
PHYSICAL REVIEW E 88, 023001 (2013)

Finger competition in lifting Hele-Shaw flows with a yield stress fluid
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A weakly nonlinear approach is used to investigate interfacial pattern formation in a lifting Hele-Shaw cell
containing a yield stress fluid surrounded by a fluid of negligible viscosity. By considering the onset of nonlinear
effects and the regime in which viscous effects dominate over yield stress, we study how the system responds
to changes in two controlling dimensionless parameters: (i) the geometric aspect ratio (ratio of the initially
circular radius of the fluid-fluid interface to the initial Hele-Shaw cell plate spacing), and (ii) a yield stress
parameter (relative measure of yield stress to viscous forces). Within this context, we discuss how these key
factors influence interface stability and finger competition dynamics during early linear and intermediate stages
of pattern evolution.
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I. INTRODUCTION

An interesting variation of the traditional radial Saffman-
Taylor problem [1] is the study of interfacial instabilities
in Hele-Shaw (HS) cells presenting variable gap-spacing.
Conventional radial viscous fingering takes place in HS cells
having fixed gap widths, where a less viscous fluid is injected
into a more viscous one. This induces the emergence of
branching fingerlike structures [2–4]. On the other hand, the
lifting HS problem occurs when the upper cell plate is lifted
while the lower plate remains at rest [5]. In this lifting flow
configuration, the inner fluid is viscous (e.g., oil), surrounded
by an outer fluid of negligible viscosity (for instance, air).
The lifting forces the fluid-fluid interface to move inward.
Consequently, the interface becomes unstable, leading to the
formation of a distinct class of fingering patterns [6–13].

In contrast to the injection-driven radial viscous flow
situation in which finger tip-splitting is the prevalent pattern
forming mechanism [1–4], a salient morphological aspect in
lifting HS flows is finger competition. Numerical simulations
and experiments [5–11] reveal a strong competition (i.e., finger
length variability) among the fingers of the invading less
viscous fluid, which advance toward the center of the cell.
It is also observed that the outermost limit of the interface
ceases to shrink, indicating that the competition among the
fingering structures of the more viscous fluid is considerably
less intense.

The characteristic features of the finger competition dynam-
ics described above are detected in laboratory and numerical
experiments when the inner fluid is Newtonian [5–11]. It
is true that depending on the nature of the viscous fluid
used, different types of interfacial patterns arise [6,12,13].
Nevertheless, inspection of the experimental patterns obtained
in Ref. [6] seems to indicate that finger competition phenomena
somewhat analogous to those found in Newtonian fluids also
occur when the invaded fluid is non-Newtonian. Specifically,
in Ref. [6] this happens when the stretched material is a
yield stress fluid. Contrary to Newtonian fluids, yield stress
fluids [14–16] can support shear stresses without flowing.
As long as the stress remains below a certain critical value,
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they do not flow, but they respond elastically to deformation.
Therefore, such materials possess properties of both viscous
fluids and elastic solids, behaving like a semisolid substance.
Despite the existence of some theoretical works which analyze
the development of finger competition in miscible [17] and
immiscible [18] lifting HS flows with Newtonian fluids, a
corresponding theoretical investigation focusing on the finger
competition behavior in yield stress fluids is still lacking.

It has been recently shown [11] that in addition to the
material parameters (viscosity, surface tension, etc.) of the
fluids involved in lifting HS flows, a purely geometric factor
plays an important role in determining pattern shape and
evolution. Such a parameter is the aspect ratio, which expresses
the ratio of the initially unperturbed circular radius of the
fluid-fluid interface to the initial HS plate spacing. Within
this context, the aspect ratio measures the cell confinement.
The experiments performed in [11] for Newtonian fluids
demonstrated that the size and number of growing fingers
are significantly sensitive to changes in the aspect ratio.
Therefore, one facet of the lifting HS problem that deserves a
closer investigation is the influence of the aspect ratio on the
finger competition dynamics. This can be done by considering
that the inner fluid is either Newtonian or yield stress. A
comparative study of the finger competition responses of these
fluids during the lifting process is also of interest.

In this work, we carry out the weakly nonlinear analysis of
the problem in which a viscous yield stress fluid, surrounded
by an inviscid fluid, flows in a lifting HS cell. By exploring the
onset of nonlinear effects, we try to gain analytical insight into
the dynamic process of finger competition. In particular, we
seek to understand how mode-coupling dynamics can describe
the influence of both the aspect ratio and the non-Newtonian
nature of the distended fluid on the finger competition behavior.

The layout of the rest of the paper is as follows: Section II
presents our theoretical weakly nonlinear approach. From a
generalized Darcy-like law for yield stress fluids [19], we
derive a second-order mode-coupling equation that describes
the time evolution of the interfacial amplitudes. This is done
by explicitly considering the role played by the inner fluid
non-Newtonian nature, as well as the geometric aspect ratio.
A discussion on the action of these two elements in regulating
finger competition events is presented in Sec. III. Our main
results and conclusions are summarized in Sec. IV.

023001-11539-3755/2013/88(2)/023001(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.023001
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II. WEAKLY NONLINEAR APPROACH

Finger competition in HS cells is an intrinsically nonlinear
effect and cannot be properly addressed by purely linear
analysis [1–3]. To elucidate key effects related to finger
competition phenomena in lifting HS flow with a yield stress
fluid, we employ a weakly nonlinear approach. By doing this,
one is able to study both interface stability issues at the early
linear regime as well as important morphological aspects at
weakly nonlinear, intermediate stages of pattern evolution.

We begin by considering a HS cell of a variable gap width
b(t)C containing a non-Newtonian fluid of viscosity η and
yield stress σy , surrounded by an inviscid Newtonian fluid
(Fig. 1). The surface tension between the fluids is denoted
by γ . The upper cell plate can be lifted along the direction
perpendicular to the plates (z axis), and the lower plate is
held fixed. The initial fluid-fluid interface is circular, having
radius R0 = R(t = 0) and initial gap thickness b0 = b(t = 0).
By using volume conservation, the time-dependent radius of
the unperturbed interface is given by

R(t) = R0

√
b0

b(t)
. (1)

In the lifting HS cell with a yield stress fluid, the flow
is governed by two dimensionless equations: a gap-averaged
Darcy-like law [19]

∇P = −q2

b2

[
1 + δ

b

q|v|
]

v (2)

and the gap-averaged incompressibility condition [5]

∇ · v = − ḃ(t)

b(t)
. (3)

In Eq. (2), P is the pressure, v denotes the fluid velocity, and

q = R0

b0
(4)

represents the initial aspect ratio. Moreover,

δ = σyb0

4η|ḃ(0)| (5)

is the yield stress parameter that quantifies the ratio between
yield stress and viscous forces, where ḃ(t) = db(t)/dt is the
upper plate velocity along the z axis. We point out that, in

θ

b (t)

R(t)

z

η

ζ

FIG. 1. (Color online) Schematic configuration of the lifting HS
cell. The inner fluid (in gray) is a yield fluid of viscosity η, while the
outer fluid is Newtonian and has negligible viscosity. The unperturbed
time-dependent fluid-fluid interface (dashed curve) is a circle of radius
R = R(t). The interface perturbation amplitude is denoted by ζ =
ζ (θ,t), and θ is the polar angle. The direction of lifting is along the z

axis.

Eqs. (2) and (3), in-plane lengths, b(t), and time are rescaled by
R0, b0, and the characteristic time T = b0/|ḃ(0)|, respectively.
For the rest of this work, we use the dimensionless version of
the equations. As in Ref. [19], we are interested in examining
an interface destabilization process, thus we consider the
regime where viscous forces prevail over the yield stress
and flow is facilitated, which corresponds to δ � 1. We refer
the reader to our original study [19] for more details on the
derivation and validity of our modified Darcy’s law model for
yield stress fluids [Eq. (2)].

To perform the weakly nonlinear analysis of the system,
we consider that the initial circular fluid-fluid interface is
slightly perturbed (see Fig. 1), R = R(t) + ζ (θ,t) (ζ/R �
1). The interface perturbation is written in the form of
a Fourier expansion ζ (θ,t) = ∑+∞

n=−∞ ζn(t) exp (inθ ), where

ζn(t) = (1/2π )
∫ 2π

0 ζ (θ,t) exp (−inθ )dθ denotes the complex
Fourier mode amplitudes, n is an integer wave number, and θ

is the polar angle. The n = 0 mode is included to keep the area
of the perturbed shape independent of the perturbation ζ . Mass
conservation imposes that the zeroth mode is written in terms
of the other modes as ζ0 = −(1/2R)

∑
n�=0 |ζn(t)|2. Note that

our perturbative analysis keeps terms up to second order in ζ

and up to first order in δ.
Taking the divergence of Eq. (2) and using the incompress-

ibility condition (3), the pressure is seen to be anharmonic
(nonvanishing Laplacian). Hence, we perform our calculations
considering that v = ∇ × A − ∇φ, where

φ = ḃr2

4b
(6)

is a scalar velocity potential [5,18], and

A =
{ ∑

n�=0

An

( r

R

)|n|
exp (inθ )

+ δ

[ ∑
n�=0

(
Bn

r
+ Cn

r3

) ( r

R

)|n|
exp (inθ )

]}
ẑ (7)

is a vector potential. Observe that the vector potential (7) is
simply a superposition of a purely Newtonian term (∝ δ0,
coefficients An) and a non-Newtonian contribution (∝ δ1,
coefficients Bn),

A = AN + ANN. (8)

The flow described by AN is irrotational, while ANN has a curl.
Similarly, we express the pressure of the inner fluid as a sum

of Newtonian and non-Newtonian pressures, and we propose
a general form for their Fourier expansion,

P = PN + PNN, (9)

where

PN = ḃq2

4b3
r2 +

∑
n�=0

pn

( r

R

)|n|
exp (inθ ) (10)

and

PNN = −δq

b
r + δ

∑
n�=0

(
qn

r
+ Sn

r3

) ( r

R

)|n|
exp (inθ ). (11)

The gradient of the complex pressure field (9) must satisfy
the non-Newtonian Darcy’s law given by Eq. (2). By inspecting
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the r and θ components of (2), and by examining the
Newtonian and non-Newtonian components of it, we can
express the Fourier coefficients of PN, PNN, and ANN in terms
of the Fourier coefficients of AN,

pn = − iq2sgn(n)

b2
An, (12)

qn = − iqβ(n)

ḃ
An, (13)

Sn = bq

ḃ2

∑
m�=0,m�=n

m(n − m)μ(n,m)AmAn−m, (14)

Bn = b2

qḃ
α(n)An, (15)

Cn = b3

qḃ2

∑
m�=0,m�=n

im(n − m)ν(n,m)AmAn−m, (16)

where in order to keep the results in a more compact form, we
introduced the coefficients

α (n) = 2|n| (|n| − 1)

(2|n| − 1)
, (17)

β (n) = 2|n|n
(2|n| − 1)

, (18)

μ(n,m)

= 2

3(2|n| − 3)
[2n sgn(m) + (|n| − 3)sgn[m(n − m)]],

(19)
and

ν(n,m) = 1

(|n| − 3)
[nμ(n,m) − 4 sgn(m)]. (20)

Note that sgn(n) = 1 if n > 0 and sgn(n) = −1 if n < 0.
Using Eqs. (12)–(16), which are consistent with the

solvability condition ∇ × ∇P = 0 and Darcy’s law (2), we can
derive the general expression of the vector potential Fourier
coefficients in terms of the perturbation amplitudes. To fulfill
this goal, consider that the pressure jump condition at the
interface can be written as [1,8,9,11]

P |R = 

q
κ‖|R, (21)

where

 = γ

12η|ḃ(0)| (22)

is a surface tension parameter and κ‖ is the curvature in
the direction parallel to the plates. Equation (21) is the
simplest version of the Young-Laplace pressure boundary
condition, and it does not include the curvature in the direction
perpendicular to the cell plates. Since the depth of the cell
varies in lifting Hele-Shaw flows, in principle one could expect
the perpendicular curvature to play some role in the dynamics
of the system. To the best of our knowledge, the only existing
study which discusses the alleged role of the perpendicular
curvature in lifting Hele-Shaw flows has been performed
by Ben Amar and Bonn [9]. The three-dimensional model
presented in Ref. [9] is somewhat involved, and just leads to
a modest improved agreement between their experiments and
theory. In any case, the validity and accuracy of the simpler
condition given in (21) has been substantiated by the excellent

agreement between experiments and state-of-the-art numerical
simulations performed in Refs. [8,11]. In view of these facts,
we choose to use the simpler condition (21).

By expanding Eq. (21) up to second order in ζ and up to first
order in δ, one can find the coefficient of the vector potential
corresponding to the nth evolution mode, A(k)

n , in terms of
the kth order in ζ (k = 1, 2) [19,20]. These vector potential
coefficients can be introduced into the kinematic boundary
condition [1,2],

∂R

∂t
=

[
1

r

∂R

∂θ
(−vθ ) + vr

]
|R

, (23)

which states that the normal components of each fluid’s
velocity at the interface equals the velocity of the inter-
face itself. By using Eq. (23) plus Darcy’s law (2) and
Eq. (21), one can finally find the equation of motion for
perturbation amplitudes ζn. We present the evolution of the
perturbation amplitudes in terms of δ and the kth order in
the perturbation amplitude ζ ,

ζ̇n = ζ̇ (1)
n + ζ̇ (2)

n , (24)

where

ζ̇ (1)
n = λ (n) ζn, (25)

λ(n) = ḃ

2b
(|n| − 1) − b2

q3R3
|n|(n2 − 1)

+ δ
b|n|

(2|n| − 1)qR

[
2b3

ḃq3R3
|n|(n2 − 1) − (3|n| − 1)

]
(26)

is the linear growth rate, and

ζ̇ (2)
n =

∑
m�=n,0

[FN(n,m) + δFNN(n,m)] ζmζn−m

+
∑

m�=n,0

[GN(n,m) + δGNN(n,m)] ζ̇mζn−m

+ δ
∑

m�=n,0

HNN (n,m) ζmζ̇n−m

+ δ
∑

m�=n,0

JNN(n,m)ζ̇mζ̇n−m. (27)

Equation (24) is the mode-coupling equation of the lifting
HS problem with a yield stress fluid. It gives us the time
evolution of the perturbation amplitudes ζn, accurate to second
order, in the weak yield stress limit. Notice that Eq. (24) is
conveniently written in terms of three dimensionless quanti-
ties: the aspect ratio q [Eq. (4)], the yield stress parameter
δ [Eq. (5)], and the surface tension parameter  [Eq. (22)].
Since the role of  has already been sufficiently discussed in
Refs. [5,8,11], we focus on understanding the action of q and
δ in determining the stability and shape of the interface.

Despite the complex functional form of the mode-coupling
terms in (27), as we will see in Sec. III B, the weakly nonlinear
scheme furnishes a fairly simple picture for the important
mechanism of finger competition in lifting HS flows. It should
be noted that the theoretical results presented in the following
sections utilize dimensionless quantities which are extracted
from the realistic physical parameters used in the experiments
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of Refs. [6,8,11]. In accordance with these experimental
studies, we consider that the gap width grows linearly with
time, so that the lifting velocity ḃ is constant.

III. DISCUSSION

A. Linear regime—Interface stability

We open this section by discussing the physical origin of
each term in the linear growth rate expression. Since a positive
growth rate λ(n) leads to an unstable interface, Eq. (26) tells us
that the lifting force contribution appearing as the first term on
the right-hand side tends to destabilize the system since ḃ > 0.
On the other hand, the second term proportional to |n|(n2 − 1)
is associated to the surface tension connected to the in-plane
curvature, and plays a stabilizing role. It can be noticed that
increasingly larger values of q (large confinement) tend to
inhibit the stabilizing effect due to surface tension.

The description of the terms proportional to δ in Eq. (26)
is as follows: the first contribution is due to the coupling
between the surface tension parameter  and yield stress, and
its net effect is destabilizing. Meanwhile, the second term is
uniquely related to yield stress and has a stabilizing role. We
have verified that for the typical experimental circumstances
of Refs. [6,8,11], this last term is dominant so that the
overall linear effect of the term proportional to δ in Eq. (26)
is indeed to stabilize the interface. We can also see that
strong confinement (high aspect ratio) leads to a less efficient
stabilization via yield stress effects.

We continue by briefly discussing some useful information
which can be extracted from the linear growth rate (26).
The wave number of maximum growth [obtained by setting
dλ(n)/dt = 0] for a Newtonian fluid (δ = 0) can be easily
calculated from Eq. (26), yielding

nN
max =

√
1

3

(
1 + q3R3ḃ

2b3

)
. (28)

From Eq. (26), one can obtain an explicit solution for the
wave number nmax with maximal growth rate for a yield stress
fluid (δ �= 0). Although this expression is rather complex,
in the limit (nN

max)2 � nN
max � 1 (which is consistent with

experiments [6,8,11]) it simplifies to

nmax ≈ nN
max

(
1 − δ

b2

ḃqR

)
. (29)

One can easily verify that the critical wave number [obtained
by setting λ(n) = 0], which is the maximum wave number
for which the growth rate is still positive, is slightly shifted
toward lower wave numbers as the yield stress parameter δ is
increased.

From the findings presented in this section, it is evident that
yield stress effects tend to stabilize the interface in the weak
yield stress regime. Since nmax [Eq. (29)] is related to the
typical number of fingers formed at the onset of the instability,
this means that higher δ would induce the formation of
patterns tending to present a decreased number of fingered
structures. Additionally, the action of yield stress tends to
shorten the band of unstable modes. Conversely, larger q

tends to destabilize the system favoring the development of
patterns having more fingers.

B. Weakly nonlinear regime—Finger competition

Now the full mode-coupling equation (24) is utilized to
study the onset of pattern formation through the coupling of
a small number of modes. We proceed by using our weakly
nonlinear approach to investigate the interface evolution at
second order in ζ . To simplify our discussion, it is convenient
to rewrite the complex net perturbation in terms of cosine and
sine modes,

ζ (θ,t) = ζ0 +
∞∑

n=1

[an(t) cos(nθ ) + bn(t) sin(nθ )] , (30)

where an = ζn + ζ−n and bn = i (ζn − ζ−n) are real-valued.
Without loss of generality, for the remainder of this work, we
choose the phase of the fundamental mode so that an > 0 and
bn = 0. Henceforth, we study the development of interfacial
instabilities, and we examine how the yield stress parameter δ

and the aspect ratio q affect the finger competition dynamics.
We follow Refs. [3,18] and consider finger length variability

as a measure of the competition among fingers. Within our
approach, the finger competition mechanism can be described
by the influence of a fundamental mode n, assuming n is
even, on the growth of its subharmonic mode n/2. By using
Eqs. (24)–(27), the equations of motion for the subharmonic
mode can be written as

ȧn/2 = {λ(n/2) + C(n)an} an/2, (31)

ḃn/2 = {λ(n/2) − C(n)an} bn/2, (32)

where the finger competition function is given by

C(n) = 1

2

[
C

(n

2
, − n

2

)
+ C

(n

2
,n

)]
(33)

and

C(n,m) = FN(n,m) + δFNN(n,m) + λ(m)[GN(n,m)

+ δGNN(n,m)] + δλ(n − m)[HNN(n,m)

+ λ(m)JNN(n,m)]. (34)

From Eqs. (31) and (32) we verify that a negative C(n)
increases the growth of the sine subharmonic bn/2 while
inhibiting the growth of its cosine subharmonic an/2. The
result is an increased variability among the lengths of fingers
of the outer fluid penetrating into the inner one. This effect
describes the competition of inward fingers. We stress this is
in line with what is observed in numerical simulations [5]
and experiments [6–8]. Reversing the sign of C(n) would
exactly reverse these conclusions, such that modes an/2 would
be favored over modes bn/2. In this case, competition of
the outward moving fingers of the inner fluid would have
preferential growth.

At this point, we emphasize a few important ideas related
to the finger competition mechanism described by Eqs. (31)
and (32). The action of the subharmonic mode breaks the
n-fold rotational symmetry of the fundamental by alternately
increasing and decreasing the length of each of the n fingers.
The fact that when C(n) < 0 sine modes bn/2 grow and cosine
modes an/2 decay does not really mean that finger competition
only occurs for inward moving fingers. Actually, finger
competition is present for both inward and outward moving
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FIG. 2. Time evolution of the (a) cosine (an/2) and (b) sine (bn/2) perturbation amplitudes for the subharmonic mode, considering different
values of δ and q. Here an/2(0) = bn/2(0) = 0.001, an(0) = 0.01,  = 0.5, and tf = 0.0015.

fingers. However, while the competition among inward
moving fingers is favored, the competition among outward
moving fingers is restrained. What our finger competition
mechanism determines is the preferred direction for finger
growth and finger length variability. So, when C(n) < 0,
even though there exists finger competition in both directions
(inward and outward), the competition among inward moving
fingers is much stronger than the competition among outward
moving fingers.

For the typical experimental parameters used in
Refs. [6,8,11], we have found that C(n) < 0 indicating
a restrained growth of cosine subharmonic modes an/2,
accompanied by a simultaneous increased growth of sine
subharmonic modes bn/2. This general behavior is illustrated in
Fig. 2, which depicts the time evolution of the mode amplitudes
(a) an/2 and (b) bn/2 for different values of the yield stress
parameter δ and the aspect ratio q. In Fig. 2, we take the initial
amplitudes as an/2(0) = bn/2(0) = 0.001 and an(0) = 0.01.
In addition,  = 0.5, and the final time tf = 0.0015. These
parameters are also utilized to plot Figs. 3 and 4.

outer fluid

inner fluid
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0 , q 105

0.08 , q 75
0 , q 75

0 0.02 0.04 0.06 0.08

1.03

1

0.97

0.94

Θ

FIG. 3. Snapshot of the fluid-fluid interface position R as a func-
tion of the polar angle θ at t = tf = 0.0015 for different values of δ

and q. This graph uses the same physical parameters utilized in Fig. 2.

In Fig. 2, curves in black (gray) show the amplitudes’ time
evolution when the inner fluid is yield stress (Newtonian).
Moreover, the solid (dashed) curves depict the situation in
which the aspect ratio is large (small), given by q = 105
(q = 75). By inspecting Fig. 2(a), it is clear that the amplitudes
of the mode an/2 do tend to decrease as time progresses.
Regardless of the value of the aspect ratio q, one observes
that the yield stress nature of the inner fluid tends to attenuate
such a decrease. It is also evident that stronger attenuation takes
place for larger values of q. On the other hand, by examining
Fig. 2(b) we notice that the amplitudes of the sine mode bn/2

show an increase as time evolves. But, similarly to what has
been seen in Fig. 2(a), the growth of bn/2 is unfavored for
larger (smaller) values of δ (q). Therefore, the main conclusion
extracted from Fig. 2 is that finger competition of inward
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0 2 4 6 8 10 12 14
0
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2

3

10 3 t

10
2

FIG. 4. Difference between the interface positions of the finger
tips for consecutive inward moving fingers of the outer fluid �R as
a function of time for different values of δ and q. This figure uses the
same physical parameters utilized in Figs. 2 and 3.
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moving fingers is facilitated for stronger confinement (i.e.,
larger q) and inhibited for higher yield stress effects (larger δ).

To reinforce the conclusions reached from Fig. 2, and to
illustrate our finger competition findings in a more pictorial
way in Fig. 3, we plot the fluid-fluid interface at final time
t = tf = 0.0015 as a function of the polar angle θ . Recall
that here we consider the same initial conditions and physical
parameters used in Fig. 2. This is done for different values of δ

and q. The most noteworthy feature of Fig. 3 is the conspicuous
competition between the inward moving fingers of the outer
fluid penetrating the inner fluid. It is also clear that the outward
moving fingers of the inner fluid do not tend to compete as
much. All these more visual verifications are in agreement with
the predictions based on the mode-coupling equations (31)
and (32), and with the fact that the finger competition function
C(n) is negative. By examining Fig. 3, we can also confirm
the fact that the finger competition of inward moving fingers
is enhanced for larger values of the aspect ratio and repressed
by yield stress effects.

Complementary information about the time evolution
of the finger competition behavior in our system can be
obtained by analyzing Fig. 4, which plots the difference in
finger lengths for consecutive inward moving fingers �R

as a function of time, for 0 � t � tf . Note that the quantity
�R is obtained by calculating the difference between the
interface positions of the finger tips R for consecutive inward
moving fingers of the outer fluid. Finger length variability
(i.e., finger competition) does not change much if q and δ

are varied at lower times. However, as time advances we can
easily verify that finger competition of inward fingers does
increase significantly for higher values of q, and tends to be
diminished by the action of yield stress effects.

IV. CONCLUSION

There are several experimental and theoretical studies
on the lifting flow problem in the confined geometry of a
variable-gap HS cell. Most of these investigations focus on
understanding purely linear, early time dynamic stages of
the problem, or its advanced time, fully nonlinear dynamics.
Researchers consider that an inner fluid (which can be New-
tonian or non-Newtonian) is surrounded by another fluid of
much smaller viscosity. Under lifting flow circumstances, the
fluid-fluid interface deforms, producing a variety of complex
interfacial patterns. On the theoretical side, the study of such
complicated patterns is usually performed by analytical linear
stability analyses, or by sophisticated numerical simulations.

In this work, we used an alternative theoretical tool [3]
that enables one to get analytic insight into intermediate,
weakly nonlinear stages of the lifting HS cell problem. To
do that, we employed a perturbative mode-coupling approach
which is valid at the onset of nonlinearities, and allows
analytic access not only to linear stability issues, but also to
key nonlinear aspects of the interface morphology. This has
been done by assuming that the inner fluid is a yield stress
fluid. By using a generalized Darcy-like law for yield stress
fluids [19], and considering the limit in which viscosity effects
prevail over yield stress, we derived a nonlinear differential
equation describing the time evolution of the perturbation
amplitudes. This equation has been utilized to describe finger

competition phenomena in lifting HS cells in terms of two
dimensionless controlling parameters: the geometric aspect
ratio q (a measure of the HS cell confinement) and a yield
stress parameter δ (relative measure of yield stress to viscous
forces). Our results indicate that while δ > 0 tends to restrain
finger competition of inward moving fingers of the penetrating
outer fluid, larger values of q enhance competition among
these fingering structures. These conclusions are in general
agreement with existing experimental studies [6,8,11].
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APPENDIX: EXPRESSIONS FOR
THE SECOND-ORDER TERMS

This Appendix presents the expressions for the second-
order Newtonian (N) and non-Newtonian (NN) mode-coupling
coefficients which appear in Eq. (27),

FN(n,m) = ḃ

2bR

(
n sgn(m) − |n|

2
− 1

)

− b2

q3R4
|n|

(
1 − nm

2
− 3m2

2

)
, (A1)

FNN(n,m) = b

2qR2

{
f (n,m)

2
+

[
1

2
+ 2b3

ḃq3R3

(
1 − nm

2

− 3m2

2

)]
[nβ(n) − |n|α(n)]

+
[
|n| − 1 − (n − m)

(2|m| − 1)

m

]
α(m)

− |n|β(m)

m
(|m| − 1)

}
, (A2)

GN(n,m) = 1

R
[|n|sgn(nm) − |n| − 1], (A3)

GNN(n,m) = b2

ḃqR2

{
f (n,m)

2
− |n|β(m)

m
(|m| − 1)

+
[
|n| − 1 − (n − m)

(2|m| − 1)

m

]
α(m)

+ nβ(n) − |n|α(n)

}
, (A4)

HNN (n,m) = b2

2ḃqR2
f (n,m), (A5)

and

JNN(n,m) = b3

ḃ2qR2
f (n,m), (A6)

where

f (n,m) = nν(n,m) − |n|μ(n,m). (A7)
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