite axis perpendicular to the flow plane.

The flat model for shallow water follows from Eqs. (33)
and (34) if one of the semiaxes (e.g., β2) and, correspondingly,
the total mass Q tend to infinity on the condition that
Q/β2 → const, α2 → 0, � = n = m = 0. Thus collapses in
the flat model represent an idealization that ignores the effects
of rotation.

In this case the nondimensional equations of motion are
written as

∂tα1 = −∂H ′

∂β1
= σ

β2
1

, ∂tβ1 = ∂H ′

∂α1
= α1,

(46)
H ′ = 1

2
α2

1 + σ

β1
,

where σ = sign τ0 is the only nondimensional parameter.
Phase portraits of nonlinear system (46) have no qualitative

distinctions from the ones presented in Figs. 5 and 6. As
analysis shows, depending on the parameter σ , there exist
two kinds of collapsing regimes. If σ < 0, variables β

and h asymptotically (as t → t0) tend to zero and infinity,
respectively, according to the law

β1 ∼ (t0 − t)2/3, h ∼ (t0 − t)−2/3.

But, if σ = 0, these variables obey the law

β1 ∼ (t0 − t), h ∼ (t0 − t)−1.

In the absence of collapses, the system (37)–(39) describes
nonlinear oscillation. Such behavior of the system agrees com-
pletely with laws (12)–(14), according to which the oscillatory
period π/� is indispensable for the rotating shallow water
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FIG. 8. Oscillation regime. The thick and thin solid lines are β2

and β1, the dashed and dotted lines are ∂tϕ and s/10. The calculation
was performed for the parameters σ = 2, μ = 3.8, and the following
initial values: β1(0) = 5.5, β2(0) = 8, α1(0) = 3, α2(0) = −2.

model. Because this period defines the maximum time scale
in the system, characteristic times of all other feasible effects,
including collapse, should be smaller.

A typical example of time behavior for basic functions is
shown in Fig. 8. In spite of the fact that collapse is physically
impossible (σ > 1), the minimal and maximal values of area
s (height h) can be very small and very large. Specifically,
the numerical experiment in Fig. 8 gives smax = 137.76 and
smin = 0.095. Another fact drawing attention is the periodic
bursts of the angular velocity ∂tϕ (marked by a dashed line) at
the instant when the semiaxes β1 and β2 come close to each
other.

VII. CONCLUSIONS

In summary, this paper deals with investigations of collapse
in the system of two fluid layers when the flow of the lower
layer (its density is assumed constant) is described in the
shallow-water approximation, and the upper layer has the
density fluctuation �′ depending on the horizontal coordinates.
In such a case the system can undergo Rayleigh-Taylor
instability which is the main reason for collapse in this system.
Furthermore, the authors assume the existence of constant
rotation in the horizontal plane with the frequency �. As
shown in this paper, the system motion is described by three
two-dimensional equations: the continuity equation for the
lower layer height h, analogous to that for the shallow-water
limit for one layer, the equation for the density fluctuation
of the upper layer showing that the density fluctuation is
the Lagrangian invariant, and the equation for the lower
velocity due to the buoyancy force. This system, as shown
in the paper, can be represented in Hamiltonian form by
means of the Poisson brackets. One of the results is the
three closed ordinary differential equations (10) for mean

characteristics. This system generalizes the virial theorem.
The other interesting result concerns construction of the
collapsing isotropic solution with self-similar behavior and
anisotropic collapsing solution with self-similar asymptotics.
In the first case the solution describes the formation of the point
singularity in a finite time, while the latter situation describes
the formation of singularity on the whole interval.

The main goal of this paper was to study structural elements
of collapses in the shallow-water model with horizontally
nonuniform density. The diagram of stability based on the
rigorous integral criterion for isotropic collapse allows us to
make some qualitative conclusions about system behavior in
the space of constants of motion. In particular, depending
on the ratio between two integrals of motion V0 and m,
an amplification of rotation, i.e., an increase in the angular
velocity � leads both to stabilization, if |V0| < |m|, and to
destabilization of the flow, if |V0| � |m|.

In our opinion, the collapse phenomenon arises at the
final stage when the development of instability has led to
disintegration of the strongly perturbed flows. Once the fluid
forms localized (droplike) fragments, the collapse eventually
occurs and leads to the formation of finite-time singularities.

Analysis of the instability shows that two collapse scenarios
are possible depending on whether the contact area between
the drop and the bottom is contractible into a segment or into
a point. In the course of anisotropic collapsing, the contact
area contracts into a spinning segment and the drop height
h obeys the law h ∼ (t0 − t)−2/3. In contrast, the isotropic
scenario implies that the contact area contracts into a point.
Because of this, height h follows relatively quicker laws h ∼
(t0 − t)−1 and h ∼ (t0 − t)−2 in warm and neutral regimes,
respectively. In the absence of collapses, a droplike fragment
undergoes nonlinear oscillations with the period equal to π/�.
This period is the largest time scale of the rotating shallow-
water system.
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APPENDIX: FORMULATION OF MODEL

Consider two layers of inviscid incompressible fluids which
move under the action of gravity g in the Cartesian frame
x,y,z rotating around the vertical axis z with constant angular
velocity � = (0,0,�). Suppose the layers are separated by
surface z = h(x,y,t) and are contained between two rigid
parallel planes z = 0 and z = l as shown in Fig. 9. Our
purpose is to derive a description for this flow in the shallow-
water approximation taking into account that density jump
between the layers is small and horizontally nonuniform.
Corresponding motion equations can be obtained from results
[6] if the free boundary condition for the uppermost layer in
Ripa’s model is replaced by the rigid-lid approximation.

023002-9



V. P. GONCHAROV AND V. I. PAVLOV PHYSICAL REVIEW E 88, 023002 (2013)

FIG. 9. The two-layer model of fluids between two rigid parallel
horizontal planes in z = 0 and z = l.

This modification does not change Ripa’s equations which,
as before, take the form

(∂t + ui · ∇) ui − 2� × ui + ∇p̃i = h̃i∇θi, (A1)

∂thi + ∇ · (hiui) = 0, (∂t + u · ∇) θi = 0 (A2)

in each ith layer, where hi(x,y,t) is the thickness, ui(x,y,t)
is the velocity, θi(x,y,t) = g�i/� is the buoyancy, and the
constant � is a background density.

Note that variables ui(x,y,t) and θi(x,y,t) must be in-
terpreted as vertically layer-averaged quantities. Two other
variables h̃i(x,y,t) and p̃i(x,y,t) are treated as the height of
the center of mass of the layer and the effective pressure in
the absence of inhomogeneities, respectively. In the rigid-lid
approximation, Ripa’s definition of h̃i remains unchanged:

h̃i =
i∑

k=1

hk − 1

2
hi, (A3)

but the definition for p̃i must be modified as

p̃i = θi

i∑
k=1

hk +
n∑

k=i+1

θkhk + p′, (A4)

where n is the number of layers, p′(x,y,t) �= const is the rigid-
lid pressure, and layer thicknesses satisfy the condition

n∑
k=1

hk = l, (A5)

where the total depth l is a constant.

In the case of two layers, assuming �2 = � = const and
�1 = � + �′(x,y,t), we obtain in accordance with (A3)–(A5)
that

h̃1 = 1

2
h1, h̃2 = h1 + 1

2
h2 = l − 1

2
h2, (A6)

p̃1 = θ1h1 + θ2h2 + p′, p̃2 = lθ2 + p′, (A7)

θ1 = g

(
1 + �′

�

)
, θ2 = g. (A8)

After substitution of relations (A6)–(A8) into Eqs. (A1)
and (A2), these equations take the form

(∂t + u1 · ∇) u1 − 2� × u1 + ∇p′ = − 1

2h1
∇(

h2
1τ

)
, (A9)

(∂t + u2 · ∇) u2 − 2� × u2 + ∇p′ = 0, (A10)

∂th1 + ∇ · (h1u1) = 0, (A11)

∂th2 + ∇ · (h2u2) = 0, (A12)

∂tτ + u1 · ∇τ = 0, (A13)

where subscripts 1,2 show layer numbers. Note that the
reduced gravity τ = θ1 − θ2 = g�′/� may take any sign de-
pending on the difference between positively defined quantities
θ1 and θ2.

Because of condition h1 + h2 = l, from Eqs. (A12) one can
find that

∇ · [h1u1 + (l − h1)u2] = 0. (A14)

Using (A14) and combining (A9) and (A10), it is easy to find
the Poisson equation for the pressure distribution

�
(
lp′ + 1

2h2
1τ

) = ∂i∂j [h1u1iu1j + (l − h1)u2iu2j ]. (A15)

Here � is the Laplacian. Let U be the scale of the velocity
u1, L be the horizontal length scale, and h1 � l, so ε = h1/l

is a small parameter. Then, if O(h1τ/U 2) = 1, from (A14)
and (A15) we have estimations

u2 = O(εU ), p′ = O(εU 2).

This result allows us to eliminate pressure gradient ∇p′
from Eq. (A9). Thus, using the thin-layer approximation and
omitting the layer subscript, we obtain, in the leading order,
the closed system of equations (1)–(3).
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