
PHYSICAL REVIEW E 88, 022920 (2013)

Attractive and repulsive contributions of localized excitability inhomogeneities and
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The attracting and repelling of spiral waves in a two-dimensional excitable medium in the presence of localized
excitability inhomogeneities are studied. The choice of two effects depends on the comparison of excitabilities
inside and outside the localized obstacle. We inspect the changes in attracting and repelling behaviors with
respect to the size of the obstacle and the initial distance between the center of the spiral core and the obstacle.
To understand the occurrence of these phenomena, we investigated the small v-value areas near the tip and the
function of the wave velocity as the excitability parameter ε. Considering the attributes of the attractive obstacle,
an eliminating scheme of spiral waves is proposed in which the attractive obstacle is rapidly moved at several fixed
times. This method can avoid the high-amplitude and high-frequency stimulus in most conventional methods.
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I. INTRODUCTION

Spiral waves are typical spatiotemporal patterns in excitable
and oscillatory systems [1]. Examples include the cardiac
muscle [2], oxidation reaction of CO on Pt catalytic sur-
faces [3], liquid crystal subjected to an electric or magnetic
field [4], slime mould dictyostelium discoideum amobae [5],
xenopus oocytes [6], and reacting chemical systems [7]. The
characteristics and the dynamics of spiral waves have been
studied extensively via theories and experiments.

In fact, many excitable media exhibit inhomogeneities.
For example, the heart-muscle tissue is manifestly inhomoge-
neous, and chemically excitable media may have temperature
or other parameter gradients. A large inexcitable obstacle
may lead to a local block of a propagating wavefront and
the breaking of the wavefront into two separate wavefronts.
Subsequent detachment of the two broken wavefronts from
the obstacle leads to the formation of two spiral waves [8–11].
When a traveling wave propagates through a narrow isthmus
(gap) between inexcitable obstacles, the so-called source-sink
mismatch may also lead to spiral wave formation [12,13]. A
plane wave propagating through a system with inhomogeneity,
introduced by modifying the spatial dependence of the diffu-
sion coefficient in a stochastic manner, may break up in regions
with low conductivity and produce numerous spiral waves
[14]. Three main scenarios of reentry wave formation were
found: unidirectional block, main wave-wavelet collision,
and wave breakup during collision, in a region where a
conduction velocity gradient occurs. Spiral wave generation in
heterogeneous excitable media was discussed in Refs. [15,16].

Recently, the effect of inhomogeneous conditions on spiral
dynamics has become a focus of study. Both numerical and
experimental studies show that a sufficiently large obstacle
can stabilize a rotating wave, preventing the transition to
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spatiotemporal chaos [17,18]. The suppression of spiral
breakup depends sensitively on the position, size, and nature of
the inhomogeneity [19,20]. Three-dimensional scroll waves in
inhomogeneous media can exhibit twist [21–23], but Jimenez
et al. have also experimentally observed the pinning of
scroll rings to inexcitable heterogeneities, which prevents
the collapse of the rings [24]. Recent numerical simulations
demonstrated that nonuniform excitable media, consisting of
an inner disk part surrounded by an outer ring part with
different excitabilities, support the propagation of inwardly
rotating spirals [25]. Mechanical deformation in excitable
media may also induce spiral breakup [26]. In heterogeneous
excitable media with a parameter gradient, normal and
anomalous drifts of spiral waves have been observed [27,28].
Spiral waves propagating in randomly distributed obstacles
were also extensively considered [29–32]. The number of in-
excitable cells or obstacles influences the conduction velocity
of the plane wave and the effective diffusion coefficient in
the eikonal curvature equation, as well as the breakup of
spiral waves [29,30]. In the two-state medium of the light-
sensitive Belousov-Zhabotinsky system, different percolation
thresholds for propagation were observed by controlling the
number of sites with a given illumination [31]. When the
inhomogeneity of the anisotropy level is modeled by adding
Gaussian noise to diffusion coefficients corresponding to
lateral coupling of the cells, different noise intensities induce
different dynamical behaviors of the spiral wave [32].

When spiral waves occur in biological excitable media
such as the heart, they are associated with the breakdown of
its normal rhythmic pumping action. Controlling these spiral
waves using low-amplitude external perturbation is not only a
problem of fundamental interest in the study of the dynamics
of excitations in active media, but it also has significant
implications for the clinical treatment of cardiac arrhythmias
[33–40]. In a finite medium with no-flux boundaries, periodic
high-frequency stimulation (pacing) from a localized region
in the excitable medium can generate wave trains that interact
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with the spiral wave. If the frequency of external stimulation
is higher than the rotation frequency of the spiral wave, the
spiral core is eventually driven to the boundary and thereby
eliminated from the system [33–36]. The above argument
can account for the removal of spirals in a homogeneous
medium. It is well known that spiral waves are often stabilized
by anchoring (pinning) to a local heterogeneity, and that
such pinned waves are rather difficult to eliminate. A few
recent studies have suggested that pacing-induced unpinning
and pacing-induced elimination of spiral waves may occur
in inhomogeneous media with a large inexcitable obstacle
[41–47].

In most of the previous studies, the selected obstacles do
not support the propagation of excited waves. In numerical
simulations, the obstacles are often treated as no-flux or
Dirichlet boundary conditions [48,49]. In fact, the effects of
the spiral waves depend on the types of heterogeneities. In
this paper, we will study the interaction of spiral waves with a
local inhomogeneous domain consisting of excited units with
a different excitability. Examples of obstacles with different
excitability include scar tissue or ionic heterogeneities. This
paper is organized as follows. In Sec. II we describe the
mathematical model used in this study. Sections III and IV
contain the numerical results of attractive and repulsive at-
tributes of the localized inhomogeneities. In Sec. V we provide
an interpretation for these attributes of the obstacle, and in
Sec. VI an eliminating scheme of spiral waves is suggested.
Section VII contains the conclusion and a discussion of the
results.

II. THE MODEL WITH A LOCALIZED INHOMOGENEITY

We consider the FizHugh-Nagumo (FHN) model [50,51],
which is a set of two-variable “reaction-diffusion” equations
that captures the key features of excitable media. This model
can reproduce many qualitative characteristics of electrical
impulses along nerve and cardiac fibers, such as the existence
of an excitation threshold, relative and absolute refractory
periods, and the generation of pulse trains under the action
of external currents. The model is described as follows:

∂u

∂t
= 1

ε
[−v − u(u − a)(u − 1)] + ∇2u, (1)

∂v

∂t
= −γ v + βu − δ, (2)

where u is a voltagelike variable and v is a recovery variable.
In this model, a represents the threshold for excitation,
ε represents excitability, and γ , β, and δ are parameters
controlling the rest state and the dynamics. In this paper, we
set the parameters a = 0.03, γ = 1.0, δ = 0.0, and β = 2.0.
In numerical simulations, the system (1)–(2) is integrated by
the operator-splitting method with the time step �t = 0.005,
the lattice size h = 0.1, and a 200 × 200 array. The no-flux
boundary condition is chosen.

The parameter ε is a measure of the excitability. An increase
in ε implies a reduction in the excitability of the medium. A
sequence of spiral states can be obtained as a function of the
parameter ε in the homogeneous media with the above fixed
other parameters. When ε > 0.004 65, the rigidly rotating
wave (RW) is observed as a stable spiral state, and its tip

traces a circumference. For ε < 0.004 65, modulating rotating
waves (MRWs) appear as a general class of dynamic states in
the medium and two-frequency quasiperiodic states which are
periodic when viewed in an appropriately rotating reference
frame. The meandering tip trajectory of MRWs resembles a
hypocycloid of radius RMRW, and increasing the value of ε

increases the radius RMRW. When ε = 0.004 65, the value
of RMRW tends to infinity, and we obtain a cycloid tra-
jectory (hypocycloid with RMRW → ∞). The corresponding
spiral state is referred to as the modulated traveling wave
(MTV).

Initially, a spiral wave is generated by cutting off a
traveling pulse in the homogeneous system with an excitability
parameter ε = εini. To study the spiral wave interacting with
localized excitable inhomogeneities, after the formation of the
spiral wave, a localized inhomogeneity is implemented by
introducing a circular region of radius Robs centered at the
location (xobs,yobs), inside which the excitability parameter is
different from εini and has a value of ε = εobs. The excitable
obstacles may be scar tissue or ionic heterogeneities in cardiac
tissue.

III. ATTRACTIVE ATTRIBUTES OF LOCALIZED
INHOMOGENEITIES

Numerical results demonstrate that the effects of localized
excitability inhomogeneities on spiral dynamics depend sen-
sitively on the excitability parameters inside and outside the
circular obstacle. A spiral wave is initiated in the homogeneous
medium with an excitability parameter εini = 0.003, and
its core is centered at (xcore

sp ,ycore
sp ) ≈ (103,100) by suitably

selecting the cutoff time. After full development of the state, a
circular obstacle, with a radius Robs = 5, is placed at (115,100)
near the spiral core. With this setup, it is described in Fig. 1
how the excitability inside the obstacle affects the spiral
dynamics. Two characteristic behaviors are clearly observed:
For εobs < εini, repulsion occurs [see Fig. 1(a)], while for
εobs > εini, the spiral tip may be attracted to the obstacle [see
Figs. 1(b) and 1(c)]. In the section, we consider the attractive
case, namely the case of εobs > εini.

The bottom panels of Fig. 1 exhibit that spiral dynamics
change with the distance d between the initial spiral wave
core and the center of the obstacle by varying xobs, where
yobs = 100 is fixed. An attraction occurs for small values of d,
and increasing d can lead to a decrease in attractive velocity.
When d is increased beyond a critical value, the attractive
action disappears, and the initial tip trajectory is almost not
influenced by the obstacle. On the other hand, the size of the
obstacle is also an important factor in determining whether
or not the attraction takes place and how fast the initial tip is
attracted. For a suitable d, the spiral core does not drift when
Robs is very small. As Robs is increased beyond a critical value,
the attractive action appears.

To describe how fast the initial core enters the obstacle,
we define Tattr as the spent time from the appearance of the
obstacle to the onset of the initial tip just entering the obstacle.
It is obvious that a fast attracting behavior has a small Tattr.
The quantitative descriptions for the change of Tattr with xobs,
Robs, and εobs are shown in Fig. 2. When xobs is not very
large, Tattr is an increased function of xobs, and the function
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FIG. 1. (Color online) The effects of an excitability obstacle on the spiral tip motion for different values of εobs (top panels) and d (bottom
panels), where the initial spiral core is out of the obstacle. Top panels: (a) εobs = 0.002, (b) εobs = 0.0031, and (c) εobs = 0.0045 for a fixed
location (xobs,yobs) = (115,100). Bottom panels: (d) xobs = 115, (e) xobs = 121, and (f) xobs = 122 for a fixed εobs = 0.0045. Here εini = 0.003,
Robs = 5, and yobs = 100.

has an approximate exponent [see Fig. 2(a)]. For xobs beyond a
critical value, the attractive motion is terminated. The speed of
attractive motion depends also on Robs. As Robs is increased,
Tattr is gradually reduced [see Fig. 2(b)], namely the obstacle
with a large Robs leads to a fast attractive motion. Figures 2(c)
and 2(d) depict the relations between Tattr and εobs for two

cases of Robs = 5 and 12 under εini = 0.003, and they are two
decreasing functions with an approximately exponential form.

The attractive behavior is also reflected in another case,
where the obstacle contains the spiral core [see Figs. 3(a)–
3(c)]. From Fig. 3(a), we can observe that the tip trajectory
will be compressed in the obstacle when it is incompletely

FIG. 2. Quantitative descriptions for the change of Tattr with xobs (a), Robs (b), and εobs (c) and (d) when the initial spiral core is out of the
obstacle. The corresponding parameters are descried in their own subplots.
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FIG. 3. (Color online) Attractive and repulsive cases of the obstacle when the initial spiral core is in the obstacle. Top panels: attractive
illustration for εobs > εini and its change with Robs. Bottom panels: repulsive illustration for εobs < εini and its change with Robs. Here
(xobs,yobs) = (103,100), and the other parameters are descried in their own subplots. The inset in the first subplot shows an enlarged version.

contained. If the initial tip trajectory is completely contained,
the final trajectory is still in the obstacle and its size is a linearly
increasing function of Robs, which is shown in Figs. 4(a) and
4(b). The increasing relation will be terminated when Robs is
beyond a critical value. In this case, the final trajectory agrees
with that of the spiral wave in the uniform medium with an
excitability parameter εobs.

IV. REPULSIVE ATTRIBUTES OF LOCALIZED
INHOMOGENEITIES

Figure 1(a) illustrates the repulsive attributes of the obstacle
with an excitability parameter εobs < εini. Further study shows
that the action is short-distance, i.e., it works for a small d. In

Fig. 5, a rigid rotating spiral is initially generated in the homo-
geneous medium with an excitability parameter εini = 0.0049,
and its core is at (75,102). In the top panels, the obstacle,
with an excitability ε = 0.001 and a radius Robs = 5, is placed
along yobs = 102. For small d, it is observed that the spiral
core is repelled, but the repulsion will be terminated after the
spiral core moves a short distance away from the obstacle [see
Figs. 5(a) and 5(b)]. After the repulsive action is terminated,
the instantaneous rotating core of the spiral wave moves
along a limit circle centered at (xobs,yobs), while for larger
d, the repulsive action is out of work. In contrast, the spiral
core is attracted to the limit circle [see Fig. 5(c)], and the
attractive case is different from the one for εobs > εini because
the spiral core is attracted into the obstacle in the latter case.

FIG. 4. Four quantitative descriptions for
attractive and repulsive cases when the initial
spiral core is in the obstacle. (a) Rtip as a
function of Robs in the attractive case, where
values of the other parameters are the same as
in Fig. 3(a); (b) Rtip vs Robs in the attractive
case, where (xobs,yobs) = (83,122); (c) Trepu as
a function of εobs in the repulsive case, where
(xobs,yobs) = (103,100); (d) Trepu vs Robs in the
repulsive case, where (xobs,yobs) = (103,100).
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FIG. 5. (Color online) Illustration of a repulsive attribute when the initial spiral core is out of the obstacle. Top panels: illustration for
the repulsive action and its short-distance nature of the repulsive action in the single-obstacle case, where three different values of xobs are
considered. Bottom panels: repulsive action in the multiple-obstacles case. For all subplots, εini = 0.0049, and the other parameters are marked
in their own subplots.

The bottom panels exhibit the repulsive attribute of multiple
localized obstacles. In Figs. 5(d) and 5(e), three obstacles are
symmetrically located to form an equilateral triangle, and its
center agrees approximately with the initial spiral core. When
Robs is larger, i.e., the gap between the two obstacles is smaller,
the initial tip trajectory will be compressed [see Fig. 5(d)],
while for a smaller Robs, the spiral core can be squirted out
along one gap, after which it moves along a triangular closed
path around three obstacles [see Fig. 5(e)]. In Fig. 5(f), many
obstacles are regularly arranged along two lines, which are
parallel to each other, and the lack of an obstacle is designed in
the bottom line. The initial spiral core lies between two arrays
of obstacles, and it is squirted out along the lacking position.
The crowded core will enter the space between two lines again
through traveling along the boundary and the bottom line, and
then it will be squirted out once again.

The repulsive attribute is further illustrated for another case,
where the initial spiral core is in the obstacle [see Figs. 3(d)–
3(f)]. In this case, the spiral core will be driven to the outside
of the obstacle, and the speed of the driven motion depends
on the size of the obstacle. When Robs is beyond a critical
value, the outward movement is terminated [see Fig. 3(f)],
and the final tip trajectory agrees with that of the spiral wave
in the uniform medium with an excitability parameter εobs.
To describe the repulsive effect quantitatively, we define Trepu

as the spent time from the appearance of the obstacle to the
onset of the tip just moving out of the obstacle. The functions
Trepu(εobs) and Trepu(Robs) are exhibited in Figs. 4(c) and 4(d).
They reveal the changes with an exponential form.

V. MECHANISM OF REPULSIVE AND
ATTRACTIVE MOTION

Figure 6 shows the tip trajectory during the drawn motion
of a meandering spiral wave after switching on an attracting
obstacle, and the comparison with the corresponding tip

trajectory in the absence of the obstacle. To clearly show the
details, the attracted motion is divided into four parts with the
same time intervals, which are respectively exhibited in four
panels. For a meandering spiral wave, the curve obtained by
tracing the motion of the spiral tip describes a flower pattern,
where similar loops appear periodically. The loops are called
as petals, on which the tip path has a large curvature. Between
two adjacent petals, there exists a section of flat path with a
very small curvature. In the presence of the attracting obstacle,
when the excited state passes through it, the tip motion has a
small change, which depends on the distance between the
tip position and the obstacle one. The accumulation of small
changes may induce a large change, and the tip is attracted to
the obstacle, which is shown in Fig. 6(c). After the tip enters
the obstacle, its tip path has a large difference with the original
tip path [see Fig. 6(d)].

The mechanism of the attractive motion can be understood
by studying the areas with small v values (SV areas) near the
spiral tip (the SV areas are illustrated by blue in Fig. 7). From
the kinetic analysis of the excitable system, it is known that the
propagation is quicker on those parts of the u spiral behind the
SV areas. By analyzing the size and placing of the SV areas,
we can explain the tip motion of the spiral wave. In the second
and fourth rows of Fig. 7, panels (a′)–(l′) show snapshots of SV
areas and contours of u spirals near the tip for 12 different times
in the absence of the obstacle. The corresponding tip location
at each time is shown by cyan points and cyan numbers 1–12
in Fig. 6(c), where the blue curve describes the tip motion
within a time interval of 140 time steps from t = 300 to 440
in the absence of the obstacle. When the tip reaches the cyan
point “1,” the SV areas do not appear in the normal front of
the partial wavefront close to the tip [see Fig. 7(a′)], and this
means that the propagation of the front segment is terminated
or slowed down. The corresponding wave back segment still
propagates along the original direction, and it indicates that
the tip will be retracted, rather than rolling forward. As the
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FIG. 6. (Color online) Illustration of the tip trajectory for the attracting phenomenon, and comparison with the tip trajectory in the absence
of the obstacle. The black curve describes a whole trajectory in the attracted process, which includes a small part of the tip path before t = 0
(t = 0 corresponds to the moment of the onset of the obstacle). (a) Comparison of tip trajectories in the presence of the obstacle (red line)
and in the absence of it (blue line), within a time interval from t = 0 to 140; (b) within a time interval from t = 150 to 290; (c) within a time
interval from t = 300 to 440; and (d) within a time interval from t = 450 to 590. The time interval, between two adjacent square scatters in
each curve, is 10 time steps. Here, the parameters are as follows: εini = 0.003, εobs = 0.0045, Robs = 5, and (xobs,yobs) = (115,100).

tip moves from point “1” to point “3,” the distance between
the partial wavefront close to the tip and the wave back in the
normal front of them will become large, which can lead to
the gradual extension of the SV areas toward the tip along the
the spiral front [see Figs. 7(a′)–7(c′)]. Therefore, the path of
this movement is very flat or straight. After the tip arrives at
point “3,” the SV areas begin to appear in the normal front of
the tip [shown in Figs. 7(c′)–7(f′)], which causes the tip to roll
forward and move along a petal path. With the fast propagation
of the tip part, the distance from the tip to the forward wave
back begins to become small, and the SV areas in the normal
front of the tip will disappear [see Figs. 7(g′)–7(l′)]. The tip
moves along a flat path again.

Now, we analyze the effects of the obstacle by comparing
the SW areas in the presence of the obstacle with those in the
absence of the obstacle within the same time interval. In the
first and third rows of Fig. 7, panels (a)–(l) show snapshots
of SV areas and contours of u spirals near the tip for 12
different times in the presence the obstacle. The corresponding
tip location at each time is shown by green points and marked
numbers 1–12 in Fig. 6(c), where the red curve describes the
tip motion within a time interval of 140 time steps from t =
300 to 440 in the present of the obstacle. At t = 300 (the tip
reaches the position “1”), a part of the excited arm just passes
through the obstacle. It can be proven by theoretical analysis

and numerical results that the decreasing velocity of excitable
waves behaves as a function of ε. Therefore, the propagation
of the excited part is slowed down due to εobs > εini, which
is illustrated by observing the domain indicated by an arrow
in Fig. 7(a). It is followed by reducing the distance between
the tip and the excited part. As a result of this change, the
appearance of the SV areas is delayed, which can be seen
by a comparison of Figs. 7(c) and 7(c′). The sharply turning
movement is postponed and flattened, and what follows then
is that the tip enters the obstacle directionally. In the obstacle,
the propagation of the tip part is slowed down. While the
propagation velocity of the excited part in the normal front of
the tip part is not reduced, there exist large SV areas around the
tip [see Figs. 7(g)–7(l)]. This results in the turning movement
of the tip and the lack of the flat movement, and the tip is
bound in the obstacle.

The attractive effects are also understood by the eikonal
equation (cn = c0 − Dκ), where the front velocity in its
normal direction depends on its local curvature. After a part of
the excited front passes through the obstacle, its curvature will
become small. What follows then is that two high-curvature
junction sections appear in the front, one of which moves
toward the tip along the front curve with the continued
evolution of the spiral wave due to the requirement of the
eikonal equation. For the repulsive cases, the propagation
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FIG. 7. (Color online) Snapshots of SV areas (marked in blue) and contours of u spirals (marked in red) near the tip for 12 different times
in the presence of the obstacle (first and third panels) and in the absence of the obstacle (second and fourth panels). t = 300 in (a) and (a′),
t = 310 in (b) and (b′), t = 320 in (c) and (c′), t = 330 in (d) and (d′), t = 340 in (e) and (e′), t = 350 in (f) and (f′), t = 360 in (g) and (g′),
t = 370 in (h) and (h′), t = 380 in (i) and (i′), t = 390 in (j) and (j′), t = 400 in (k) and (k′), t = 410 in (l) and (l′). The back circle describes
the localized obstacle. The parameters are the same as in Fig. 6.

of the excited part, passing through the repulsive obstacle,
is speeded up due to εobs < εini. Considering this point, the
repulsive behavior can be explained by studying the SV areas
near the tip or the changing of the front curvature.

VI. ELIMINATING SCHEME OF SPIRAL WAVES BASED
ON ATTRACTIVE MOTION

Many of the studies on eliminating spiral waves are inspired
by the relevance of this topic to the functioning of the heart
under normal and pathological conditions. Spiral waves are
believed to be responsible for cardiac tachyarrhythmias and are
precursors of ventricular fibrillation. Thus, the development
of methods to terminate spiral waves would be an important
contribution to this field of medicine. In the present study,
we shall provide a technique that is based on the attractive
contribution of a moving excitability obstacle with εobs > εini.
In this scheme, the center of the obstacle moves abruptly a
distance d toward the boundary at scheduled time intervals.
We define the time interval between two adjacent movements
as Tmoving, and a sufficiently large Tmoving is necessary for
eliminating spiral waves, where the spiral core is successively

attached to the obstacle and moves toward the boundary
together with the moving obstacle.

Figures 8(a)–8(e) give an illustration of this eliminating
scheme. A spiral wave is first generated in the uniform medium
with an excitability parameter εini = 0.003 and its core lies
at (xcore

sp ,ycore
sp ) ≈ (103,100). Then an excitability obstacle

[marked by circle “1” in Fig. 8(e)], with a radius of Robs = 5,
is simulated at (xobs,yobs) = (115,100), and the spiral core will
be rapidly attracted to this obstacle. After Tmoving = 3500, the
obstacle shifts suddenly a distance d = 12 toward the right
boundary along y = 100, i.e., the inhomogeneous excitability
appears suddenly in the “2” circular region, and the spiral core
will be attracted to the circular region [see Fig. 8(e)]. The two
processes of obstacle motion and core attraction take place pe-
riodically in turn before the moving obstacle reaches the right
boundary. After the obstacle is abruptly moved seven times, it
arrives at the boundaries and appears in the semicircular region
marked by “8,” and a part of the obstacle has stepped out of
the medium. The spiral tip is attracted by the semicircular
obstacle, and disappears on the boundary [see Fig. 8(d)]. Due
to the absence of the tip, the excitable wave will soon disappear.

The value of d required for eliminating the spiral wave
must be small enough to ensure the occurrence of attractive
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FIG. 8. (Color online) Snapshots and tip trajectories of spiral waves driven by the moving attractive obstacle, where εini = 0.003, εobs =
0.0045, Robs = 5, and d = 12. An example of successfully eliminating spiral waves is illustrated in panels (a)–(e), where Tmoving = 3500.
(a) Spiral snapshot at t = 0 which corresponds to the onset of the moving obstacle. (b) Spiral snapshot at t = 6610. (c) Spiral snapshot at
t = 12 525. (d) Spiral snapshot at t = 25 400. (e) The corresponding tip trajectory and the position of the moving obstacle for different times.
Failure of the elimination is shown in (f), where Tmoving = 1800.

behaviors. On the other hand, a large enough Tmoving is also
necessary. For a large Tmoving, before the obstacle moves again,
the stable spiral state can be formed, which ensures the success
of the next attractive behavior. For a small Tmoving, the spiral
core is pulled toward the boundary, but it cannot get to the
boundary. Figure 8(f) depicts the tip trajectory for the case
of Tmoving = 1800, where the spiral core is pulled only to the
position of the “3” circular region.

VII. CONCLUSION AND DISCUSSION

The existence of localized inhomogeneities in excitable
media, such as cardiac tissue, is generally associated with
the formation of spiral waves and the changing of spiral
wave reentries. To investigate the formation of spiral waves in
cardiac tissue, the interactions of traveling or target waves of
excitation and these regions are extensively analyzed, where
the inhomogeneous regions are idealized as inexcitable and
nonconducting. In fact, most excitable media have regions of
reduced and enhanced excitability, which can be induced by
scar tissue and ionic heterogeneities in the heart. Here, we
have examined the effects of those excitability obstacles on
fully developed spiral waves. Depending on the excitability of
the localized inhomogeneity, our results prove the existence of
two different interactions. The reduction of excitability in the
obstacle causes an attraction phenomenon of the spiral tips,
provided their locations are close enough to each other. On
the other hand, the enhanced excitability has a repelling effect.

When the initial spiral core is very close to the obstacle, it is
repelled and moves a distance away. After moving the distance,
the following motion depends on the type of spiral wave. For
RW, the tip rolls along a circular limit cycle, centered at the
center of the obstacle, while for MRW, the tip meanders in a
small region. These behaviors can be understood by studying
the changing of SV areas in front of the wavefront, because
these SV areas determine the propagation of the front.

We have also proposed a control scheme of spiral waves,
which is designed on the basis of the attraction phenomenon
in the presence of the excitability-reduced obstacle. In the
scheme, the obstacle is initially located close to the original
spiral tip, and it will be shifted a small distance after
completing the attracting behavior. The practice of repetition
is continued until the disappearance of the spiral wave. This
method can avoid the high-amplitude and high-frequency
stimulus in the traditional methods.
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