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Solvable model for solitons pinned to a parity-time-symmetric dipole
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We introduce the simplest one-dimensional nonlinear model with parity-time (PT ) symmetry, which makes
it possible to find exact analytical solutions for localized modes (“solitons”). The PT -symmetric element is
represented by a pointlike (δ-functional) gain-loss dipole ∼δ′(x), combined with the usual attractive potential
∼δ(x). The nonlinearity is represented by self-focusing (SF) or self-defocusing (SDF) Kerr terms, both spatially
uniform and localized. The system can be implemented in planar optical waveguides. For the sake of comparison,
also introduced is a model with separated δ-functional gain and loss, embedded into the linear medium and
combined with the δ-localized Kerr nonlinearity and attractive potential. Full analytical solutions for pinned
modes are found in both models. The exact solutions are compared with numerical counterparts, which are
obtained in the gain-loss-dipole model with the δ′ and δ functions replaced by their Lorentzian regularization.
With the increase of the dipole’s strength γ , the single-peak shape of the numerically found mode, supported
by the uniform SF nonlinearity, transforms into a double peak. This transition coincides with the onset of the
escape instability of the pinned soliton. In the case of the SDF uniform nonlinearity, the pinned modes are stable,
keeping the single-peak shape.
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I. INTRODUCTION

Recently, a great deal of interest has arisen in physical
systems featuring parity-time (PT ) symmetry [1–3], i.e.,
dissipative quantum or wave systems with antisymmetry
between spatially separated gain and loss. In particular, making
use of the similarity of the quantum-mechanical Schrödinger
equation to the parabolic propagation equation in optics, it
was proposed theoretically [4] and demonstrated experimen-
tally [5] that PT symmetry can be realized in the classical
context of optical wave propagation, using waveguides with
PT -balanced gain and loss. Very recently, an experimental
realization of PT symmetry was also reported in a system
of coupled electronic oscillators [6]. These findings have
stimulated numerous studies of linear wave propagation in
PT -symmetric systems [2], especially in those including
periodic potentials [7] (see also the review [3]).

The optical realizations ofPT symmetry suggest additional
interest in nonlinearity in these systems [8], where stable
solitons can be supported by a combination of the Kerr (cubic)
nonlinearity and a spatially periodic complex potential, whose
odd (antisymmetric) imaginary part accounts for the balanced
gain and loss, as mentioned above. The stability of such
solitons was rigorously analyzed in Ref. [9]. Dark solitons
were also investigated in the framework of models combining
PT symmetry and the self-defocusing Kerr nonlinearity [10].
In addition to that, bright solitons were predicted too in
PT -symmetric systems with quadratic (second-harmonic-
generating) nonlinearity [11].

Solitons can also be found in linearly coupled dual-core
systems, with balanced gain and loss acting in the two cores,
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and the intrinsic Kerr nonlinearity present in each one [12–14].
Further, discrete solitons were predicted in various models
based on chains of linearly [15] and circularly [16] coupled
PT -symmetric elements and, more generally, in networks
of coupled PT -symmetric oligomers (dimers, quadrimers,
etc.) [17]. Parallel to incorporating the usual Kerr nonlin-
earity into the conservative part of the system, its gain-loss-
antisymmetric part can be made nonlinear too, by introducing
mutually balanced cubic gain and loss terms [18]. The effects
of combined linear and nonlinear PT terms on the existence
and stability of optical solitons have also been studied [19].

Unlike the usual nonlinear dissipative systems, where
solitons exist as isolated solutions (attractors) [20,21], in
PT -symmetric settings solitons form continuous families,
similarly to the generic situation in conservative media.
However, the increase of the gain-loss coefficient (γ ) in th
PT -symmetric nonlinear systems leads to shrinkage of the
existence and stability areas for PT -symmetric solitons, until
they vanish when this coefficient attains a critical value γcr.

In previously studied models of PT -symmetric nonlinear
systems, except for the simplest dual-core model considered
in Ref. [12], solitons could be constructed and investigated
only in a numerical form (in Ref. [12], the solutions for PT -
symmetric solitons were tantamount to those for symmetric
solitons in the usual coupler model, the difference being in
their stability). The objective of the present work is to propose
a solvable one-dimensional nonlinear model with the PT -
balanced gain and loss concentrated at a single point, in the
form of a PT dipole. The possibility of constructing such a
tractable model is suggested by recently studied models of
dissipative systems (not subject to the condition of the PT
symmetry), in which localized gain, competing with spatially
uniform loss, was applied at a single [22] or two [23] “hot
spots,” making it possible to find exact solutions for dissipative
solitons pinned to those spots. Similar models, but with hot
spots of a finite width, were investigated by means of numerical
methods in Refs. [24].
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APT -symmetric model with uniformly distributed nonlin-
earity and localized mutually balanced gain and loss, applied at
two points in the form of δ functions, along with an attractive
potential, represented by a pair of δ functions placed at the
same points, was elaborated in Ref. [25]. The model dealt
with in the present work may be considered as a limit form
of the one introduced in Ref. [25], for a vanishingly small
separation between the two δ functions, when the balanced
pair of δ-function-shaped gain and loss go over into a single
term in the underlying propagation equation, represented by
the δ′ function (the “PT dipole”).

The model with the PT dipole embedded into the Kerr-
nonlinear medium admits a full family of analytical solutions
for localized modes (“solitons”) pinned to the pointlike dipole
(“defect”), for both signs of the nonlinearity of the host
medium, self-focusing (SF) and self-defocusing (SDF). Unlike
what occurs in other PT -symmetric systems, the analytical
solutions exist at all values of the gain-loss parameter γ ,
without featuring the above-mentioned threshold (critical
value) γcr. On the other hand, our numerical solution for the
model with the δ and δ′ functions replaced by their finite-width
regularizations [see Eq. (32) below] demonstrates that, while
at γ small enough the numerical solutions are close to their
analytical counterparts found for the ideal δ functions, their
stability and existence are always limited by a finite γcr.

The appearance of the threshold with the introduction of the
regularization, i.e., finite separation between the gain and loss,
can also be explained in an analytical form. To this end, we
introduce an additional model, based on a linear host medium
with an embedded pair of separated δ functions, which carry,
in addition to the gain and loss with equal coefficients �, a
local cubic SF nonlinearity, along with the linear δ-functional
potentials. This setting also admits a full analytical solution
(cf. Refs. [26] and [27], where exact solutions were found
for one- and two-component symmetric, antisymmetric, and
asymmetric solitons pinned to a pair of points with a localized
SF nonlinearity, embedded into the linear medium). Analytical
solutions obtained in a system with separated δ functions
explicitly feature a threshold value �cr, which bounds their
existence region.

The solvable models and analytical solutions are introduced
in Sec. II. Their numerically found counterparts, correspond-
ing to the regularized δ′ and δ functions, are presented in
Sec. III. The numerical analysis pursues two objectives: to
estimate the robustness (structural stability) of the analytical
solutions for the localized modes, obtained with the ideal δ′
and δ functions, and to test the dynamical stability of the
modes by means of systematic simulations of the perturbed
evolution, which is a crucially important issue in the context
ofPT -symmetric systems. The paper is concluded by Sec. IV.

II. THE MODEL AND ANALYTICAL SOLUTIONS

A. The basic model

The underlying equation for light propagation in a nonlinear
planar waveguide, with a PT -symmetric complex potential
concentrated near x = 0 (with even real and odd imaginary

parts), and a uniform cubic nonlinearity with coefficient σ , is

iuz = − 1
2uxx − (ε0 + ε2|u|2)uδ (x) + iγ uδ′ (x) − σ |u|2u.

(1)

Here z is the propagation distance and x the transverse coordi-
nate, with the term uxx accounting for the transverse diffraction
in the paraxial approximation, while ε0 > 0 and γ > 0 are
the strengths of the real and imaginary parts of the complex
potential, and ε2 represents a possible nonlinear part of the
trapping potential [26]. By means of obvious rescaling, one can
set |σ | ≡ 1, with σ = +1 and −1 corresponding, respectively,
to the SF and SDF spatially uniform nonlinearities. In addition,
σ = 0 is possible too, corresponding to the model with the Kerr
nonlinearity fully concentrated at the same spot where the PT
dipole is set. Rescaling also allows us to fix ε0 ≡ 1, unless
ε0 = 0, in which case it is possible to fix γ ≡ 1. The sign of
ε2 in Eq. (1) may be either the same as σ = ±1 or opposite
to it, the latter case corresponding to competition between the
uniform and localized nonlinearities.

Stationary PT -symmetric localized solutions to Eq. (1) are
looked for as

u (x,z) = eikzU (x), (2)

U ∗(x) = U (−x) (3)

with real propagation constant k > 0, where the complex
function U (x) obeys the following equation:

kU − 1
2U ′′ − σ |U |2U − (ε0 + ε2|U |2)Uδ(x)

+ iγUδ′(x) = 0. (4)

At x �= 0, PT -symmetric solutions of Eq. (4) for localized
modes are constructed in terms of the commonly known
analytical expressions for regular and singular solitons of
the nonlinear Schrödinger equation with the SF or SDF
nonlinearity (σ = +1 and σ = −1, respectively):

U (x) =
√

2k
cos θ + isgn(x) sin θ

cosh[
√

2k (|x| + ξ )]
for σ = +1, (5)

U (x) =
√

2k
cos θ + isgn(x) sin θ

sinh[
√

2k (|x| + ξ )]
for σ = −1, (6)

where θ and ξ are free real parameters. The form of this
solution implies that Im[U (x = 0)] = 0, while jumps (	) of
the imaginary part and first derivative of the real part at x = 0
are determined by the integration of the δ and δ′ functions in
an infinitesimal vicinity of x = 0:

	 {Im (U )} |x=0 = 2γ0Re (U ) |x=0, (7)

	

{(
d

dx
Re(U )

)}∣∣∣∣
x=0

= −2{ε0 + ε2[Re(U )]2}Re(U )|x=0.

(8)

B. The analytical solution for the model with the spatially
uniform nonlinearity (ε2 = 0)

Substituting the bulk solutions (5) and (6) into the boundary
conditions (7) and (8) with ε2 = 0, it is straightforward to
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obtain the following results, that determine the free constants
in the solutions, θ and ξ , as functions of k:

θ = arctan (γ ) , (9)

which does not depend on k and is the same for σ = ±1, and

ξ = 1

2
√

2k
ln

(
σ

√
2k + ε0√
2k − ε0

)
. (10)

The total power of the localized mode is

Pσ ≡
∫ +∞

−∞
|U (x)|2dx = 2σ (

√
2k − ε0). (11)

As seen from Eq. (10), the solutions exist at
√

2k > ε0 for σ = +1,
√

2k < ε0 for σ = −1. (12)

As concerns the stability of the solutions, it is relevant to
mention that expression (11) with σ = +1 and −1 satisfies,
respectively, the Vakhitov-Kolokolov (VK) [28] and the
“anti-VK” [29] criteria, i.e.,

dP+1/dk > 0, dP−1/dk < 0, (13)

which are necessary conditions for the stability of localized
modes supported, severally, by the SF and SDF nonlinearities;
hence in both cases the present solutions have a chance to be
stable.

C. Analytical solutions for the model with an inhomogeneous
nonlinearity (ε2 �= 0)

In the presence of a localized nonlinearity, Eq. (9) remains
the same as before, while expression (10), following from
Eq. (8), is replaced by a rather cumbersome expression:

[tanh(
√

2kξ )]σ = − 1 + γ 2

2
√

2kε2

±
√

(1 + γ 2)2

8kε2
2

+ 1 + σ
ε0(1 + γ 2)√

2kε2

.

(14)

These solutions may be free of singularities and stable only if
they yield ξ > 0. In the case of ε2 > 0 (an attractive nonlinear
potential placed at x = 0), the condition of ξ > 0 for Eq. (14)
with σ = +1 holds only with the sign + in front of the radical,
while Eq. (14) with σ = −1 may give rise to two different
solutions, corresponding to both signs + and −. In the case
of ε2 < 0, the situation is opposite: Eq. (14) with σ = −1
makes sense only with the sign + in front of the radical, while
σ = +1 may generate meaningful solutions for both signs +
and −. Thus, two different solutions may exist in the case of
competition between the uniform and localized nonlinearities.

It is also relevant to consider the special case of ε0 = 0,
ε2 > 0, when the attractive potential of the defect at x = 0
is purely nonlinear. In this situation, solution (14) essentially
simplifies, taking the same form for σ = ±1:

ξ = 1

2
√

2k
ln

⎡
⎣2ε2

√
2k

1 + γ 2
+

√
1 + 8ε2

2k

(1 + γ 2)2

⎤
⎦ . (15)

The corresponding expression for the total power can be found
too [cf. Eq. (11)]:

Pσ (k) = 2

[
1 + γ 2

2ε2
+ σ

√
2k − σ

√
2k + (1 + γ 2)2

4ε2
2

]
. (16)

Note that this expression depends on γ , unlike its counter-
part (11).

The solution (15) exists for all values of k > 0, unlike the
one given by Eq. (10), whose existence region is limited by
condition (12). Further, the expression (16) satisfies the VK
and anti-VK criteria (13), severally for σ = +1 and σ = −1;
hence in both cases the solution (15) may be stable.

D. The analytical solution for the linear host medium (σ = 0)

For a nonlinear PT dipole embedded into a linear medium,
it is possible to fix ε2 = ±1, for the SF and SDF localized
nonlinearities, respectively. The solution of Eq. (4) for the
trapped mode is simple in this case:

U (x) =
√√

2k − ε0

ε2
[1 + iγ sgn(x)]e−√

2k|x|, (17)

with the corresponding total power

P0(k) = 1 + γ 2

ε2

(
1 − ε0√

2k

)
. (18)

Like the above solution given by Eq. (10), and unlike the one
amounting to Eq. (15), the existence of this solution is limited
by the conditions

√
2k > ε0 and

√
2k < ε0, respectively, in the

case of the SF and SDF localized nonlinearities; cf. Eq. (12).
Further, as well as the solution families considered above,
the relation (18) satisfies the VK and anti-VK criteria [see
Eq. (13)] for the SF and SDF signs of the localized nonlinearity,
i.e., ε2 = +1 and ε2 = −1. With ε0 = 0, Eq. (18) yields the
degenerate dependence dP0/dk = 0, which formally implies
VK-neutral stability, but in reality the solitons are unstable in
this case [30].

E. The model with separated gain and loss
embedded into a linear medium

As explained above, it is relevant to supplement the
PT -dipole model by a solvable one which features a finite
separation 2l between mutually balanced gain and loss δ-like
elements with equal strengths �. Such a system may be built
following the lines of Ref. [25], but replacing the uniform Kerr
nonlinearity by its counterpart localized at the same points
where the gain and loss are set (otherwise, the system is not
analytically solvable):

iuz = − 1
2uxx − (ε0 + ε2|u|2) [δ (x − l) + δ (x + l)] u

+ i� [δ (x − l) − δ (x + l)] u. (19)

Using obvious rescaling, we can fix here |ε2| = 1 for the SF
(ε2 = +1) and SDF (ε2 = −1) signs of the nonlinearity.

Stationary PT -symmetric localized solutions to Eq. (19)
are looked for in the same form as (2) and (3) above, with
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U (x) obeying the equation

kU − 1
2U ′′ − (ε0 + ε2|U |2) [δ (x − l) + δ (x + l)] U

+ i� [δ (x − l) − δ (x + l)] U = 0. (20)

At |x| > l and |x| < l, respectively, PT -symmetric solutions
of Eq. (4) for U (x) are constructed as follows [cf. Eq. (17)]:

Uout(x) = [A + isgn(x)B] exp[−
√

2k (|x| − l)],
(21)

Uin(x) = [C cosh(
√

2kx) + iD sinh(
√

2kx)],

where A,B and C,D are real amplitudes. The condition of
the continuity of the solution (21) at x = ±l yields a relation
eliminating C and D in favor of A and B:

C cosh(
√

2kl) + iD sinh(
√

2kl) = A + iB. (22)

The condition for the jump of the first derivatives induced
by the δ functions at x = ±l [cf. Eq. (8)] can be written as a
single cubic complex equation for A and B:

√
2k

(
A

1 + e−2
√

2kl
+ iB

1 − e−2
√

2kl

)
= [ε0 + ε2(A2 + B2) − i�] (A + iB) . (23)

Equation (23) may be considered as a system of two
homogeneous equations for A and B, a nontrivial solution
to which exists when the system’s determinant vanishes. After
some algebra, an explicit solution of Eq. (23) can be obtained:

A =
√

Q − ε0

ε2

[
1

�2

( √
2k

1 + e−2
√

2k
− Q

)2

+ 1

]−1

, (24)

B = 1

�

( √
2k

1 + e−2
√

2kl
− Q

)
A, (25)

Q ≡
√

2k

1 − e−4
√

2kl
±

√
k

2 sinh2(2
√

2kl)
− �2. (26)

These solutions exist only in the region where the radical in
Eq. (26) is real, i.e.,

√
2k

sinh(2
√

2kl)
� 2�. (27)

The condition (27) holds at k � kmax, with kmax determined by
a transcendental equation,

√
2kmax

sinh(2
√

2kmaxl)
= 2�. (28)

It is easy to see that Eq. (28) has a single physical solution
provided that

� < �cr ≡ (4l)−1 , (29)

and no solutions at � > �cr, which is a manifestation of the
above-mentioned generic feature of nonlinear PT -symmetric
systems: soliton families exist below a certain critical value
of the gain-loss coefficient. On the other hand, Eq. (29)
demonstrates that the critical value diverges in the limit of
l → 0, which corresponds to the replacement of the separated
gain and loss by the PT dipole in Eqs. (1) and (4). The latter
fact helps to understand why the above analytical solutions,
found in the PT -dipole models, do not feature a threshold.

Finally, in the limit of � → �cr, the solution of Eq. (28) is
k → 0, and Eqs. (24), (25), and (26) then yield A = −B, with

A2 = A2
cr ≡ (2ε2)−1 [(4l)−1 − ε0], (30)

while Eq. (22) yields C = A, D = −A/(
√

2kl). Thus, the
solution (21) takes the eventual form

Uout(x) = Acr[1 − isgn(x)],
(31)

Uin(x) = Acr (1 − ix/ l) ,

(a) (b)
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FIG. 1. (Color online) Comparison between the analytical solutions (solid and dotted blue curves show their real and imaginary parts,
respectively), given by Eqs. (5), (9), and (10) with σ = +1,ε2 = 0,ε0 = 1, and their numerically found counterparts, obtained by means of the
regularization (32) with a = 0.02 (magenta curves). The PT gain-dissipation parameter is γ = 0.20 in (a) and 0.32 in (b). In both panels, the
solutions are produced for propagation constant k = 3.
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FIG. 2. (Color online) The unstable evolution (escape) of the
double-peak soliton from Fig. 1(b).

where Acr is given by Eq. (30). Further, it is easy to
check directly that expressions (31) and (30) indeed give
a particular exact delocalized PT -symmetric solution of
Eq. (20), provided that the expression (30) yields A2

cr > 0, i.e.,
ε0 < (4l)−1 or ε0 > (4l)−1 for ε2 > 0 and ε2 < 0, respectively
[cf. Eq. (12)].

III. NUMERICAL RESULTS FOR
THE REGULARIZED MODEL

Numerical results are presented below, chiefly for solu-
tions which are counterparts of the analytical ones obtained
above in the fully explicit form, i.e., the solutions based
on Eqs. (5), (6), (9), and (10) (for the spatially uniform
nonlinearity, with ε2 = 0) or (15), for ε0 = 0, i.e., the purely
nonlinear attractive potential at x = 0.

A. The approximation of the δ function in numerical solutions

As said above, the numerical analysis of the model aims to
obtain solutions for the δ function replaced by its finite-width
regularization δ̃(x), with the objectives of producing solutions
for a modification of the model relevant for experimental
implementation, and also of testing the stability of the PT -

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

a

γ

No solitons

Single peak solitons
double peak solito

ns

 

 
γ

cr

FIG. 4. (Color online) Regions of the existence of stable single-
peak and unstable double-peak solitons, separated by γ = γcr(a), in
the plane of the regularization scale a and PT gain-loss parameter
γ, for fixed k = 3.0, in the system with σ = +1,ε2 = 0,ε0 = 1.

symmetric modes produced above in the analytical form. In
many works, δ̃(x) was used in the form of a narrow Gaussian;
see, e.g., Ref. [26]. However, this is not convenient in the
present context, as, when replacing the exact solutions in the
form of Eqs. (5), (6), and (17) by regularized expressions, it is
necessary, inter alia, to replace sgn(x) ≡ −1 + 2

∫ x

−∞ δ(x ′)dx ′

by a continuous function realized as −1 + 2
∫ x

−∞ δ̃(x ′)dx ′,
which would imply using a nonelementary function in the case
of the Gaussian. Therefore, we here use the regularization in

0 0.2 0.4 0.6 0.8 1 1.2 1.4
2

3

4

5
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8

γ

P
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a = 1/5
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k
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γ = 0.05
γ = 0.1
γ = 0.22
γ = 0.26
γ = 0.3

FIG. 3. (Color online) (a) Total power P versus propagation constant k at fixed values of the PT gain-loss coefficient γ in the system with
σ = +1,ε2 = 0,ε0 = 1, and regularization scale a = 0.02 in Eq. (32). The blue line (the bottom one) shows the analytical result (11), while the
black and magenta lines (three intermediate and two top ones, respectively) represent, severally, the numerically found stable (single-peak) and
unstable (double-peak) modes. (b) P (γ ) for fixed k = 3.0 and different fixed values of a. Blue and magenta segments of the curves (bottom
and top ones, respectively) represent the single- and double-peak (stable and unstable) pinned solitons.
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the form of a Lorentzian,

δ(x) → a

π

1

x2 + a2
, δ′(x) → −2a

π

x(
x2 + a2

)2 ,

(32)

sgn(x) → 2

π
arctan(

x

a
),

with 0 < a 
 k−1/2.

B. The self-focusing uniform nonlinearity (σ = +1,ε2 = 0)

We start the presentation of the results with the case of
the uniform SF nonlinearity, fixing ε0 = 1 in Eqs. (1) and (4)
(larger values of ε0 are used below to report results obtained
in the model with the uniform SDF nonlinearity). Stationary
solutions were found by solving Eq. (4) with the help of the
Newton’s method, using the input provided by the analytical
solution in the form of Eqs. (5), (9), and (10), with the
regularization implemented as per Eq. (32). The stability of the
solutions so generated was tested through direct simulations
of their perturbed evolution by means of the fourth-order
split-step method. It was implemented in the domain −10 <

x < +10, with periodic boundary conditions (the width of the
integration domain is definitely much larger than the size of
all the modes considered in this work; see Figs. 1, 2, and
7 below). Sufficient numerical stability and accuracy were
achieved with time and space step sizes 	t = 0.001 and
	x = 0.039, respectively. Accordingly, values a � 0.02 of
the regularization scale were adopted in Eq. (32), as a cannot
be essentially smaller than 	x (in fact, the plots displayed are
generated with a = 0.02, unless it is stated otherwise).

The first result is that, for fixed values of a in Eq. (32), there
is a critical value γcr of the PT gain-loss coefficient, such that,
at γ < γcr, the numerical solution features a shape very close
to that of the analytical solution corresponding to the ideal
δ′ and δ functions, while at γ > γcr the single-peak shape of
the solution transforms into a double-peak one, as shown in
Fig. 1(a). In particular, it was found that γcr(a = 0.02) ≈ 0.24.

As shown below, there is a second critical value of γ ,
above which pinned modes do not exist at all; cf. the exact
result (29).

The drastic difference between the single- and double-peak
modes is that the former are completely stable, as confirmed
by systematic simulations (not shown here in detail), while
all the double-peak solutions are unstable. This correlation
between the shape and (in)stability of the pinned modes
is not surprising: the single- and double-peak structures
imply that the pinned mode is experiencing, respectively,
effective attraction to or repulsion from the local defect.
Accordingly, in the latter case the pinned soliton is unstable
against spontaneous detachment (escape) from the PT dipole,
transforming itself into an ordinary freely moving NLS soliton;
see an example in Fig. 2.

The transition between stable single-peak and unstable
double-peak pinned modes was earlier reported in Ref. [31],
which was dealing with a chain of parametrically driven
damped pendulums, with a discrete soliton attached to a local
defect in the chain. In that case, the instability development
was different, leading not to detachment of the soliton, but
rather to π -out-of-phase oscillations of the two lobes of the
double-peak structure.

The results for soliton families in the present situation
are summarized in Figs. 3(a) and 3(b), in the form of plots
for P (k) [cf. Eq. (11)] and P (γ ). The plots also delineate
the effective boundary between the stable single-peak and
unstable double-peak modes. The curves in Fig. 3(b) terminate
at critical points, beyond which no pinned modes are produced
by the numerical solution. Exact analytical results for solitons
in the model of the PT -symmetric nonlinear coupler [12]
suggest that the termination of the solution branches may
be explained by a tangent (saddle-node) bifurcation, i.e.,
annihilation of the given branch with an additional unstable one
(in the coupler model, this is the branch of PT -antisymmetric
solitons). However, search for that additional branch in the
present model, which is, presumably, a fully unstable one, is a
challenging problem.
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FIG. 5. The same as in Fig. 4 (for σ = +1,k = 3.0), but in the model with the purely nonlinear attractive potential, i.e., ε0 = 0, and ε2 = 2.0
(a) or ε2 = 8.0 (b). As before, in the present case stable and unstable solitons feature the single- and double-peak shapes, respectively.
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FIG. 6. (Color online) (a) P (k) curves in the model with σ = +1, ε = 1, γ = 0.1, and different values of ε2 � 0 (the increase of ε2 from
−0.3 to 0 corresponds to the transition from the top curve to the bottom one). The solid and dashed segments represent stable single-peak and
unstable double-peak solitons, respectively. (b) The stability boundary in the plane of (ε2,P ) for the same case.

Note that, at γ � 0.1, the numerically found total power
is almost independent of γ in Fig. 3(a), in accordance with
analytical result (11). However, P grows with γ at larger values
of γ . The analytical curve in Fig. 3(a) terminates at k = 0.5,
as predicted by Eq. (10) for ε0 = 1, but with the growth of γ

the cutoff value of k increases.
Finally, Fig. 4 summarizes the findings in the plane of

(a,γ ) for fixed k = 3.0. It is clearly seen that the region
of the unstable double-peak solitons is actually a relatively
narrow boundary layer between the broad areas in which the
stable single-peak solitons exist, or no solitons exist at all, at
large values of γ . Note also that the stability area strongly

expands to larger values of γ as the regularized profile (32)
becomes smoother, with the increase of a. On the other hand,
the stability region remains finite even for very small a.

C. The system with a self-focusing uniform nonlinearity and
nonlinear pinning potential (σ = +1,ε2 �= 0)

Another explicit solution produced above, based on
Eqs. (5), (9), and (15), pertains to the case of σ = +1, ε0 = 0,
and ε2 > 0, when the attractive potential of the PT dipole
is purely nonlinear. In this case, stable single-peak modes,
close to the aforementioned analytical solution, were found
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1

2

3

4

x
−5 0
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5
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0

0.5

1

1.5
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FIG. 7. (Color online) Comparison between the analytical solutions (taller solid and dotted blue curves show its real and imaginary parts,
respectively), given by Eqs. (6), (9), and (10) with σ = −1,ε2 = 0, and their numerically found counterparts, obtained by means of the
regularization (32) with a = 0.02 (lower magenta curves). The small-amplitude profiles of the imaginary parts of the analytical and numerical
solutions are indiscernible. Other parameters are ε0 = 2.0, k = 1.0 in (a), and ε0 = 6.0, k = 10.0 in (b).
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FIG. 8. (Color online) (a) Curves P (k) in the model with the uniform SDF nonlinearity, i.e., σ = −1,ε2 = 0, for different values of γ

and ε0 = 2.0 (a) or ε0 = 6.0 (b). The blue (top) curves represent the corresponding analytical result (11), while the curves generated by the
numerical solution are plotted in magenta.

for 0 � γ � 0.13, while at γ > 0.13 the pinned modes are
unstable, featuring a double-peak shape. Similarly to Fig. 4,
the existence and stability diagram for the solitons is plotted
in the plane of (a,γ ) in Fig. 5 for smaller (a) and larger (b)
values of ε2. The comparison with Fig. 4 demonstrates that,
in the case of a nonlinear pinning potential, the stability area
is much smaller than it was in the case of the linear attractive
potential.

Next, we consider combined linear and nonlinear pinning
potentials, restoring ε0 = 1. With ε2 > 0, stable single-peak
solitons are readily found up to the respective critical value
of γ (for instance, at k = 2.0 they are found at γ < 0.15 for
any value of ε2). With ε2 < 0, both stable single-peak and
unstable double-peak solitons are produced by the numerical
solution. For this case, Fig. 6(a) displays P (k) curves with

fixed γ = 0.1 and different negative values of ε2 . The curves
include segments representing both the single- and double-
peak modes. Further, the respective stability boundary in the
plane of (ε2,P ) for fixed γ = 0.1 is shown in Fig. 6(b). The
increase of P naturally leads to destabilization of the pinned
mode, as the corresponding nonlinear repulsive potential,
accounted for by ε2 < 0, becomes stronger.

D. The self-defocusing nonlinearity (σ = −1)

Another basic case corresponds to the exact solutions for
the SDF nonlinearity, given by Eqs. (6), (9), and (10) with
σ = −1,ε2 = 0. In this case, the numerical solution reveals
solely single-peak modes. For small γ = 0.01, the comparison
between the analytical solutions and their numerically found
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FIG. 9. (Color online) The existence region for stable single-peak solitons in the plane of (γ,k) for the model with σ = −1, ε2 = 0, and
ε0 = 2.0 (a), or ε0 = 6.0 (b). The blue dotted horizontal lines correspond to kmax = ε2

0/2 predicted by the analytical solution (12).
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FIG. 10. (Color online) P (k) curves in the model with σ = −1,
ε0 = 6.0, γ = 0.3, and different positive and negative values of ε2.
The branch for ε = 0.12 terminates at a point past which pinned
modes could not be found.

counterparts is displayed in Fig. 7. Further, soliton families
are represented by the respective P (k) curves in Fig. 8.
The corresponding analytical dependence, given by Eq. (11),
does not depend on γ , while its numerical counterparts
deviate from it with increase of γ , especially for larger ε0;
see Fig. 8(b).

Note that, in the framework of Eq. (4), different values
of ε0 can be transformed into ε0 = 1 by rescaling, but the
regularization (32) then implies that a will be rescaled by the
factor ε0; hence larger ε implies a farther departure from the
model with ideal δ′ and δ functions. This fact explains the
stronger deviation of the numerically found curves from their
analytically obtained counterparts in Fig. 8(b) in comparison
with Fig. 8(a). The same trend is observed in Fig. 9.

In the model with the uniform SDF nonlinearity, the
analytical solution exists in the interval of the propagation
constant k < kmax = ε2

0/2; see Eq. (12). The corresponding
numerically found existence boundaries for the single-peak
solitons are displayed in Fig. 9. The observed deviation of
the boundary value from kmax at γ = 0 is explained by
the difference of the regularized δ function (32) from its
ideal counterpart, the existence region further shrinking with
increase of γ .

The results were extended to the case of ε2 �= 0, when the
the pinning potential contains a nonlinear attractive or repul-
sive part, corresponding to ε2 > 0 and ε2 < 0, respectively.
Stable single-peak solitons were found for either sign of ε2.
They are represented by the corresponding P (k) curves in
Fig. 10 for fixed ε0 = 6.0 and γ = 0.3, which originate, at
P = 0, from the point k ≈ 9, in accordance with what Fig. 9(b)
shows for γ = 0.3.

Finally, the numerical results demonstrate that, in the case
of σ = −1 and ε0 = 0, solitons existing under the action of
the nonlinear pinning potential with ε2 > 0, as predicted by
Eqs. (6), (9), and (15), are completely unstable. Recall that,
unlike this result, in the model with the SF bulk nonlinearity
(σ = +1), a small stability area was found for solitons pinned
by the nonlinear potential; see Fig. 5.

E. The linear host medium (σ = 0)

Finally, we have produced numerical counterparts of the
simplest exact solutions given by Eq. (17) for a nonlinear
dipole embedded into a linear medium (σ = 0,ε2 = ±1). The
results are summarized in the form of P (k) curves, which
are displayed in Figs. 11(a) and 11(b) for ε2 = +1 and ε2 =
−1, i.e., the SF and SDF signs of the localized nonlinearity,
respectively. In the former case, the P (k) dependences obey
the VK criterion dP/dk > 0 at γ < 0.28. Accordingly, the
pinned modes are stable in direct simulations in this region,
and they are destroyed by an instability at γ > 0.28, when
dP/dk becomes negative; see Fig. 11(a).
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FIG. 11. (Color online) P (k) curves for pinned modes in the model with linear host medium, σ = 0. (a) The system with ε0 = 1.0, ε2 = +1,
and different values of γ . The continuous blue curve depicts the analytical result given by Eq. (18). (b) The same, but with ε0 = 2.0, ε2 = −1.
The numerical results displayed here are obtained using the regularization (32) with a = 0.02.
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For the SDF sign of the localized nonlinearity, ε2 = −1,
the P (k) curves displayed in Fig. 11(b) satisfy the anti-VK
criterion dP/dk < 0. In agreement with this condition, the
solitons are found to be stable in the direct simulations.

IV. CONCLUSION

The objective of this work is to introduce a solvable model
of a nonlinear PT -symmetric medium, in which the gain-loss
combination is represented by a pointlike dipole ∼δ′(x), which
is embedded into a uniform Kerr-nonlinear SF (self-focusing)
or SDF (self-defocusing) medium, in combination with a linear
and/or nonlinear potential pinning the wave field to the PT
dipole. The host medium may be linear too. The full set of
analytical solutions for pinned modes has been found for this
model, along with the solutions for the system of separated
PT -symmetric pointlike gain and loss sites with a localized
Kerr nonlinearity, embedded into a linear medium (the solution
for the latter variety of the solvable system makes it possible
to explicitly demonstrate the nonexistence of PT -symmetric
modes above a critical value of the gain-loss coefficient).
The analytical solutions were compared with numerical ones,
obtained in the model with the ideal δ′ and δ functions replaced
by their Lorentzian regularizations. It has been concluded that,
with increase of the gain-loss-dipole strength γ , the shape

of the pinned mode supported by the SF bulk nonlinearity
gradually deviates from the analytical limit, changing from
the single-peak into the double-peak form, which coincides
with the destabilization of the pinned soliton against escape.
In contrast, all the pinned modes found in the model with
the SDF sign of the bulk nonlinearity are stable, featuring the
single-peak shape.

The models introduced in this work can be extended in
other directions. In particular, the possibility of defining the
nonlinear PT symmetry [18] suggests making the gain-loss
dipole nonlinear too, so that Eq. (1) is replaced by

iuz = − 1
2uxx − (ε0 + ε2|u|2)uδ (x)

+ i(γ0 − γ2|u|2)uδ′ (x) − σ |u|2u. (33)

The corresponding stationary equation [cf. Eq. (4)] is, in
principle, solvable, although the respective algebra turns out
to be cumbersome. On the other hand, it may be interesting
to introduce a two-dimensional version of the system, with
a gain-loss quadrupole emulating the corresponding singular
expression δ′(x)δ′(y).
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[5] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides,
M. Segev, and D. Kip, Nat. Phys. 6, 192 (2010).

[6] N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N.
Christodoulides, F. M. Ellis, and T. Kottos, Phys. Rev. Lett.
110, 234101 (2013).

[7] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H.
Musslimani, Phys. Rev. Lett. 100, 103904 (2008); S. Longhi,
Phys. Rev. A 81, 022102 (2010).

[8] Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, Phys. Rev. Lett. 100, 030402 (2008); Z. Lin,
H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N.
Christodoulides, ibid. 106, 213901 (2011); X. Zhu, H. Wang,
L.-X. Zheng, H. Li, and Y.-J. He, Opt. Lett. 36, 2680 (2011);
C. Li, H. Liu, and L. Dong, Opt. Express 20, 16823 (2012);
C. M. Huang, C. Y. Li, and L. W. Dong, ibid. 21, 3917 (2013).

[9] S. Nixon, L. Ge, and J. Yang, Phys. Rev. A 85, 023822 (2012).
[10] H. G. Li, Z. W. Shi, X. J. Jiang, and X. Zhu, Opt. Lett. 36, 3290

(2011); V. Achilleos, P. G. Kevrekidis, D. J. Frantzeskakis, and
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